

FREE-TEXT KEYSTROKE DYNAMICS

DATA SET AND ALGORITHMS FOR
CONTINUOUS AUTHENTICATION

IN EDUCATIONAL PLATFORMS

WITH MASSIVE OPEN ONLINE
COURSES (MOOC)

Teză destinată obţinerii

titlului ştiinţific de doctor inginer
la

Universitatea Politehnica Timişoara
în domeniul Calculatoare și Tehnologia Informației

de către

Augustin-Cătălin IAPĂ

Conducător ştiinţific: prof.univ. emerit dr.ing Vladimir-Ioan CREȚU

Referenţi ştiinţifici: prof.univ.dr.ing. Dorian GORGAN

 prof.univ.dr.ing. Viorel NEGRU

 prof.univ.dr.ing. Nicolae ROBU

Ziua susţinerii tezei: 9 aprilie 2021

BUPT

Seriile Teze de doctorat ale UPT sunt:

1. Automatică 9. Inginerie Mecanică

2. Chimie 10. Ştiința Calculatoarelor
3. Energetică 11. Ştiința și Ingineria Materialelor
4. Ingineria Chimică 12. Ingineria sistemelor
5. Inginerie Civilă 13. Inginerie energetică
6. Inginerie Electrică 14. Calculatoare și tehnologia informației
7. Inginerie Electronică și Telecomunicații 15. Ingineria materialelor
8. Inginerie Industrială 16. Inginerie și Management

Universitatea Politehnica Timişoara a iniţiat seriile de mai sus în scopul diseminării
expertizei, cunoştinţelor şi rezultatelor cercetărilor întreprinse în cadrul Şcolii
doctorale a universităţii. Seriile conţin, potrivit H.B.Ex.S Nr. 14 / 14.07.2006, tezele
de doctorat susţinute în universitate începând cu 1 octombrie 2006.

Copyright © Editura Politehnica – Timişoara, 2021

Această publicaţie este supusă prevederilor legii dreptului de autor. Multiplicarea
acestei publicaţii, în mod integral sau în parte, traducerea, tipărirea, reutilizarea

ilustraţiilor, expunerea, radiodifuzarea, reproducerea pe microfilme sau în orice altă
formă este permisă numai cu respectarea prevederilor Legii române a dreptului de

autor în vigoare şi permisiunea pentru utilizare obţinută în scris din partea Universităţii
Politehnica Timişoara. Toate încălcările acestor drepturi vor fi penalizate potrivit Legii
române a drepturilor de autor.

România, 300159 Timişoara, Bd. Republicii 9,
Tel./fax 0256 403823

e-mail: editura@edipol.upt.ro

BUPT

Cuvânt înainte

 Prezenta lucrare a fost elaborată în cadrul Departamentului de Calculatoare și
Tehnologia Informației al Universității Politehnica Timişoara.
 Îi mulțumesc în mod deosebit, în primul rând, mentorului meu, domnului

profesor emerit dr. ing. Vladimir-Ioan Crețu, conducătorul meu de doctorat, pentru
reușita prezentei lucrări, pentru răbdarea cu care mi-a coordonat pașii pe tot parcursul
perioadei de studii doctorale în scopul finalizării cu succes a acestui drum. Sfaturile
pertinente și observațiile domnului profesor au fost întotdeauna acordate la
momentele potrivite.
 De asemenea, mulțumesc membrilor echipei de îndrumare: doamnei dr. ing.

Diana Andone pentru ideea de a studia modul de identificare al utilizatorului în funcție
de tipologia tastării, fiind un domeniu de interes și intens cercetat științific, doamnei
prof. dr. ing. Carmen Holotescu pentru sfaturile oferite ori de câte ori le-am solicitat
dar și pentru îndrumarea și încurajarea publicării primelor lucrări științifice, precum și
domnului profesor emerit dr. ing. Ionel Jian pentru îndrumarea oferită.
 Pe parcursul studiilor doctorale am avut și oportunitatea de a preda în calitate
de student doctorand, cadru didactic asociat, studenților de la Facultatea de

Automoatică și Calculatoare. Pentru oferirea acestei oportunități le mulțumesc în mod
deosebit domului profesor dr. ing. Horia Ciocârlie, domnului profesor dr. ing. Vladimir-
Ioan Crețu și domnului S.l. dr. ing. Sebastian Fuicu.
 Le mulțumesc, de asemenea, tuturor cadrelor didactice de pe parcursul
perioadei de licență și masterat de la Facultatea de Automatică și Calculatoare din
cadrul Universității Politehnica Timișoara și în mod special domnului prof. dr. ing.
Mircea Popa pentru coordonarea lucrărilor de licență și masterat. Le mulțumesc

tuturor profesorilor care m-au format pe parcursul întregului meu parcurs școlar, de
la Liceul Grigore Moisil din Timișoara și de la Şcoala Generală nr. 4 din orașul Moldova-

Nouă, parcurs care a construit, cărămidă cu cărămidă, pentru a putea duce la bun
sfârșit acest demers. Le mulțumesc în mod deosebit doamnei învățătoare Natalia
Guran, doamnei profesoare Elena Bojici, care nu mai este, din păcate, printre noi și
doamnei profesoare Adriana Simulescu.

 Le mulțumesc tuturor celor 80 de voluntari care au răspuns pozitiv rugăminții
de a furniza date în scopul prezentei cercetări, pentru timpul dedicat completării
formularului conceput în acest sens.
 Le mulțumesc în mod deosebit părinților pentru formarea oferită, pentru
încurajarea constantă și pentru tot sprijinul dăruit cu sacrificii, de cele mai multe ori.
Îi mulțumesc în mod deosebit și prietenei mele, Claudia, care m-a înțeles, m-a sprijinit
și mi-a oferit timpul și liniștea necesare lucrului la teză.

 Le mulțumesc colegilor care mi-au împărtășit din experiența lor de studenți
doctoranzi: Norbert Kazamer, Alexandru Topârceanu, Iulia Ştirb, Alexandru Filipovici,
Ovidiu Sicoe, Sergiu Nimara, Renata Boar. Îi mulțumesc Krisztinei Verneș pentru
ajutorul dat pentru revizuire. De asemenea aș vrea să mulțumesc tuturor care au fost
alături de mine în toți acești ani și pe care nu i-am menționat anterior.

 Sunt recunoscător lui Dumnezeu pentru răbdarea, puterea și sănătatea care
m-au dus la finalizarea cu succes a tezei de doctorat.

Timişoara, februarie 2021 Augustin-Cătălin Iapă

BUPT

Iapă, Augustin-Cătălin

Algoritmi și un set de date care folosesc dinamica tastării
tastelor în cazul textului scris liber pentru autentificarea

continuă în platforme educaționale care cuprind cursuri
online deschise masive (MOOC)

Teze de doctorat ale UPT, Seria X, Nr. YY, Editura Politehnica,
2021, 169 pagini, 74 figuri, 26 tabele.

Cuvinte cheie: dinamica apăsării tastelor, algoritm de
autentificare, identificarea utilizatorului, modul de tastare, metrici

pentru calculul distanțelor

Rezumat:
Prezenta lucrare se focusează pe autentificarea continuă a
utilizatorului unui calculator pe baza modului de a tasta la
tastatură. În cadrul cercetării s-a dezvoltat un algoritm de
autentificare pe baza modului de tastare, s-a colectat un set de

date referitoare la modul de tastare de la 80 de voluntari, s-au
propus două metrici modificate pentru a se obține performanțe
mai bune ale algoritmului de autentificare și s-a propus o
structură de date pentru a stoca informațiile necesare ale
utilizatorilor.
Această metodă de autentificare își justifică atenția mai ales în
cadrul platformelor educaționale online, platforme care au

cunoscut o creștere foarte mare în anul 2020, datorită mutării
majorității cursurilor în mediul online, restricție generată de criza
COVID-19.

Free-text keystroke dynamics data set and algorithms for
continuous authentication in educational platforms with

massive open online courses (MOOC)

Keywords: keystroke dynamics, authentication algorithm, user
identification, typing pattern, distance metrics, di-graphs

Abstract:
This paper focuses on the continuous authentication of a
computer user based on keystroke dynamics, the way to type on

the keyboard. During the research, an authentication algorithm
based on keystroke dynamics was developed, a data set
regarding the typing mode was collected from 80 volunteers, two
modified metrics were proposed to obtain better performances of
the authentication algorithm and a data structure was proposed
to store the necessary information of the users.

This method of authentication justifies its attention especially in

online educational platforms, platforms that experienced a very
large increase in 2020, due to the relocation of most courses in
the online environment, a restriction generated by the COVID-19

crisis.

BUPT

CONTENTS
CONTENTS .. 1
LIST OF TABLES ... 4
LIST OF FIGURES ... 5
LIST OF CODES .. 8
ABBREVIATIONS ... 9

1 INTRODUCTION ... 10

1.1 THESIS CONTEXT .. 10
1.2 THESIS OBJECTIVES .. 14
1.3 THESIS STRUCTURE .. 14

2 STATE-OF-THE-ART .. 17

2.1 EVOLUTION OF EDUCATIONAL SYSTEMS .. 17
2.1.1 Platforms of MOOC ... 18
2.1.2 Coursera Platform ... 19
2.1.3 edX Platform ... 21

2.2 KEYSTROKE DYNAMICS – LITERATURE REVIEW .. 22
2.2.1 A biometric feature: keystroke dynamics.. 24
2.2.2 The route of scientific research and branches of the field 24
2.2.3 Fixed text keystroke dynamics .. 25
2.2.4 Free text keystroke dynamics .. 26
2.2.5 Di-graph .. 26
2.2.6 N-graph ... 28
2.2.7 Metric distances .. 28

2.2.7.1 Euclidian Distance .. 29
2.2.7.2 Manhattan Distance .. 29
2.2.7.3 R Distance .. 29
2.2.7.4 A Distance .. 30
2.2.7.5 Bhattacharyya Distance ... 30
2.2.7.6 Mahalanobis Distance ... 30
2.2.7.7 Distance Metric Fusion .. 30

2.2.8 Keystroke dymanics authentication algorithms from the literature 31
2.2.9 Normalization tehniques ... 31

2.2.9.1 Min-max normalization ... 31
2.2.9.2 Z-score normalization .. 31
2.2.9.3 Decimal scaling .. 32
2.2.9.4 Median and median absolute deviation (MAD) .. 32
2.2.9.5 Double sigmoid .. 33
2.2.9.6 tanh-estimator ... 33
2.2.9.7 Gaussian mixture model .. 33

2.2.10 Length of input ... 34
2.2.11 Improvement of initial data ... 34
2.2.12 Updating dynamic datasets ... 34
2.2.13 Evaluating the performance of authentication algorithms based on keystroke
dynamics 35

2.2.13.1 Confusion matrix ... 35

BUPT

2 Introduction

2.2.13.2 False Rejection Rate (FRR) ... 35
2.2.13.3 False Acceptance Rate (FAR) ... 35
2.2.13.4 Equal Error Rate (ERR) ... 36
2.2.13.5 Zero Miss False Acceptance Rate (ZMFAR) .. 36
2.2.13.6 Receiver operating characteristic (ROC) curve .. 37

2.3 CONCLUSIONS .. 38

3 RESEARCH METHODOLOGY ... 40

3.1 A. DEVELOPMENT OF THE PLATFORM FOR THE ACQUISITION OF INPUT DATA 41
3.2 B. ACQUISITION AND INITIAL PROCESSING OF INPUT DATA ... 42
3.3 C. PROCESSING THE INPUT DATA SO AS TO GENERATE A USER PATTERN FOR EACH USER 44
3.4 D. DEVELOPMENT OF AN ALGORITHM IN THE C PROGRAMMING LANGUAGE FOR CALCULATING

DISTANCES USED IN KEYSTROKE DYNAMICS AUTHENTICATION ... 44
3.5 E. SIMULATION OF SYSTEM AUTHENTICATION BY GENUINE USERS OR IMPOSTORS TO MEASURE THE

PERFORMANCE OF THE DEVELOPED ALGORITHM .. 45
3.6 CONCLUSIONS .. 45

4 FREE-TEXT KEYSTROKE DYNAMICS DATA SET FOR CONTINUOUS AUTHENTICATION ... 47

4.1 PLATFORM FOR COLLECTING DATA ABOUT KEYBOARD TYPING FROM 80 VOLUNTEERS 47
4.2 ANALYSIS OF TIME AND KEY EVENTS COLLECTED FROM USERS ... 52
4.3 ACQUISITION AND INITIAL PROCESSING OF INPUT DATA FROM 80 VOLUNTEERS (HOW TYPING ON THE

KEYBOARD) .. 55
4.4 ANALYSIS OF KEYS COLLECTED FROM USERS .. 58
4.5 PROCESSING THE INPUT DATA SO AS TO GENERATE A USER PATTERN FOR EACH USER 58
4.6 KEYS DISTRIBUTION ANALYSIS ... 62
4.7 DIFFERENCES BETWEEN USERS ... 67
4.8 CONCLUSIONS .. 69

5 ALGORITHM DEVELOPMENT FOR KEYSTROKE DYNAMICS AUTHENTICATION 71

5.1 THE ARCHITECTURE OF THE AUTHENTICATION ALGORITHM ... 71
5.2 THE STRUCTURE OF THE AUTHENTICATION ALGORITHM ... 72
5.3 CONCLUSIONS .. 74

6 EXPERIMENTS AND RESULTS - SIMULATION OF SYSTEM AUTHENTICATION BY GENUINE
USERS OR IMPOSTORS ... 75

6.1 EXPERIMENTS WITH THE KEYSTROKE TIME OF A SINGLE KEY .. 75
6.1.1 Experiments with Euclidian distance... 76
6.1.2 Experiments with Manhattan distance ... 79
6.1.3 Experiments with R distance ... 81
6.1.4 Experiments with A distance ... 84
6.1.5 The sample size ... 89

6.2 EXPERIMENTS WITH DI-GRAPHS .. 95
6.2.1 Creating the user pattern .. 98
6.2.2 Authentication accuracy ... 101
6.2.3 Experiments with Euclidian distance at di-graphs .. 103
6.2.4 Experiments with Manhattan distance at di-graphs .. 105

BUPT

 CONTENTS 3

6.2.5 Experiments with A distance at di-graphs .. 108
6.2.6 The results of experiments with di-graphs .. 111
6.2.7 Choosing the time components of a di-graph ... 112

6.3 THE DISTANCES BETWEEN USERS .. 114
6.4 PROPOSING NEW METRICS FOR CALCULATING DISTANCES BETWEEN USERS 115

6.4.1 New metric for calculating distances based on individual key time 115
6.4.2 New metric for calculating distances based on di-graphs times 117

6.5 PROPOSED USER PATTERN ... 119
6.6 COMPARISON OF THE RELATED WORKS .. 120
6.7 CONCLUSIONS .. 121

7 CONCLUSIONS AND FUTURE WORKS ... 123

7.1 CONCLUSIONS .. 123
7.1.1 The personal contributions ... 126

7.2 FUTURE WORKS .. 126

ACKNOWLEDGEMENTS... 128

REFERENCES ... 129

APPENDIX 1 – THE ALGORITHM .. 139

SCIENTIFIC ACTIVITY ... 169

BUPT

LIST OF TABLES

Table 1.1 Number of scientific publication in the field [IAP21b] 11
Table 1.2 Categories and concepts of the computing discipline used in this work
generated whit ACM tool [ACM12] ... 13
Table 2.1 Summary of normalization techniques [JAI05] 33
Table 2.2 The confusion matrix [JES06] ... 35
Table 4.1 Time spent by users to complete the form ... 52
Table 4.2 Number of key events collected from users .. 54
Table 4.3 The keys typed by users, in descending order of frequency 63
Table 4.4 The keys not used at all by users .. 65
Table 4.5 The letters, in descending order of frequency 66
Table 6.1 EER (Equal Error Rate) value at different value of t coefficient 87
Table 6.2 EER values depending on the sample size and distance used 90
Table 6.3 Standard deviation for each letter ... 93
Table 6.4 EER values in different conditions ... 93
Table 6.5 EER values in different conditions ... 94
Table 6.6 The most used di-graphs ... 96
Table 6.7 Performance for two algorithms from other studies in terms of EER and
ZMFAR .. 102
Table 6.8 EER values in different conditions ... 102
Table 6.9 ZMFAR values in different conditions ... 102
Table 6.10 EER values with first # di-graphs .. 104
Table 6.11 EER values for Manhattan distance at different numbers of di-graphs 107
Table 6.12 EER values with A distance, for different values for t 110
Table 6.13 The most efficient combinations of times for calculating the distance
[IAP21a] .. 112
Table 6.14 EER values with modified Manhattan metrics 115
Table 6.15 EER values with modified distance metrics 118
Table 6.16 Proposed user pattern ... 119
Table 6.17 Comparison of the related works [TSA19] 120

BUPT

LIST OF FIGURES

Figure 1.1 Evolution of publication about ”keystroke dynamics” and ”free text
keystroke dynamics” from 1981 till 2020 ... 12
Figure 1.2 Hyerarchy chart with the volume of publication about ”keystroke

dynamics” .. 12
Figure 1.3 Categories and concepts of the computing discipline used in this work
according ACM Computing Classification System [ACM12] 13
Figure 2.1 Evolution of courses on Coursera and edX platforms [IAP21b] 18
Figure 2.2 Evolution of the number of partners on Coursera and edX platforms

[IAP21b] .. 19
Figure 2.3 Number of courses, specializations, degrees, MasterTrack and

profesionals certificates on Coursera in 2020 [COU20] 19
Figure 2.4 What Coursera has to offer [COU20] .. 20
Figure 2.5 Numbers from edX platform 2020 [IMP20] .. 21
Figure 2.6 Some of the top Universities on edX Platform [EDX20] 22
Figure 2.7 Distribution of dwell times (DU) for one of the users from data set
[IAP21a] .. 26
Figure 2.8 Distribution of flight times (UD) for one of the users from data set
[IAP21a] .. 27
Figure 2.9 Key events and time intervals for a di-graph [IAP21a] 28
Figure 2.10 Computation R distance of two typing samples [GUN05] 29
Figure 2.11 Computation A distance of two typing samples [GUN05] 30
Figure 2.12 A graph with FAR and FRR [IAP21b] .. 36
Figure 2.13 Graphical reprezentation of Equal Error Rate (EER) and ZMFAR (Zero

Miss False Acceptance Rate) [IAP21b] ... 37
Figure 2.14 Receiver operating characteristic (ROC) curve [IAP21b] 37
Figure 3.1 Summary of the research methodology applied in the thesis 41
Figure 3.2 Steps taken to create the platform for retrieving data on how users type
 .. 42
Figure 3.3 Steps taken for the acquisition and initial processing of key data and
typing times of the 80 volunteers .. 43
Figure 3.4 Generate user pattern for each user ... 44
Figure 3.5 Calculating the distance between each pair of user patterns 44
Figure 3.6 Simulation of authentication and calculation of algorithm performance . 45
Figure 4.1 The form that the users filled in ... 48
Figure 4.2 Two questions answered by users from the form 49
Figure 4.3 Each user has described the scene of the picture at one of the questions

 .. 49
Figure 4.4 Google sheet with the key codes, timestamps and key events from users
 .. 50
Figure 4.5 Graphical representation of the time spent by each user to complete the
form, in ascending order .. 53
Figure 4.6 Graphical representation of the number of key events collected from each
user, in descending order... 55
Figure 4.7 The text file that stores key events information 57
Figure 4.8 The file used to store information about a key 61
Figure 4.9 The frequency with which the first 50 keys appeared in the text 62
Figure 4.10 The frequency with which the last 50 keys appeared in the text 62

BUPT

file:///C:/CATALIN/DOCTORAT/TEZA/20210225%20DRAFT%20TEZA%20v1.17.docx%23_Toc65155853
file:///C:/CATALIN/DOCTORAT/TEZA/20210225%20DRAFT%20TEZA%20v1.17.docx%23_Toc65155854
file:///C:/CATALIN/DOCTORAT/TEZA/20210225%20DRAFT%20TEZA%20v1.17.docx%23_Toc65155854
file:///C:/CATALIN/DOCTORAT/TEZA/20210225%20DRAFT%20TEZA%20v1.17.docx%23_Toc65155855
file:///C:/CATALIN/DOCTORAT/TEZA/20210225%20DRAFT%20TEZA%20v1.17.docx%23_Toc65155855
file:///C:/CATALIN/DOCTORAT/TEZA/20210225%20DRAFT%20TEZA%20v1.17.docx%23_Toc65155856
file:///C:/CATALIN/DOCTORAT/TEZA/20210225%20DRAFT%20TEZA%20v1.17.docx%23_Toc65155857
file:///C:/CATALIN/DOCTORAT/TEZA/20210225%20DRAFT%20TEZA%20v1.17.docx%23_Toc65155858

6 Introduction

Figure 4.11 Graphical representation of the most used keys 64
Figure 4.12 Graphical representation of letters frequency 67
Figure 4.13 Typing pattern from two different users [IAP21a] 67
Figure 4.14 Time interval for flight time for three different users 68
Figure 4.15 Key time distribution for seven different users 68
Figure 4.16 The distribution of time intervals between two consecutive keys 69
Figure 5.1 The architecture of the keystroke dynamics authentication system
[IAP21a] .. 72
Figure 5.2 The structure of the authentication algorithm based on keystroke

dynamics ... 73
Figure 6.1 FAR and FRR for Euclidian distance .. 77
Figure 6.2 ROC Curve for Euclidian distance ... 78
Figure 6.3 FAR and FRR for Manhattan distance .. 80
Figure 6.4 ROC curve Manhattan distance .. 80
Figure 6.5 ROC curves for Euclidian (green) and Manhattan (blue) distances 81
Figure 6.6 FAR and FRR for R distance ... 83
Figure 6.7 ROC curve for R distnace .. 83
Figure 6.8 ROC curves for Euclidian (green), Manhattan (blue) and R (red) distances
 .. 84
Figure 6.9 FAR and FRR for A distance ... 85
Figure 6.10 ROC curve for A distance .. 86
Figure 6.11 ROC curves for Euclidian (green), Manhattan (blue), R (red) and A

(yellow) distances ... 86
Figure 6.12 EER (Equal Error Rate) value at differrent value of t coefficient 87
Figure 6.13 ROC curve for the best t coefficient .. 88
Figure 6.14 ROC curves for Euclidian (green), Manhattan (blue), R (red), A (t=1.25)
(yellow) and A (t=1.13) (black) distances .. 88
Figure 6.15 EER decreases as the sample size is larger [IAP21b] 90
Figure 6.16 FAR and FRR for Manhattan distance for the first 15 letters 91
Figure 6.17 ROC curve for Manhattan distance for the first 15 letters 92
Figure 6.18 ROC curves with different distances ... 92
Figure 6.19 EER values in different conditions .. 95
Figure 6.20 Di-graph time increases with decreasing frequency of use 98
Figure 6.21 Graphical reprezentation of Equal Error Rate (EER) and ZMFAR (Zero
Miss False Acceptance Rate) ... 101
Figure 6.22 EER values with first # di-graphs ... 105
Figure 6.23 EER values for Manhattan distance at different numbers of di-graphs
[IAP21a] .. 107
Figure 6.24 EER values for A distance (t=1,25) at different numbers of di-graphs
analized ... 109
Figure 6.25 EER values with A distance, for different values for t 110
Figure 6.26 Euclidean distance performance compared to Manhattan distance

performance .. 111
Figure 6.27 FAR and FRR for Manhattan Distance DU1, DU2,UD , first 12 di-graphs,
only letters [IAP21a] ... 113
Figure 6.28 ROC curve. Manhattan Distance DU1, DU2,UD , first 12 di-graphs, only
letters [IAP21a] .. 113
Figure 6.29 Distances between first 18 users from all 160. Green is a small distance
and red is a big distance .. 114
Figure 6.30 Distances between 160 users. Green is a small distance and red is a big
distance ... 114

BUPT

file:///C:/CATALIN/DOCTORAT/TEZA/20210225%20DRAFT%20TEZA%20v1.17.docx%23_Toc65155876
file:///C:/CATALIN/DOCTORAT/TEZA/20210225%20DRAFT%20TEZA%20v1.17.docx%23_Toc65155876

 LIST OF FIGURES 7

Figure 6.31 EER values with modified Manhatten metrics 116
Figure 6.32 FAR and FRR graph for the best performance of this research 118
Figure 6.33 ROC curve for the best performance of this research - the red one ... 119

BUPT

LIST OF CODES

Code 4.1 The script used to get the keys and typing times from the users 50
Code 4.2 Part of the code that creates key events files 55
Code 4.3 The structure used to store information about a key event 57
Code 4.4 The structure used to store information about a key 58
Code 4.5 The function that extracts key information from key events 59
Code 6.1 calculateEuclidianDistance() function ... 76
Code 6.2 calculateFARandFRR() function .. 77
Code 6.3 The function that calculates the Manhattan distances 79
Code 6.4 The function that calculates the R distances .. 81
Code 6.5 The function that calculates the A distances .. 84
Code 6.6 The algorithm that make the sample .. 89
Code 6.7 A di-graph struct ... 95
Code 6.8 The function that builds the di-graph ... 95
Code 6.9 The pattern struct ... 99
Code 6.10 The function that build the patterns ... 99
Code 6.11 The function that calculates Euclidian distance 103
Code 6.12 The function that calulates Manhattan distance for di-graph 105
Code 6.13 The function that calulates A distance for di-graph 108

BUPT

ABBREVIATIONS

ACM Association for Computing Machinery
CCK08 Connectivism and Connective Knowledge 2008
DD Down-Down time
DU Down-Up time

EER Equal Error Rate
FAR False Acceptance Rate
FN False negatives
FP False positives
FRR False Rejection Rate

HCI Human computer interaction
MOOC Massive Open Online Course

ROC curve Receiver Operating Characteristic curve
SVM Support-vector machine
TAR True Acceptance Rate
TN True negatives
TP True positives
TRR True Rejection Rate

UD Up-Down time
UU Up-Up time
ZMFAR Zero Miss False Acceptance Rate

BUPT

1 INTRODUCTION

1.1 Thesis context

This thesis started from the need to develop additional ways to identify the
identity of a user who uses a private account on a computer. This need is more
pronounced in the case of courses or exams that take place online. The MOOC
phenomenon (Massive Open Online Courses), courses attended by a large number of

students from any corner of the world online, was born in 2008. This phenomenon
reached a first maximum in 2012, and in 2020 there was an exponential increase in
the number of students enrolled [IAP21b].

The year 2020 also led to radical changes in education systems as an outcome
of the health crisis caused by the SARS-CoV-2 virus. This has resulted in an
unprecedented push to online learning. Universities, primary schools or high schools
have been pressed to adapt and move the entire classical education system from

studying in the classroom, face to face, to distance platforms. In this context, it has
become much more important to find methods to ensure that, for instance, during an
exam, where both the teachers and students are in different locations, to ensure that
the student, through easily accessible means, is the one who solves the subjects and
receives a grade based on his knowledge and performance [IAP21b].

There are many ways and possibilities to identify and authenticate a user from

an electronic account. The most common method is to retain a username and its

password and based on these two, the user has access to the account. The use of
physical cards, such as those used by banks, or fingerprints, retinal scanning or face
recognition requires the existence of additional devices for retrieving data from users.
For authentication during an exam, it is not enough to have an account and a
password, in case the student wants to speculate by leaving someone else in his place
to solve the subjects. In most cases, the camera and microphone must be turned on

throughout the exam [IAP21b].
An effective method in solving the problem described above is continuous

authentication using keystroke dynamics. Keystroke dynamics is the method by which
a user can be identified or authenticated based on his or her particular way of typing
text on the keyboard. This method does not require additional hardware, any
computer or laptop that is equipped with a keyboard is accepted. Additionally, another
advantage is represented by the fact that the identity verification can be done

continuously, at any time when the user types on the keyboard. The password
authentication cannot be done the same way presented before, being done usually
only once when accessing the account, and along the way the user can change without

the system to realize the change.
Another advantage of using identification or authentication using keystroke

dynamics is that the user does not have to take additional steps. The participants just
have to type and the system monitors the way of their typing. In this case, after an

BUPT

 Thesis context 11

authentication in a system, if the user changes, the system will realize that someone
else is at the computer and can signal this change.

Thousands of students can participate in MOOC courses at the same time. In
the case of an exam with thousands of students, it becomes impossible to supervise
through the video camera and the microphone, this method being effective when the
number of students is reduced. In the case of keystroke dynamics, any number of
students can be continuously authenticated, there is no such limitation in this regard.

The disadvantage of a system with authentication or identification of users
through the keystroke dynamics method is the accuracy of the algorithm with which

the user can be identified. Currently, systems that use this method do not reach error
rates of 0%. They have performance that identifies the user with an error rate of less
than 10%, or in some cases with even higher accuracy, instead improving algorithms
based on keystroke dynamics is still a challenge in this area. Along these, another

challenge for scientific research in this field is the fact that in order to test the
efficiency of the algorithms proposed in various researches, databases are needed
that capture the typing mode, thus better simulating the real conditions.

Within the scientific research made about the keystroke dynamics they were
identified two different branches. The first would be when a user types a default text
on the keyboard, such as a user, a standard password or phrase. The second one
would be the typing of a free text on the keyboard without certain conditions being
imposed [UMP85][MES11]. The two methods are analyzed separately by different
methods in the scientific literature on this subject. Both, however, involve a phase in

which the system collects data about the user, the typing times, and the typing mode,
thus, creating a profile of the user that he will use later in the continuous
authentication phase. The first method has been more intensively explored and the
results are more successful in this direction because it is the same text entered from
the keyboard each time. The second method, when the user types a free text with
the help of the keyboard, without conditions, has been researched especially in recent
years, and the results are increasingly improved.

Only in the last 5 years over 10,000 scientific papers have been published

about keystroke dynamics. Also, survey papers have been published as keystroke
dynamics biometrics has drawn intense research interest the past couple of decades
[ZHO15]. In Table 1.1 is the number of scientific papers in the field of “keystroke
dynamics” and also in the field of "free text keystroke dynamics". The graphic
represented in Figure 1.1 illustrates the growing interest in the field of “keystroke
dynamics” and also in the field of "free text keystroke dynamics" [IAP21b].

Table 1.1 Number of scientific publication in the field [IAP21b]

Interval „keystroke dynamics” „free text keystroke dynamics”

1981-1985 224 108

1986-1990 643 277

1991-1995 1.080 566

1996-2000 1.630 863

2001-2005 2.950 1500

2006-2010 4.940 2520

2011-2015 7.890 4020

2016-2020 10.100 4880

The number of scientific publications in this field was counted by searching

for the two text sequences on scholar.google.com, filtered on 5-year intervals, on the

BUPT

12 Introduction

following time intervals: 1981-1985, 1986-1990, 1991-1995, 1996 -2000, 2001-
2005, 2006-2010, 2011-2015 and 2016-2020 [IAP21b].

Figure 1.1 Evolution of publication about ”keystroke dynamics” and ”free text keystroke

dynamics” from 1981 till 2020

It is observed that in the last 5 years over 10,000 scientific papers have been

published with the topic "keystroke dynamics", and scientific papers that have
addressed the branch "free text keystroke dynamics" represent about half of these,
reaching about 5,000 papers published in the last 5 years [IAP21b]. In the Figure 1.2
is also a hierarchy chart with the volume of publication about ”keystroke dynamics”

on the following time intervals: 1981-1985, 1986-1990, 1991-1995, 1996 -2000,
2001-2005, 2006-2010, 2011-2015 and 2016-2020.

Figure 1.2 Hyerarchy chart with the volume of publication about ”keystroke dynamics”

BUPT

 Thesis context 13

According to ACM Computing Classification System [ACM12], the Figure 1.3
and the Table 1.2 list categories and concepts of the computing discipline used in this

work.

Figure 1.3 Categories and concepts of the computing discipline used in this work according

ACM Computing Classification System [ACM12]

Table 1.2 Categories and concepts of the computing discipline used in this work

generated whit ACM tool [ACM12]

Security and privacy ~ Security services ~ Authentication ~ Biometrics;

Security and privacy ~ Security services ~ Access control;

Security and privacy ~ Intrusion/anomaly detection and malware mitigation ~
Intrusion detection systems;

Human-centered computing ~ Human computer interaction (HCI) ~ Interaction

paradigms;

Human-centered computing ~ Human computer interaction (HCI) ~ Interaction
devices ~ Keyboards;

Authentication via
keystroke dynamics

Human-centered
computing

Human computer
interaction (HCI)

Interaction
paradigms

Interaction devices

Keyboards

Security and privacy

Security services

Authentication

Biometrics

Access control

Intrusion/anomaly
detection and

malware mitigation

Intrusion detection
systems

BUPT

14 Introduction

1.2 Thesis objectives

In this research project, the author set the following four objectives:
Objective 1, O1, The first objective of this thesis is to collect a database with

the test pattern from at least 80 users, in order to test the authentication algorithm
for this research, but also to make it available to other interested researchers.

Objective 2, O2, The second objective of this thesis is to implement an
algorithm for authenticating the users of a computer based on the keystroke
dynamics, the keyboard typing mode.

Objective 3, O3, The third objective of this thesis is to propose at least two
new metrics for calculating the distances between two vectors that generate better

performance compared to the Equal Error Rate (EER) performance indicator than the
classical methods.

Objective 4, O4, The fourth objective of this thesis is to propose a data
structure as efficient as possible, which should contain the most relevant information
about the typing of a user.

1.3 Thesis structure

The thesis is organized as follows:
• Chapter 1 presents the thesis context, the thesis objectives and the thesis

structure. Subchapter 1.1 Thesis context briefly presents the starting point of the
research, the evolution of research in the field of keystroke dynamics and categories

and concepts of the computing discipline used in this work. Subchapter 1.2 Thesis
objectives presents the four objectives proposed in this paper and subchapter 1.3
Thesis structure briefly presents each chapter of the thesis.

• Chapter 2 presents the state-of-the-art of the field to which this work is

addressed. The first part, subchapter 2.1 Evolution of educational systems, analyses
the evolution of educational systems and the most important platforms worldwide
with MOOC (Massive Open Online Courses) and their evolution from its inception until

now (2020), the year in which online education has grown exponentially. This analysis
shows the importance and dimension of the field of e-Learning has reached and
justifies the scientific research of this paper. Subchapter 2.2.1, A biometric feature:
keystroke dynamics, gives an overview of Biometrics and how a person can be
identified based on it, thus, the purpose being the investigation of continuous
authentication based on free-text keystroke dynamics. Keystroke dynamics is a
biometric. After going through the evolution of e-Learning and Biometrics systems, in

the subchapter 2.2 Keystroke dynamics – literature review, a detailed research is
conducted on keystroke dynamics. It analyses the types of keystroke dynamics, in
the subchapters 2.2.3 and 2.2.4: fixed text and free-text, also the methodologies
applied are analyzed in other researches to collect data and to evaluate the collected
data, in the subchapters 2.2.9, 2.2.10 and 2.2.11. It covers, in the subchapters 2.2.5,
2.2.6, 2.2.7 and 2.2.8, the technical characteristics that are considered within the

existing algorithms, but also, in the subchapter 2.2.13 Evaluating the performance of
authentication algorithms based on keystroke dynamics, the characteristics that

measure the performances of the algorithms in this field.
• Chapter 3 presents the research methodology applied in this research

project. The steps performed in the present scientific research are presented below:
A. Development of the platform for the acquisition of input data, B. Acquisition and

BUPT

 Thesis structure 15

initial processing of input data from 80 volunteers (how typing on their keyboard), C.
Processing the input data so as to generate a user pattern for each user, D.

Development of an algorithm in the C programming language for calculating distances
used in keystroke dynamics authentication, E. Simulation of system authentication by
genuine users or impostors to measure the performance of the developed algorithm.
Each of these five steps are detailed in this chapter, in five subchapters 3.1, 3.2, 3.3,
3.4 and 3.5.

• Chapter 4 is about the data set collected for the present research. The first
subchapter 4.1, Platform for collecting data about keyboard typing from 80

volunteers, presents the platform for collecting data about keyboard typing and how
data was collected from 80 users in order to later develop an algorithm. Moreover,
after presenting the platform with the help of which data were collected from users,
it will proceed to the analysis of these collected data and to the presentation of the

particular characteristics, in subchapters 4.2 Analysis of time and key events collected
from users, 4.3 Acquisition and initial processing of input data from 80 volunteers
(how typing on the keyboard) and 4.4 Analysis of keys collected from users. It shows

how they were processed using an algorithm written in the C programming language.
The subchapter 4.5, Processing the input data so as to generate a user pattern for
each user, presents the structures that store user typing data. The subchapter 4.6,
Keys distribution analysis, presents the analysis of the collected keys. The subchapter
4.7, Differences between users, graphically displays the typing pattern for different
users. This chapter addresses the validation of O1 from the first chapter of this thesis.

• Chapter 5 In this chapter it is presented the authentication algorithm based
on free-text keystroke dynamics. First of all, the algorithm developed for processing
the data obtained from the users is presented. The algorithm simulates user
authentication based on keystroke dynamics and measures the obtained
performances. In the chapter it is presented the architecture of the algorithm in the
subchapter 5.1 The architecture of the authentication algorithm and the structure of
the algorithm in the subchapter 5.2 The structure of the authentication algorithm. The

development of this algorithm is established by O2 from the first chapter of this thesis.

• Chapter 6 In this chapter it is presented a series of experiments performed
to measure the performance of the written algorithm for the purpose of this research
and to analyze the results obtained. Gradually, experiments with the keystroke time
of a single key, in the subchapter 6.1, and experiments with di-graphs, in the
subchapter 6.2, are presented. Both in the analysis of the characteristics with a single
key and with a di-graph, the degree of Equal Error Rate (EER) is calculated in order

to appreciate the performances of the algorithms. The results are presented in the
case of experiments using Euclidean distance (in the subchapters 6.1.1 and 6.2.3),
Manhattan distance (in the subchapters 6.1.2 and 6.2.4), R distance (in the
subchapter 6.1.3) and A distance (in the subchapters 6.1.4 and 6.2.5). The chapter
also investigates, in the subchapter 6.1.5 The sample size, the differences in
performance if the pattern is built for each user with various sample sizes, starting

from 200 key events / pattern and up to 3000 key events / pattern. At the end of
the chapter, following all the experiments performed and presented, the author
proposes, in the subchapter 6.4, Proposing new metrics for calculating distances
between users, the modification of two metrics obtaining new metrics for calculating
the distances between two vectors that have higher performances than the classical

calculation methods. For the two new metrics, the performances obtained in terms of
Equal Error Rate (EER) are presented. By proposing these metrics, O3 is validated. It

also proposes, in the subchapter 6.5, Proposed user pattern, a structure for retaining
a user's pattern, a structure that takes up small memory and requires little time to

BUPT

16 Introduction

perform all the necessary calculations in the algorithms. By proposing the user
pattern, O4 is validated. In the end of the Chapter, in the subchapter 6.6 Comparison

of the related works, the performances obtained in the present research are compared
with those obtained by other authors in their researches.

• Chapter 7 summarizes the conclusions drawn from the previous chapters
and future research directions in this field, starting from the results presented in this
paper. The author's own contributions to the field of keystroke dynamics are
presented in the subchapter 7.1.1 The personal contribution: the proposal of two new
metrics for calculating the distance between two vectors in order to allow the

approximation of the degree of similarity between two patterns from two different
users or from the same user. Also, the data collected from the 80 users about how to
type on the keyboard is a contribution to the advantage of future researches because
they will be available to all researchers interested in conducting investigation in the

field. Another own contribution is the proposal of a pattern in order to retain the
minimum necessary data about a user so to obtain performances in the continuous
authentication. The last part of this chapter, the subchapter 7.2, Future works,

presents the future research directions. The field still needs to be exploited, and future
research directions may bring higher performance than those currently obtained.
 In the present thesis are taken elements (conclusions, experiments, results,
passages, formulas, images, graphics, phrases, etc.) from works written before the
final writing of the thesis by the author. Papers are published, presented or submitted
for publication. The list of papers of the author is at the end of the thesis, in the

Chapter SCIENTIFIC ACTIVITY.

BUPT

2 STATE-OF-THE-ART

The thesis context, its’ objectives and its’ structure were presented in the

previous chapter, Chapter 1 Introduction.
Subsequently, this Chapter presents the state-of-the-art of the field to which

this work is addressed. The first part, subchapter 2.1 Evolution of educational

systems, analyses the evolution of educational systems and the most important
platforms worldwide with MOOC (Massive Open Online Courses) and their evolution
from its inception until now (2020), the year in which online education has grown
exponentially. This analysis shows the importance and dimension of the field of e-
Learning has reached and justifies the scientific research of this paper. Subchapter
2.2.1, A biometric feature: keystroke dynamics, gives an overview of Biometrics and

how a person can be identified based on it, thus, the purpose being the investigation
of continuous authentication based on free-text keystroke dynamics. Keystroke
dynamics is a biometric. After going through the evolution of e-Learning and
Biometrics systems, in the subchapter 2.2 Keystroke dynamics – literature review, a
detailed research is conducted on keystroke dynamics. It analyses the types of
keystroke dynamics, in the subchapters 2.2.3 and 2.2.4: fixed text and free-text, also
the methodologies applied are analyzed in other researches to collect data and to

evaluate the collected data, in the subchapters 2.2.9, 2.2.10 and 2.2.11. It covers, in
the subchapters 2.2.5, 2.2.6, 2.2.7 and 2.2.8, the technical characteristics that are
considered within the existing algorithms, but also, in the subchapter 2.2.13
Evaluating the performance of authentication algorithms based on keystroke

dynamics, the characteristics that measure the performances of the algorithms in this
field.

2.1 Evolution of educational systems

In this subchapter the author presents the evolution of MOOC (Massive Open

Online Courses) platforms. In 2020, in the Coursera Platform are involved nearly 69
million learners [VAN20]. The number of Massive Open Online Courses increased in
the last years.

Debates about future and evolution of eLearning and MOOC (Massive Open
Online Courses) were in the last few years. In this chapter the author makes an
introspection in evolution of Massive Open Online Courses with a comparison of the
most important platforms of MOOC. Also, in the last years, researchers have paid

attention to Learning Analytics field [IVA16]. We have more and more data from
Learning Management Systems. There were noticeable additional challenges
regarding the field of education in 2020. With the COVID-19 pandemic the authorities

have not only introduced restrictions on the movement of citizens, but have also
tightened the preventive measures implementing new regulations with reference to
education. A decisive number of universities have had to adapt to the unfamiliar
circumstances, moving all their activities to the online environment. These limitations

BUPT

18 State-of-the-art

have led to an unprecedented leap in online education. Suddenly, both teachers and
students or pupils, were forced by the newly implemented conditions to move their

entire activity to online educational platforms and thus continue their courses in this
manner. This process has led to a development of the e-learning section, helping the
growth of companies that are being active in this field and has forced those who have
not used these systems so far to learn them in a very quick way [IAP14a].

The educational system has continually evolved due to technological
innovations. In [DAN12] the author made an enumeration of innovations: In 1841 the
blackboard, in 1940 the motion picture, in 1957 the television. Programmed learning

and computers were another invention which contributed on education evolution.
Internet and communication technologies could develop the format of education
[IAP14a].

The MOOC evolution starts with the “Connectivism and Connective

Knowledge” – CCK08 course in 2008 which had a large number of online participants.
The course was facilitated by Downes and Siemens [DOW14] [IAP14a].

The MOOC starts in the 2008 but the year 2012 was declared the MOOC year.

The next years after 2012 was good years for MOOC, with millions of learners and
hundreds of partners involved to develop courses [IAP14a].

A record number of users turned to online learning in 2020. Since March,
there were more than 69 million enrollments only on Coursera. About 430% increase
compared to the same period last year [VAN20] [IAP21b].

2.1.1 Platforms of MOOC

The most important platforms with massive open online courses and with the

largest number of users and partners are Coursera and edX. The number of MOOC
platforms is increasing. In December 2020 Coursera platform had 69 million users
and edX platform had 24 million learners. Coursera is a for profit platform. Coursera

platform can be accessed online at www.coursera.org and it has started on April 2012
[COU20]. EdX platform can be accessed at www.edX.org. EdX has started on

December 2011 and is a non-profit platform [EDX20][MAT20][IAP21b].
In the Figure 2.1 is represented the evolution of the number of courses on

the Coursera and edX platforms in 2014 - 2020. Coursera had 622 courses in February
2014, 761 courses in September 2014, 1557 courses in December 2015, 2000 courses
in February 2017 and 3900 courses in December 2020. EdX had 151 courses in

February 2014, 287 courses in September 2014, 814 courses in December 2015, 1283
courses in February 2017 and 3000 in December 2020 [IAP14b][IAP21b].

Figure 2.1 Evolution of courses on Coursera and edX platforms [IAP21b]

BUPT

 Evolution of educational systems 19

In the Figure 2.2 is represented the evolution of the number of partners on
the Coursera and edX platforms. Coursera had 108 partners in February 2014, 114

partners in September 2014, 140 partners in December 2015, 149 partners in
February 2017 and 227 partners in December 2020. EdX had 32 partners in February
2014, 53 partners in September 2014, 90 partners in December 2015, 94 partners in
February 2017 and 145 partners in December 2020 [IAP14a][IAP21b].

Figure 2.2 Evolution of the number of partners on Coursera and edX platforms [IAP21b]

2.1.2 Coursera Platform

Coursera is the largest MOOCs platform in the world to this day. At the end

of 2020, Coursera reached over 3,900 courses and specialization. Users can choose
from this varied offer of courses in different fields. More than 20 Degrees and
MasterTrack Certificates and over 13 Professional Certificates. This information can

be checked periodically on their own website. The Figure 2.3 shows these numbers
that define the platform at the end of 2020. Coursera started offering courses to users
in 2012. „Coursera was founded by Daphne Koller and Andrew Ng in 2012 with a

vision of providing life-transforming learning experiences to learners around the
world. Today, Coursera is a global online learning platform that offers anyone,
anywhere, access to online courses and degrees from leading universities and
companies.” [COU20] [IAP21b]

Figure 2.3 Number of courses, specializations, degrees, MasterTrack and profesionals

certificates on Coursera in 2020 [COU20]

BUPT

20 State-of-the-art

On Coursera, the users can choose from 6 learning programs [COU20],
detailed in Figure 2.4 : Guided project, Course, Specialization, Professional certificate,

Mastertrack™ certificate, Degree [IAP21b].

Figure 2.4 What Coursera has to offer [COU20]

BUPT

 Evolution of educational systems 21

In 2020, most popular courses worldwide on Coursera Platform was [VAN20]:
”1. The Science of Well-Being from the Yale University

2. COVID-19 Contact Tracing from the Johns Hopkins University
3. Programming for Everybody (Getting Started with Python) from the

University of Michigan
4. Machine Learning from the Stanford University
5. Learning How to Learn: Powerful mental tools to help you master tough

subjects from the McMaster University UC San Diego
6. English for Career Development from the University of Pennsylvania

7. Financial Markets from the Yale University
8. First Step Korean from the Yonsei University
9. Introduction to Psychology from the Yale University
10. Write Professional Emails in English from the Georgia Institute of

Technology” [IAP21b]

2.1.3 edX Platform

In 2012, Harvard and MIT came together with the idea to create edX, a

nonprofit online learning platform to reimagine education as we knew it. In 2012, MIT
offered its first massive open online course (MOOC), Circuits and Electronics. [IMP20]

[IAP21b]
EdX mission is focused on three pillars [IMP20] :

”1. Expanding access to high quality education to everyone, everywhere
2. Reimagining education both on-campus and online
3. Improving teaching and learning outcomes through research”
For the first time ever, in 2015, learners earned college credit for MOOCs on

edX [IMP20]. In 2020, the edX platform has reached over 24 million unique users.
edX had over 5700 instructors for more than 3000 courses from 145 partners. The
number of countries from which the users came is 196. More than 1.6 million

certificates have been issued [IMP20] [IAP21b]. The Figure 2.5 shows these numbers

graphically.

Figure 2.5 Numbers from edX platform 2020 [IMP20]

BUPT

22 State-of-the-art

Some of the top Universities on edX platform are showed in the Figure 2.6

Figure 2.6 Some of the top Universities on edX Platform [EDX20]

2.2 Keystroke dynamics – literature review

There were noticeable additional challenges regarding the field of education

in 2020. With the COVID-19 pandemic the authorities have not only introduced
restrictions on the movement of citizens, but have also tightened the preventive
measures implementing new regulations with reference to education. A decisive
number of universities have had to adapt to the unfamiliar circumstances, moving all
their activities to the online environment [IAP21b].

These limitations have led to an unprecedented leap in online education.
Suddenly, both teachers and students or pupils, were forced by the newly

implemented conditions to move their entire activity to online educational platforms

and thus continue their courses in this manner. This process has led to a development
of the e-learning section, helping the growth of companies that are being active in
this field and has forced those who have not used these systems so far to learn them
in a very quick way [IAP21b].

BUPT

 Keystroke dynamics – literature review 23

This unforeseen change brought a series of challenges such as: how to adapt
the classic courses to the new context that imposes restrictions and teach them online,

how long a course should be, how to pay attention to the students, how to interact
with each of the participants in this structured system of organizational and didactic
measures, how to evaluate them, what criteria will be used for grading, or how to
supervise each one during an exam session, considering that each one is physically
in a different place [IAP21b].

The challenges and advantages or disadvantages of conducting exams during
the crisis was a major issue worthy of study. To be even more specific, on an issue

that most teachers have lifted, namely the way you check whether a student is
cheating or no during the exam, if he will write the exam and will not let anyone else
to do it for him [IAP21b].

Most evaluation systems in this regard have been done through grid-type

exams, with limited time, or through oral assessments through online platforms, or
even through tests in which students are constrained to sit with the camera and
microphone turned on so that the teacher can monitor them remotely [IAP21b].

To emphasize one prominent method that partially solves the problem of
identifying the students that are attending the exams, the paper focused on the
method of continuous authentication with the help of the unique way of pressing the
keys while writing the subject of the exam (keystroke dynamics). Coursera, one of
the biggest platforms of Massive Open Online Courses, used keystroke dynamics to
verify online users from courses [MAA14] [IAP21b].

The method of continuous authentication using keystroke dynamics has been
exhaustively researched lately. This practice has several fields in which it can be
successfully applied, for example, as an additional security method when a user
accesses his bank account on the internet or when making a payment in a similar way
[BAN12] [IAP21a]. It can be applied for e-mail accounts, or any other online platform
that requires a lot of typing. The authentication process can be categorized by the
number of incorporated factors: something you know like a username and a password,

something you have, like card, token or something you are, like biometrics. [BUR06]

A combination of these processes is a strong authentication [BAN12] [IAP21a].
Two-factor authentication is a large scale used approach, in some systems

even mandatory, for online services [KAN14]. The traditional password is the first
factor and the second factor can be a SMS access code or a PIN generated randomly
at the time of authentication [DAS16]. The keystroke dynamics can also be the second
factor authentication [IAP21a].

Up to 28 muscles are used during a keystroke [KOC19]. The keystroke
dynamics technique consists in capturing and analyzing the typing mode of a user.
More precisely, the pressing time on one key, but also the time between the pressing
of two consecutive keys. The rhythm along the pressure of keys plays an important
role when it comes to study the cases [TSA14]. These features are unique, as are
other methods of identifying individuals such as fingerprint, facial recognition, account

password, or the use of a physical card or other physical identification device
[IAP21b].

Keystroke dynamics has been pointed out as a practical behavioral biometric
feature that does not require any additional device for scale up user identification or
authentication [PIL15]. In the next subchapter a short presentation about biometrics,

classification and keystroke dynamics like a biometric are made [IAP21b].

BUPT

24 State-of-the-art

2.2.1 A biometric feature: keystroke dynamics

With technology used in online educational settings, cheating is easier than in

traditional settings [JAY19] [FAB97] [IAP21b].
The physiological features include fingerprints, face, eye – iris patterns or

retina patterns, palm topology, hand geometry, wrist veins and thermal images. The
behavioral features include handwritten signatures, voiceprints and keystroke
dynamics [POL00][BER02]. Keystroke dynamics, the behavioral biometric, is a

method that can secure the cyberspace [HUA17][BAN12] [IAP21b].
Biometric features are unique to each user and they cannot be lost or stolen

[JOY90]. The same physiological factors that give uniqueness to a signature made on
a sheet are found in the case of keystroke dynamics [CAL19] [IAP21b].

Hard biometric requires additional hardware that costs and decreases the

availability of users to use it. This barrier does not exist in the case of keystroke
dynamics. [CHA20] [IAP21b]

To implement authentication systems, physiological characteristics are more
successful than behavioral characteristics. Physiological characteristics do not vary
over time, while behavioral characteristics can change quite a bit over time. Keyboard
analysis can be done without the help of special tools, the classic computer keyboard
is enough [BER02][IAP21a].

Behavioral biometrics measuring human actions. Behavioral traits such as

handwriting, signatures, keystroke dynamics, and mouse dynamics can be used to
identify users. They are less costly, less accurate than physiological characteristics,
as they often change slightly depending on circumstances [ALI17][JAY19].

For institutions of higher education, “typing signature” is the most cost-
effective and reasonable approach to improve online assessment security
[JAY19][FAB97][IAP21a].

2.2.2 The route of scientific research and branches of the field

Keystroke dynamics is an research field with more and more importance in
network access control and cyber security [ZHO12] [IAP21b]. For now, only a few
studies are about free-text keystroke dynamics, the way that the users type what text
the user wants. Most of them are analyzed only fixed text, static text

[ZHO12][SAL10][ZAC10]. Fixed content and fixed length data are usernames or
passwords [MON02]. Free text requires two phases: the user enrollment phase in the
system and the user verification phase [MON02].

First, the use for users identification was researched in the 1970`s [ZHO12].
Spillane wrote his conclusions about the first investigation in 1975 [FOR77] and
Forsen, Nelson and Staron in 1977 [SPI75]. ‘Fist of the Sender’ was a methodology

in World War II that was used to identify, by using the rhythm, the sender of the
telegraph. [BAN12] [VAC07] [DUN08][IAP21a].

Keystroke dynamics have been studied mostly in connection to
authentication, but some studies, such as [MES11], have also studied the detection
of emotional states of the user who uses the keyboard. Other studies focus on predict
users age and gender from unintentional traces, that left behind by use of keyboard
and mouse [AVA17]. In [SAL18], the authors explored the relevance of individual

and general keyboard and mouse interaction patterns and they had modeled user`s
keystroke dynamics and mouse movements with data mining techniques to detect the
emotion of users in real-world learning scenarios [IAP21a].

BUPT

 Keystroke dynamics – literature review 25

In [LIM14], the authors indicates that automatic analysis of human stress
from mouse input and keyboard input is potentially useful for providing adaptation in

e-learning systems [IAP21a].
Typing behavior for continuous authentication is a biometric modality

proposed in [ROT14]. The authors collected a video database from 63 users with static
text and free text typing and developed computer vision algorithms to extract hand
movement from the video stream.

If most studies use only data retrieved from the keyboard, there are studies
that use a mixed method of user identification, based on data retrieved from the

keyboard, but also on data retrieved from the mouse [LOZ17]. Additional features,
like pressure, are used in addition to time-based features, but to capture this data
you need touch screens or other special devices [TEH13]. The stages that a research
in this field goes through are: extracting the keyboard features, creating user profiles

and updating them and identifying the efficiency criteria [KOC19][IAP21a].
Most studies analyze data collected in English. There are studies that research

the field for texts in other languages, such as French [BOU17], Italian [SOL11],

Japanese [SAM09], Russian [KOC19], Arabic [ALS16], Korean [JUN20] or others.
Commercial keystroke dynamic products exist. In 2003, the paper [ILO03]

presents the company BioNet Systems which patented the BioPassword
authentication system [ZIL98]. In Romania, Typing DNA is a company, a start-up,
that received funds of 6.2 million euros in 2020 to create a typing identity for security
[STE20].

Other studies, like [ARW17], incorporates the use of nonconventional typing
features using free text typing dynamics. Semi-timing features along with the editing
features were extracted from the users' typing flow and decision trees were used to
classify each of the user data.

Algorithms of dynamic authentication can be divided into three major groups:
estimation of metric distances, statistical methods and machine learning. Methods of
keyboard recognition used in the literature are: distance, neural networks, statistical,

probabilistic, machine learning, clustering, decision tree, evolutionary computing,

fuzzy logic or other [KOC19] [IAP21a].
Some limitations of keystroke dynamics previous research were: it took a long

time to train the model, data were manual preprocessed by human or large database
was required [YUE04]. The authors from [YUE04] conclude that use of keystroke
dynamics can make a more secure system.

The following sections of this chapter present technical aspects from the

literature in the field of keystroke dynamics.

2.2.3 Fixed text keystroke dynamics

Fixed text keystroke dynamics is applied to the exactly same text typing, both
in the user data retrieval phase and in the user identification or verification phase.
Being the same text, with the same sequences it is much easier to analyze how it is
typed. For example, when a user enters their username and password it is always the
same text sequence. In this case you can analyze the similarities or the differences
with greater accuracy, remaining at the same typing mode. Difference occurs if every

time there can be another text typed from the keyboard, as is the case with free text

keystroke dynamics [IAP21a].
Coursera, one of the biggest platforms of Massive Open Online Courses, used

keystroke dynamics to verify online users from courses [MAA14].

BUPT

26 State-of-the-art

2.2.4 Free text keystroke dynamics

„While static text keystroke dynamics biometrics are often used during the

logon process to provide a onetime authentication, free text keystroke biometric
systems enable continuously authentication of a user during the entire session for
increased security.” [ZHO15] [IAP21a]

2.2.5 Di-graph

A di-graph is a sequence of two consecutive keys. The time for which each

keystroke was pressed is named as key hold time or dwell time. [BAN12] The dwell
time is the Down-Up time for one single key. In the Figure 2.7, the graph shows the

distribution of dwell times (DU) for one of the users from data set. [IAP21a]

Figure 2.7 Distribution of dwell times (DU) for one of the users from data set [IAP21a]

The Release - Press time or Up-Down time between two consecutive keys was

called Flight Time [STE10] [IAP21a].
A di-graph is a sequence of two consecutive keys pressed by the user. When

pressing two consecutive keys we will take 4 time periods, noted on the image with
t1, t2, t3 and t4. These time periods are captured when the K key (t1) is pressed,
when the K key (t2) is raised, when the D key (t3) is pressed and when the D key
(t4) is raised [IAP21a]. The time the K key is pressed is dwell time and is calculated
as the difference between t2 and t1:

DU (K) = t2 – t1 (2.1)

Flight Time represents the time period between the 2 keys, or more precisely
the time from which the first key is left until the second key is pressed [IAP21a]. It is
calculated as the difference between t3 and t2 in the image:

UD (K-D) = t3-t2 (2.2)

BUPT

 Keystroke dynamics – literature review 27

In the same way as the calculation method for (4.1) Dwell Time is calculated
for the second key (in our example, the D key) [IAP21a]. The time the second key

was pressed is calculated as the difference between t4 and t3:

DU (D) = t4-t3 (2.3)

In the Figure 2.8 the graph shows the distribution of flight times (UD) for one

of the users from data set.

Figure 2.8 Distribution of flight times (UD) for one of the users from data set [IAP21a]

Other time periods that can be calculated and used in algorithms are

[IAP21a]:
• the time period between pressing the two DD (K-D) keys that we calculate,

according to the notations in the figure as the difference between t3 and t1:

DD (K-D) = t3-t1 (2.4)

the time between raising the first key and raising the second key, in our

drawing it is about the difference between times t4 and t2:

UU (K-D) = t4-t2 (2.5)

the total time required to press the 2 keys, in our example, is calculated as

the difference between t4 and t1:

D1U2 (K-D) = t4-t1 (2.6)

Furthermore, to dwell and flight times, additional ways allow the user to

extract data from keystrokes dynamics [JAY19] [FLI10] [RYB08]:
• Typing speed
• Overlap of specific keys combinations
• Number or percentage of errors

• Method of error correction

• Persistent use of navigation-specific keys
• Seek time (time required to press a subsequent key in a common

digraph base)

BUPT

28 State-of-the-art

• Characteristic errors
Another feature to evaluate extracted from key press and key release events

is also typing speed. [SHU13][LIM14]
Figure 2.9 shows an event required to retrieve the data for a di-graph, a

sequence of two consecutive keys pressed by the user.

Figure 2.9 Key events and time intervals for a di-graph [IAP21a]

2.2.6 N-graph

Two keys typed one after the other with their typing time are called a di-

graph. Similarly, three consecutively typed keys with their typing time are called a

tri-graph. And in general, N keys typed one after the other with their typing time are

called a n-graph.
In their survey, in [TEH13], the authors noticed that 80% used di-graphs, 7%

tri-graphs and only 4% used n-graphs. The n-graphs can be used with success in the
experiments that have a big amount of input text.

2.2.7 Metric distances

Given that typing times result in time vectors, and these must be compared

to see the similarities between them to identify or validate the user, the convenient
method that is also used frequently is to calculate the distance of two vectors. In this

way we can say that whether some vectors are similar or not similar. To calculate the
distance, several types of distances between two vectors are used in the literature.
Each distance can be effective in given cases, in certain circumstances [IAP21a].

Given two typing samples of the same letters is necessary to approximate
their similarity or their difference. Is necessary to choose a measure of the distance
of the two samples. [BER02] [IAP21a]

BUPT

 Keystroke dynamics – literature review 29

2.2.7.1 Euclidian Distance

Euclidian distance is the most used distance between two points. For points

given by Cartesian coordinates in n-dimensional Euclidean space, the distance is
[TAB14]:

d(x, y) = √(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 + ⋯ + (xn − yn)2 (2.7)

d(x, y) = √∑(xi − yi)
2

n

i=1

 (2.8)
In [ZHO15], the authors conclude that ”despite its intuitiveness and

simplicity, Euclidean distance has two limitations:
• It is highly sensitive to scale variations in the feature variables
• It has no means to deal with the correlation between feature

variables.” [IAP21a]

2.2.7.2 Manhattan Distance

For points given by Cartesian coordinates in n-dimensional space, the

Manhattan distance is:

d(x, y) = ∑ |xi − yi|

n

i=1

 (2.9)
The Manhattan distance has the advantages of easy de-composition into

contributions made by each variable and simple computation [ZHO15] [IAP21a].

2.2.7.3 R Distance

The R distance was introduced in [BER02] in 2002. The authors described and

tested a new biometric measure of the typing characteristics of individuals. In the

case of fixed text R distance provided good results [IAP21a].
An example of calculating the distance R is given by the authors in [GUN05].

Figure 2.10 and formula show the method of calculating this distance.

X y

ic 150 d=2 th 150

he 220 d=0 he 190

th 230 d=2 ca 200

ti 265 d=3 ic 220

ca 280 d=1 ti 320
Figure 2.10 Computation R distance of two typing samples [GUN05]

d(x, y) =
2 + 0 + 2 + 3 + 1

12
=

8

12
= 0.66

 [GUN05] (2.10)

BUPT

30 State-of-the-art

2.2.7.4 A Distance

A measure only considers the absolute value of the typing speed of each pair

of identical n-graphs in the two samples under comparison. [BER02]
An example of calculating the distance A is given by the authors in [GUN05].

Figure 2.11 and formula show the method of calculating this distance, at t=1.25.

x Y

280 Ca 200 280/200=1.4

220 He 190 220/190=1.157 (similar pair) (1)

150 Ic 220 220/150=1.466

230 Th 150 230/150=1.533

265 Ti 320 320/265=1.207 (similar pair) (2)
Figure 2.11 Computation A distance of two typing samples [GUN05]

d(x, y) = 1 −
2

5
= 1 − 0.4 = 0.6

 [GUN05] (2.11)

2.2.7.5 Bhattacharyya Distance

The Bhattacharyya distance between two vectors is defined as [IAP21a]:

d(x, y) = −ln (BC(x, y))

 (2.12)
where

BC(x, y) = ∑ √xiyi

n

i=1

 (2.13)
where n is the dimensions of the vectors x and y.

2.2.7.6 Mahalanobis Distance

Mahalanobis Distance has been popularly used to match keystroke features

because it handles the correlated data well [ZHO15]. The squared Mahalanobis
distance is defined as:

 (x − y)2 = (x − y)T S−1 (x − y) (2.14)

where S is the covariance matrix of the data. [IAP21a]
”Mahalanobis distance is related to the logarithmic likelihood under the

assumption that the data follows a multivariate Gaussian distribution, which is a
reasonable approximation for most practical data.” [ZHO15]

2.2.7.7 Distance Metric Fusion

The results of the same researches show that with regards of this field it is

often proposed to combine (merge) two or more metric mutes in order to obtain better

BUPT

 Keystroke dynamics – literature review 31

performance. For example, in [AYO19] compare the performances of 3 distance
calculation methods, but combine two by two and then combine all 3.

2.2.8 Keystroke dymanics authentication algorithms from the

literature

This subchapter lists the methods used in various continuous authentication
algorithms using keystroke dynamics presented in another scientific research in this
field [IAP21b].

Leggett’s zone of acceptance algorithm ”assumes that the latencies for all
situations in which it occurs of a digraph in the reference profile follow a normal

distribution. If the average latency for a digraph in the test sample is between the
acceptance area, the digraph is then considered accepted, otherwise, rejected.”

[LEG88] [IAP21b]
Gunetti and Picardi’s algorithm is based on both the A measure and R measure

for measuring similarity [GUN05]. In free text keystroke dynamics field, the Gunetti
and Picardi’s algorithm is considered the state-of the-art [AHM14] [IAP21b].

In [MON00] [JOY90] [BLE91], [AHM14], [ROB98] and [COL99], was applied
a statistical classifier, using techniques like k-means or Bayes. In [ARA03] and

[RUE97], was applied fuzzy logic using a user’s categorization as output. In [LIN97],
[OBA97] and [WON01], was applied neural networks, but in [MON00], it was
concluded that these algorithms are time consuming. In [HAI00], a neural network,
a fuzzy classifier and a statistical were combined [ARA04].

2.2.9 Normalization tehniques

2.2.9.1 Min-max normalization

The simplest normalization technique is the Min–max normalization. Min–max

normalization is best technique for the case where the maximum and minimum are
known. The minimum and maximum scores can easily shift to 0 and 1, or to -1 and

1. [JAI05]
The formula for min-max normalization is (2.15). The x value is the x’ is the

normalized value:

x` =
xi − xmin

xmax − xmin

(newmax − newmin) + newmin

 (2.15)

If the new range is between 0 and 1, then the formula is simplified as follows:

x′ =
xi − xmin

x max− xmin

 (2.16)

2.2.9.2 Z-score normalization

The z-score normalization technique uses the mean and standard deviation

for each feature from a set of data [PAT15]. The z-score is the most commonly used
normalization technique. It is optimal for Gaussian data.

BUPT

32 State-of-the-art

The normalized scores are given by:

x′ =
(xi − μi)

σi

 (2.17)
where µ is the arithmetic mean and σ is the standard deviation of the given

data:

μi =
1

n
⋅ ∑ xi

n

i=1

 (2.18)

σi = √
1

(n − 1)
∑(xi − μi)

n

i=1

 (2.19)
”Z-score normalization does not guarantee a common numerical range for the

normalized scores of the different matchers. If the input scores are not Gaussian
distributed, z-score normalization does not retain the input distribution at the output.
This is due to the fact that mean andstandarddeviation are the optimal location
andscale parameters only for a Gaussian distribution.” [JAI05]

2.2.9.3 Decimal scaling

Decimal scaling is the reduction of the value of some variables by dividing by

10𝑛. In this way the number can become subunit.

x′ =
xi

10n

 (2.20)
where

n = log10max (xi)
 (2.21)

2.2.9.4 Median and median absolute deviation (MAD)

The median absolute deviation – MAD - normalization is insensitive to outliers
and does not guarantee the common numerical range [NAN05]. The normalization
formula is [LAT11]:

x` =
x − median

const(median|x − median|)

 (2.22)

BUPT

 Keystroke dynamics – literature review 33

2.2.9.5 Double sigmoid

Double sigmoid normalization provides a linear and non-linear transformation

of the scores. For the scores in the region of overlap is linear and for the scores outside
the region are non-linearl [NAN05]. The normalization formula is [LAT11]:

x` =
1

1 + exp (−2
x − t

r1
)

, if x < t

 [LAT11](2.23)

x` =
1

1 + exp (−2
x − t

r2)
, if x ≥ t

 [LAT11](2.24)

t = point of reference
r1 = left edge of the region in which the function is linear
r2 = right edge of the region in which the function is linear

2.2.9.6 tanh-estimator

Tanh-estimator is one of the most efficient and powerful normalization

techniques. It is introduced by Hample [BHA18]. The normalization formula is:

x` = 0.5 (tanh (
0.01(x − µ)

δ
+ 1))

 [LAT11](2.25)

µ = mean value

δ = standard deviation

In [JAI05] the author made a summary of normalization techniques based on

robustness and efficiency presented in the Table 2.1:

Table 2.1 Summary of normalization techniques [JAI05]

Normalization techniques Robustness Efficiency

Min–max No N/A

z-score No High

Decimal scaling No N/A

Median and MAD Yes Moderate

Double sigmoid Yes High

tanh-estimators Yes High

Biweight estimators Yes High

2.2.9.7 Gaussian mixture model

The Gaussian mixture model was used in statistical modeling tasks. It is a

parametric model (it is parameterized by mean vectors and covariance matrixes of

BUPT

34 State-of-the-art

the Gaussian distributions and weights of all of the Gaussian components). The real
distribution of the data can be unknown [DEN13]. A Gaussian Mixture Model is a

weighed sum of 𝑀 multivariate Gaussian functions [JAI99].

2.2.10 Length of input

The length of the text that is analyzed when verifying the user's identity is

very relevant to the performance of the algorithm. The longer the analyzed text, the

better the accuracy by which the identity is verified. At text with shorter lengths the
performance of the algorithms decreases. In [AYO19] the authors show that with a
small number of di-graphs, like 100 di-graphs, the EER is 35,3%. At 200 di-graphs
the ERR drops to 15,3%. With more di-graphs, the performance continues to improve.

At one analysis with 1000 di-graphs the authors obtain an ERR of 3,6%. The authors
from [KAI11] needs minimal 700 keys typed on the keyboard for their algorithm

because they need a minimum number of common di-graphs for the authentication
or validation process [IAP21b].

2.2.11 Improvement of initial data

In [HUA16] the authors improved the quality of data by eliminating text
considered as being noises. They concluded that the data set obtained from a user
must first be filtered. By filtering, they ended up eliminating up to 23.3% of the initial
text. The atypical behavior of a user has been eliminated and the performance has
improved in relation to false rejection rate.

The type of gibberish proposed in [HUA16] are:
• ”Repetition: Repeating the same characters at least 3 times

• Gaming: gaming patterns, any combinations of the four keys used for
movement in games (‘a’,’s’,’d’,’w’) and space

• Distinct: Strings with too few distinct characters (moving window of
15 characters with no more than 5 distinct characters). Parameters
are chosen manually. Exemple: reeewereeweerewe

• Length: Long strings (greater than 20) of alphabetical letters.

Exemple: idhuduisidjcdcvdscvois
• The unstable keystrokes may generate from such activities as when

the user is playing a computer game. Addition of gibberish keystrokes
has no impact on false accept rate but increases false reject rate
significantly. Filtering implies that a larger test sample is needed
before an authentication can be attempted.” [HUA16]

Prescreening the data is essential to maximize the performance of the

classifiers from the data being analyzed. The performance of the algorithm is
maximized by prescreening and removing non-essential elements. [JAY19] [FAW06]

In the [MON06] was proposed the time interval equalization, a non-linear
mapping of time intervals for improve the performance of algorithm.

2.2.12 Updating dynamic datasets

Biometric systems commonly provide good performances but the recognition

solutions tend to be affected over time due to aging of biometric data [ANI16] and

BUPT

 Keystroke dynamics – literature review 35

changing conditions [FAB08]. Adaptive systems, which adapt the reference over time,
have been proposed to deal with such intra-class variability. The authors from

[PAU19] provides discussion on adaptive biometrics systems, including formalization,
terminology, sources or variations that motivates the use of adaptation, adaptation
strategies, evaluation methodology and open challenges and concludes that an
important advance in the field would be the standardization of the evaluation protocol
of adaptive biometric systems.

The authors from [MON99] used an adaptation mechanism. Every time a
successful authentication is performed, the algorithm creates a new updated pattern,

saving the new sample and deleting the oldest one [ARA04].

2.2.13 Evaluating the performance of authentication algorithms

based on keystroke dynamics

2.2.13.1 Confusion matrix

The confusion matrix has four categories: True positives (TP), False positives

(FP), True negatives (TN) and False negatives (FN). The confusion matrix can be used
to build points in ROC space [JES06] [IAP21b]. In Table 2.2 is shown a confusion

matrix.

Table 2.2 The confusion matrix [JES06]

 Actual positive Actual negative

Predicted
positive

True positives
(TP)

False positives
(FP)

Predicted
negative

False negatives
(FN)

True negatives
(TN)

2.2.13.2 False Rejection Rate (FRR)

False Rejection Rate (FRR) is ”the probability that a system incorrectly

classifies a genuine user as an imposter. FRR is the precent of genuine users that are

rejected as imposters.” [ZHO15] [IAP21b]

FRR= number of genuine user incorrectly classifies as an imposter / total
number of genuine match attempts

 (2.26)

FRR =
FP

FP + TP

 (2.27)

2.2.13.3 False Acceptance Rate (FAR)

False Acceptance Rate (FAR) is ”the probability that a system incorrectly

classifies an imposter as a genuine user. FAR is the percent of imposters that are
incorrectly accepted as genuine users, how often an intruder is granted access”

[ZHO15] [IAP21b].

BUPT

36 State-of-the-art

The formula by which FAR is calculated is given below:
FAR = number of imposters that are incorrectly accepted / total number of

impostor match attempts (2.28)

FAR =
FN

FN + TN

 (2.29)

 In the Figure 2.12 are graphically represented the FAR (False
Acceptance Rate) and FRR (False Rejection Rate).

Figure 2.12 A graph with FAR and FRR [IAP21b]

2.2.13.4 Equal Error Rate (ERR)

The equal error rate (EER) is used as a performance metric and it is the point

where the FAR equals FRR. The system with the lowest EER is the most accurate.
[ZHO15] [IAP21b]

ERR = FAR = FRR (2.30)

The low accuracy is the main issue of keystroke dynamics [HAB17]. But an
EER of 5% is suitable for educational systems that do not require high security
[BAR06] [IAP21b].

2.2.13.5 Zero Miss False Acceptance Rate (ZMFAR)

Authentication accuracy is assessed with Equal Error Rate (EER), the

percentage at which False Acceptance Rate (FAR) and False Rejection Rate (FRR) have

equal value. Another indicator of algorithm performance, in addition to EER, is,
according to [ZHO12] [KIL09] Zero Miss False Acceptance Rate (ZMFAR). ZMFAR is
represented by the minimum percentage of FRR (False Rejection Rate) when FAR

(False Alarm Rate) has the value equal to 0. In Figure 2.13 are graphically represented

BUPT

 Keystroke dynamics – literature review 37

the two performance indicators of a user authentication algorithm in the system
[IAP21b].

Figure 2.13 Graphical reprezentation of Equal Error Rate (EER) and ZMFAR (Zero Miss False

Acceptance Rate) [IAP21b]

2.2.13.6 Receiver operating characteristic (ROC) curve

Receiver Operating Characteristic (ROC) curves describe an entire range of

achievable performance characteristics relative to FAR and FRR’s. [BAR06] In machine
learning, Receiver Operating Characteristic (ROC) curves are used to present results
for binary decision problems. ROC curves have many properties when the class

distribution is close to being uniform. The confusion matrix can be used to build points
in ROC space [JES06] [IAP21b]. In the Figure 2.14 are represented a Receiver
operating characteristic (ROC) curve.

Figure 2.14 Receiver operating characteristic (ROC) curve [IAP21b]

BUPT

38 State-of-the-art

2.3 Conclusions

In this chapter, the current state-of-the-art in the field of doctoral thesis was
presented. The scientific papers cited in this chapter, as well as the presentations of
concepts, methods, metrics, algorithms, are starting points for present research.

The first part of the chapter, at subchapter 2.1 Evolution of educational
systems, describes the evolution of online education systems, an evolution that has

met significant increases in recent years and especially in 2020, in the context of
moving the classical education system to the online space due to certain constraints
such as maintaining the physical distance between people because of the health crisis
caused by the SARS-CoV-2 virus. The keystroke dynamics authentication method can
be successfully applied as a second mandatory authentication method in case of

authentication within online education platforms and especially during exams, when
the user's identity must be confirmed throughout the session, not only once at the

beginning. This additional verification would be required for two more reasons: 1.the
educational systems with Massive Open Online Courses (MOOC) have seen a great
growth from its appearance until today, reaching tens of millions of users, there are
exams that are given on these platforms with thousands of students at the same time
and 2.the medical crisis generated by the SARS-CoV-2 virus in 2020 provoked
unprecedented travel restrictions around the globe, and the educational system was

moved to an online one.
The second part of this chapter, subchapter 2.2 Keystroke dynamics -

literature review, makes a generic presentation of the research stage in the field of
keystroke dynamics, presents, in the subchapter 2.2.1, its classification as human
biometrics that helps to identify the individual, as well as other biometrics: fingerprint,
iris, facial recognition, how to shake hands, etc. It also presents, from the subchapter
2.2.2, the route of scientific research and branches of the field. The categories of

keystroke dynamics analysis researched are: Fixed text keystroke dynamics,
presented in subchapter 2.2.3, and Free text keystroke dynamics, presented in
subchapter 2.2.4. The methods to group characters typed on a keyboard for further

analysis in an algorithm are the following: analysis of consecutive key pairs (di-
graphs), presented in subchapter 2.2.5, or groups of n consecutive keys (n-graphs),
presented in subchapter 2.2.6. The authentication algorithm based on keystroke
dynamics takes over, for each key pressed, key code, the time when it was pressed

and the time at which it was picked up. In this way, for each user there will be a long
series of keys and times. By processing this input data, the user can be identified.
With the help of the pressing times, respectively of leaving the key, it can easily
calculate the total time when a certain key has been pressed or the total time elapsed
between two consecutive keys. Regardless of the analysis of the user's typing mode
(one key, di-graph, tri-graph or n-graph analysis) the input data for the authentication

algorithm are time vectors (intervals when a key has been pressed, or how many took
until the press of the next key). The algorithm will process this input data to decide if
the user who is now at the computer is the one who claims to be and can log in to the
system. Time vectors are vectors of real numbers. In order to analyze the vectors of
real numbers (time vectors) and to decide their similarity, different methods can be
approached: (1) distance based classifier, (2) statistical classifier -generic, (3)
probability classifier, (4) clustering, (5) machine learning methods - generic, (6)

neural networks, (7) fuzzy logic, (8) decision tree, (9) evolutional computing, (10)
SVM - support vector machines etc. In the subchapter 2.2.7, Metric distances, the
main metrics for calculating the distances between two vectors were presented. In
the subchapter 2.2.8 was presented the Keystroke dynamics authentication

BUPT

 Conclusions 39

algorithms from the literature. It analyses the conception and functioning of the
algorithms submitted in scientific research in this field in order to be a starting point

for achieving the objective.
In the subchapter 2.2.9 was presented Normalization techniques, that helps

to format the initial data which are input data for an authentication algorithm based
on keystroke dynamics in order to obtain similar data from all users, for better
performances. The techniques presented to standardize are used in algorithms that
are presented in scientific papers in the field. The last three subchapters, 2.2.10
Length of input, 2.2.11 Improvement of initial data and 2.2.12 Updating dynamic

datasets analyzes particular cases in the development of authentication algorithms
using keystroke dynamics.

The following chapter, Chapter 3, will present the research methodology
applied by the author to the present scientific research.

BUPT

3 RESEARCH METHODOLOGY

 The previous chapter presented state-of-the-art in the field of keystroke

dynamics, throughout which the evolution of the domain, the development steps of
an algorithm were analyzed and presents the evolution of educational systems, the
field in which authentication based on keystroke dynamics can be applied, especially
in the context in which education on online platforms experienced a major increase in
2020.

In the following, this chapter will present the research methodology applied

in this research project. The steps performed in the present scientific research are
described below:

A. Development of the platform for the acquisition of input data
B. Acquisition and initial processing of input data from 80 volunteers (how

typing on their keyboard)
C. Processing the input data so as to generate a user pattern for each user
D. Development of an algorithm in the C programming language for

calculating distances used in keystroke dynamics authentication
E. Simulation of system authentication by genuine users or impostors to

measure the performance of the developed algorithm
The first two steps of the research methodology, A. Development of the

platform for the acquisition of input data and B. Acquisition and initial processing of
input data from 80 volunteers (how typing on their keyboard), have the role of

approaching O1, as described in the first chapter of the thesis: to collect a database
with the test pattern from at least 80 users, in order to test the authentication
algorithm for this research, but also to make it available to other interested
researchers.

The third step of the research methodology, C. Processing the input data so
as to generate a user pattern for each user, and the last step of the research
methodology, E. Simulation of system authentication by real users or imposters to

measure the performance of the developed algorithm, have the role of approaching
O4, as described in the first chapter of the thesis: to propose a data structure as
efficient as possible, which should contain the most relevant information about the
typing of a user.

The third step of the research methodology, C. Processing the input data so
as to generate a user pattern for each user, and the forth step of the research
methodology, D. Development of an algorithm in the C programming language for

calculating distances used in keystroke dynamics authentication, have the role of
approaching O2, as described in the first chapter of the thesis: to implement an

algorithm for authenticating the users of a computer based on the keystroke
dynamics, the keyboard typing mode.

The last step of the research methodology, E. Simulation of system
authentication by genuine users or impostors to measure the performance of the

BUPT

 A. Development of the platform for the acquisition of input data 41

developed algorithm, has the role of approaching O3, as described in the first chapter
of the thesis: to propose at least two new metrics for calculating the distances

between two vectors that generate better performance compared to the Equal Error
Rate (EER) performance indicator than the classical methods.

Figure 3.1 shows the steps of research methodology, the steps performed in
the present scientific research.

Next, each step of the research methodology listed above will be described in
detail, in a separate subchapter.

3.1 A. Development of the platform for the acquisition of

input data

The first step in this research was to create a web platform for the acquisition

of input data necessary for research. For this, the website from
https://sites.google.com/view/cataliniapa was created, a form was created that would

take over, besides the text typed by the users, the way of typing on the keyboard. A
program in JavaScript language was written to take over the keystroke times. In order

A. Development of the platform for the acquisition of
input data

Objective pursued: O1

C. Processing the input data so as to generate a user
pattern for each user

Objective pursued: O2, O4

E. Simulation of system authentication by genuine users
or impostors to measure the performance of the

developed algorithm
Objective pursued: O3, O4

B. Acquisition and initial processing of input data from
80 volunteers (how typing on their keyboard)

Objective pursued: O1

D. Development of an algorithm in the C programming
language for calculating distances used in keystroke

dynamics authentication

Objective pursued: O2

Figure 3.1 Summary of the research methodology applied in the thesis

BUPT

42 Research methodology

to be able to download the necessary information, a Google Sheet file was configured,
and the information collected using the web form was transmitted using the platform

https://api.apispreadsheets.com/. The platform for acquiring input data has been
completed and functional by integrating the script written in JavaScript with the data
transfer application in the Google Sheet file. The steps described can be followed in
the graph in Figure 3.2.

This step of the research methodology has the role of approaching O1, as

described in the first chapter of the thesis: to collect a database with the test pattern
from at least 80 users, in order to test the authentication algorithm for this research,

but also to make it available to other interested researchers. This step is detailed in
the next chapter, Chapter 4, at subchapter 4.1 Platform for collecting data about
keyboard typing from 80 volunteers.

3.2 B. Acquisition and initial processing of input data

The acquisition and initial processing of the input data went through the
following steps: Data were collected from 80 users using a web program written in

JavaScript. It was collected from the 80 volunteers, through a form, the keys typed
on the keyboard but also the times at which they were typed. The collected data was
initially stored in a Google Sheet file via the https://api.apispreadsheets.com/

platform. With a program written in the C programming language, the data collected

Creating website
https://sites.google.com/

view/cataliniapa

Configure Google Sheet to
retrieve user typing data

Configure the platform for

transferring data from the
form on the website in

Google Sheet
https://api.apispreadsheets

.com/

Creating a form for data
acquisition

Creating the program in
Javascript for the

acquisition of typing
times

Integration

Input data acquisition
platform

Figure 3.2 Steps taken to create the platform for retrieving data on how users type

BUPT

 B. Acquisition and initial processing of input data 43

in the Google Sheet file was processed and transformed into key events in the
following form:

68 0 123444
68 1 123555
59 0 123720
71 0 123800
59 1 123830
71 1 123992
...

where on the first column is the key code of the pressed key, on the second
column is 0 or 1, 0 represents the pressed key, and 1 represents the raised key, and
the third column represents the timestamps at which the key event occurred. The file
with the form presented above is the input file for the continuous authentication

algorithm developed in this thesis using the keystroke dynamics method. The steps
described above are summarized in the graph in Figure 3.3.

This step of the research methodology has the role of approaching O1, as

described in the first chapter of the thesis: to collect a database with the test pattern

from at least 80 users, in order to test the authentication algorithm for this research,
but also to make it available to other interested researchers. This step is detailed in
the next chapter, Chapter 4, at subchapter 4.3 Acquisition and initial processing of
input data from 80 volunteers (how typing on the keyboard).

Completing the form with the 80 users in the platform for

taking over the users' typing times

Automatic transmission of typed keys and typing times in

the Google Sheet file

Transfer data retrieved from Google Sheet to text file

Initial data processing in a program in the C language

Generating the text file with the keys and typing times of the

80 users who filled in the form on the platform

Figure 3.3 Steps taken for the acquisition and initial processing of key data and typing times of
the 80 volunteers

BUPT

44 Research methodology

3.3 C. Processing the input data so as to generate a user

pattern for each user

In order to accomplish this step described in the research methodology, it was
necessary to define the data structures for one key, di-graph, user pattern as well as

to collect the input data from the text file in order to popularize the data structures
within the program. The steps described in this subchapter are shown in the graph in
Figure 3.4.

This step of the research methodology has the role of approaching O4, as
described in the first chapter of the thesis: to propose a data structure as efficient as

possible, which should contain the most relevant information about the typing of a
user and O2, as described in the first chapter of the thesis: to implement an algorithm
for authenticating the users of a computer based on the keystroke dynamics, the
keyboard typing mode. This step is detailed in the next chapter, Chapter 4, at
subchapter 4.5 Processing the input data so as to generate a user pattern for each
user.

3.4 D. Development of an algorithm in the C
programming language for calculating distances

used in keystroke dynamics authentication

Figure 3.5 shows the steps performed to calculate the distances between each
two generated vectors, so as to approximate the similarity between two users. For
this, the functions were written to calculate the distances between two vectors and

were applied to the vectors resulting from the data present in each user pattern.

Defining data structures for
one key, di-graph, user

pattern

Collect input data from

the text file

Populating data structures
with data from the text file

Figure 3.4 Generate user pattern for each user

Defining functions that
calculate distance between

user patterns

Collect data from the

user patterns

Calculating the distances

between each pair of user
patterns in the database

Figure 3.5 Calculating the distance between each pair of user patterns

BUPT

 E. Simulation of system authentication by genuine users or impostors to measure
the performance of the developed algorithm 45

This step of the research methodology has the role of approaching O2, as

described in the first chapter of the thesis: to implement an algorithm for
authenticating the users of a computer based on the keystroke dynamics, the
keyboard typing mode. This step is detailed in the Chapter 5 - Algorithm development
for keystroke dynamics authentication.

3.5 E. Simulation of system authentication by genuine
users or impostors to measure the performance of

the developed algorithm

In the previous step, the distances between user-generated time vectors were
calculated to approximate the similarity between users. Based on them, the
authentication was simulated and False Rejection Rate (FRR), False Acceptance Rate

(FAR), True Acceptance Rate (TAR) and True Rejection Rate (TRR) were generated.
Based on FRR and FAR, Equal Error Rate (EER) was calculated and the FAR-FRR graph
was generated. Based on FAR and TAR, ROC curves were generated. These indicate
the performance of the authentication algorithm. The steps described can be found in
the graph in Figure 3.6.

This step of the research methodology has the role of approaching O3, as
described in the first chapter of the thesis: to propose at least two new metrics for

calculating the distances between two vectors that generate better performance
compared to the Equal Error Rate (EER) performance indicator than the classical
methods. This step is detailed in the Chapter 6 – Experiments and results - Simulation
of system authentication by genuine users or impostors.

3.6 Conclusions

This chapter described the research methodology. The five steps of the
research methodology that have been presented in this chapter are: A. Development

Simulation of authentication based on
distances calculated between users

Generate False
Rejection Rate

(FRR)

Generate False
Acceptance

Rate (FAR)

Generate True
Acceptance Rate

(TAR)

Generate True
Rejection Rate

(TRR)

Calculate the
Equal Error

Rate (EER)

Generate the
FAR-FRR

chart

Generate
the

ROC curve

Figure 3.6 Simulation of authentication and calculation of algorithm performance

BUPT

46 Research methodology

of the platform for the acquisition of input data, B. Acquisition and initial processing
of input data from 80 volunteers (how typing on their keyboard), C. Processing the

input data so as to generate a user pattern for each user, D. Development of an
algorithm in the C programming language for calculating distances used in keystroke
dynamics authentication and E. Simulation of system authentication by genuine users
or impostors to measure the performance of the developed algorithm.

The first step of the research methodology, A. Development of the platform
for the acquisition of input data, has the role of approaching O1, as described in the
first chapter of the thesis: to collect a database with the test pattern from at least 80

users, in order to test the authentication algorithm for this research, but also to make
it available to other interested researchers. This step will be detailed in the next
chapter, Chapter 4, at subchapter 4.1 Platform for collecting data about keyboard
typing from 80 volunteers.

The second step of the research methodology, B. Acquisition and initial
processing of input data from 80 volunteers (how typing on their keyboard), has the
role of approaching O1, as described in the first chapter of the thesis: to collect a

database with the test pattern from at least 80 users, in order to test the
authentication algorithm for this research, but also to make it available to other
interested researchers. This step will be detailed in the next chapter, Chapter 4, at
subchapter 4.3 Acquisition and initial processing of input data from 80 volunteers
(how typing on the keyboard).

The third step of the research methodology, C. Processing the input data so as

to generate a user pattern for each user has the role of approaching O4, as described
in the first chapter of the thesis: to propose a data structure as efficient as possible,
which should contain the most relevant information about the typing of a user and
the role of approaching O2, as described in the first chapter of the thesis: to
implement an algorithm for authenticating the users of a computer based on the
keystroke dynamics, the keyboard typing mode. This step will be detailed in the next
chapter, Chapter 4, at subchapter 4.5 Processing the input data so as to generate a

user pattern for each user.

The fourth step of the research methodology, D. Development of an algorithm
in the C programming language for calculating distances used in keystroke dynamics
authentication, has the role of approaching O2, as described in the first chapter of the
thesis: to implement an algorithm for authenticating the users of a computer based
on the keystroke dynamics, the keyboard typing mode. This step will be detailed in
the Chapter 5 - Algorithm development for keystroke dynamics authentication.

The fifth step of the research methodology, E. Simulation of system
authentication by genuine users or impostors to measure the performance of the
developed algorithm, has the role of approaching O3, as described in the first chapter
of the thesis: to propose at least two new metrics for calculating the distances
between two vectors that generate better performance compared to the Equal Error
Rate (EER) performance indicator than the classical methods. This step will be detailed

in the Chapter 6 – Experiments and results - Simulation of system authentication by
genuine users or impostors.

Based on the methodology presented in this chapter, the following chapters will
present the data set collected in this research, the algorithm developed to identify
users using keystroke dynamics as well as improvements to increase its performance

and the experiments and results. The next chapter presents the platform with which
the data were collected, the way of collecting data from 80 users and also an analysis

of the data.

BUPT

4 FREE-TEXT KEYSTROKE DYNAMICS DATA SET
FOR CONTINUOUS AUTHENTICATION

In the previous chapter was presented the research methodology. The

research methodology assumes, first of all, the existence of data from users.
This chapter is about the data set collected for the present research. The first

subchapter 4.1, Platform for collecting data about keyboard typing from 80
volunteers, presents the platform for collecting data about keyboard typing and how
data was collected from 80 users in order to later develop an algorithm. Moreover,
after presenting the platform with the help of which data were collected from users,

it will proceed to the analysis of these collected data and to the presentation of the
particular characteristics, in subchapthers 4.2 Analysis of time and key events
collected from users, 4.3 Acquisition and initial processing of input data from 80
volunteers (how typing on the keyboard) and 4.4 Analysis of keys collected from
users. It shows how they were processed using an algorithm written in the C
programming language. The subchapter 4.5, Processing the input data so as to
generate a user pattern for each user, presents the structures that store user typing

data. The subchapter 4.6, Keys distribution analysis, presents the analysis of the
collected keys. The subchapter 4.7, Differences between users, graphically displays

the typing pattern for different users. This chapter addresses the validation of O1
from the first chapter of this thesis.

4.1 Platform for collecting data about keyboard typing

from 80 volunteers

To research in the field of keystroke dynamics biometrics the researchers need

input data obtained from computer users in different real situations. The necessary
data are represented by the keys typed on the keyboard but also by the times at
which they are pressed. The time when a certain key is pressed, respectively the time
when a certain key is raised. The difference between these times is the keystroke
time. Another important piece of information is the time between two keys. The
difference between the time a key was released and the time a next key was pressed
[IAP21a].

 This information can only be obtained in a restrained or controlled
environment, with the consent of those participating to this experiment. The

agreement of the participants is necessary because it exists a possibility to form the
initial text that the user typed on the keyboard with access to this data, and if, for
example, a user is monitored while sending e-mails or doing other activities, the
information may be confidential.

BUPT

48 Free-text keystroke dynamics data set for continuous authentication

 In the literature there are several sets of data that are accessible for research
purposes. In the first phase, the author used these data sets. Most are represented

by texts in English, obtained from the educational environment, by researchers from
their university colleagues or from students.

Some data sets are retrieved by a specific program, in a special environment
made for this purpose. Others are made to monitor everything that is typed on a
computer, regardless of the program used at one time by the user. It monitors
everything typed on the keyboard and typing times whether the user is writing e-
mails, writing in a Word, Excel document or programming on a computer in a certain

programming environment.
 On the other hand, for the purpose of the research the author developed their
own environment to obtain data from volunteers. The author has created a web
environment for taking over keys and typing times in JavaScript. A form is created

that takes over the keys and typing times while completing a form on a web page
[IAP21a]. The website was created on the sites.google.com platform. The web
platform can be accessed at https://sites.google.com/view/cataliniapa.

 To capture the keys and typing times the author created a web form through
which users were invited to answer several generic questions. The text entered from
the keyboard by each user should be written freely by each user, without the need to
reproduce a specific predefined text. At each text box, a series of generic questions
were formulated to guide the user to a certain topic in the text he completed. The
questions asked were about the weather, the ideal day or the educational system. To

form the database for research is not relevant the topic of the text, but the way it is
written.

The text written by users is in Romanian. Most datasets in the literature are
texts captured from users who have written in English [IAP21a].

Figure 4.1 shows the online form that each user filled in during the
experiment.

Figure 4.1 The form that the users filled in

After completing all the fields in the form, in order to send the captured data,

the consent regarding the takeover for the purpose of scientific research of the
participants was obtained. Two questions answered by users from the form are in
Figure 4.2. First one is about weather and second one about the ideal day.

BUPT

 Platform for collecting data about keyboard typing from 80 volunteers 49

Figure 4.2 Two questions answered by users from the form

Each user was instructed to pursue the following rules when filling out the

form:
1. To write a free text about the subject managed by guidance questions;
2. Write a text of about 500 characters for each question (this means that

all the lines in a text window should be filled);
3. Do not copy the answer from other sources;
4. Write the answer to the questions on the spot, without consulting external

sources;

5. Write ideas fluently, as they come to mind;
6. Do not do other activities while completing the answer to the questions.

The request is to allocate about 15 minutes to complete the form;
7. The written text must be in Romanian;
8. The written text should be as generic as possible, not personal;
9. The text should be written from a physical keyboard, computer or laptop,

not a touchscreen device (not a phone or tablet).
10. Please take about 15 minutes to complete the form to answer all questions

without being interrupted by other activities.
In one of the questions on the form, users were asked to describe the scene

in the Figure 4.3, in as much detail as possible.

Figure 4.3 Each user has described the scene of the picture at one of the questions

BUPT

50 Free-text keystroke dynamics data set for continuous authentication

To send the data the user pressed the send button so by pressing this button
the data captured during the completion of the form were uploaded in a google sheet

file as shown in Figure 4.4. The file is organized in 3 columns, as follows: the first
column contains the key codes of the captured keys separated by commas, the second
column shows the time each key was pressed, and the third column captures the time
between two consecutive keys. Times are separated by commas, as is the key codes.

Figure 4.4 Google sheet with the key codes, timestamps and key events from users

 To retrieve the data about keys and typing times the author wrote a script in

JavaScript. The script is at Code 4.1. To transfer the data from the form to Google
Sheet is used the api from apispreadsheets.com.

Code 4.1 The script used to get the keys and typing times from the users
<script>
var letters = [];

var timestamp = [];
var event = [];
var name = [];
var age = [];
var tel = [];
var mail = [];
var gender = [];

var gen = [];
var device = [];
var dev = [];

var clk0 = $.now();
var start = null;
var end = null;

BUPT

 Platform for collecting data about keyboard typing from 80 volunteers 51

$('#in1').keydown(function (f) {
 start = $.now()-clk0;

 letters.push(f.keyCode);
 timestamp.push(start);
 event.push(0);
 }).keyup(function (f) {
 end = $.now()-clk0;
 letters.push(f.keyCode);
 timestamp.push(end);

 event.push(1);
});
$("#submit").click(function(){
 name = document.querySelector('#in').value;

 age = document.querySelector('#age').value;
 tel = document.querySelector('#tel').value;
 mail = document.querySelector('#mail').value;

 gender = document.getElementsByName('gender');
 if(gender[0].checked) gen=0;
 if(gender[ZHO12].checked) gen=1;
 if(gender[KIL09].checked) gen=2;
 device = document.getElementsByName('device');
 if(device[0].checked) dev=0;

 if(device[ZHO12].checked) dev=1;
 $.ajax({
 url:'https://api.apispreadsheets.com/data/5917/',
 type:'post',
 data: {
 "name" : name,
 "age" : age,

 "tel" : tel,

 "mail" : mail,
 "gender" : gen,
 "device" : dev,
 "letters" : letters.join(),
 "timestamp" : timestamp.join(),
 "downOrUp" : event.join()

 },
 success: function(){
 alert("Form Data Submitted")
 },
 error: function(){
 alert("There was an error")

 }
 })
 });
</script>

BUPT

52 Free-text keystroke dynamics data set for continuous authentication

4.2 Analysis of time and key events collected from

users

The form created to purchase data sets for research purposes was completed

by a number of 80 users. They handed over data for 410,633 key-events [IAP21a].

The comprise time used by all 80 users to complete the form was 23 hours, 28 minutes
and 19 seconds. For each user, the overall completion time for the form was calculated
from pressing the first collected key to pressing the last collected key with the
following formula:

TotalTime = UpEventLastKey – DownEventFirstKey (4.1)

 The maximum time to complete the form was spent by user 55, setting aside

approximately one hour and 20 minutes to provide 5088 key events. The minimum
time was allocated by user 50 and user 24, approximately 4 minutes, but providing
even fewer key events, 1237 key events of user 50 and 1121 key events of user 24.
 The average time spent by users on the data collection platform is 17 minutes
and 36 seconds. Table 4.1 shows the completion times of the form for each user, as
well as the average and the total time spent by users to complete. In this regard, the
time is expressed not only in milliseconds revealed in the second column of the table,

but also in minutes show in the third column of the table.

Table 4.1 Time spent by users to complete the form
User Time

(ms)
Time
(min)

Total 84501613 1408.36

Average 1056270 17.60

user0001 1095546 18.26

user0002 1177215 19.62

user0003 591972 9.87

user0004 1294786 21.58

user0005 504168 8.40

user0006 443926 7.40

user0007 1076423 17.94

user0008 931092 15.52

user0009 958237 15.97

user0010 869952 14.50

user0011 814627 13.58

user0012 649341 10.82

user0013 570906 9.52

user0014 640486 10.67

user0015 614859 10.25

user0016 923821 15.40

user0017 608300 10.14

user0018 1038345 17.31

user0019 921804 15.36

user0020 570299 9.50

user0021 801803 13.36

user0022 512004 8.53

user0023 1270468 21.17

user0024 278405 4.64

user0025 1324293 22.07

user0026 548089 9.13

user0027 1199995 20.00

user0028 683331 11.39

user0029 538419 8.97

user0030 960423 16.01

user0031 846177 14.10

user0032 684500 11.41

user0033 1044991 17.42

user0034 1504600 25.08

user0035 1298690 21.64

user0036 639693 10.66

user0037 1021443 17.02

user0038 779141 12.99

user0039 728718 12.15

user0040 915012 15.25

user0041 1601844 26.70

user0042 1248721 20.81

user0043 1248392 20.81

user0044 537593 8.96

BUPT

 Analysis of time and key events collected from users 53

user0045 1034266 17.24

user0046 822826 13.71

user0047 2338553 38.98

user0048 1787919 29.80

user0049 987686 16.46

user0050 249185 4.15

user0051 562723 9.38

user0052 735564 12.26

user0053 829821 13.83

user0054 1488714 24.81

user0055 4846025 80.77

user0056 553485 9.22

user0057 668374 11.14

user0058 1076782 17.95

user0059 858249 14.30

user0060 733605 12.23

user0061 1218402 20.31

user0062 544233 9.07

user0063 996290 16.60

user0064 1732492 28.87

user0065 1012393 16.87

user0066 1418069 23.63

user0067 1208593 20.14

user0068 630424 10.51

user0069 854492 14.24

user0070 888229 14.80

user0071 2803408 46.72

user0072 987762 16.46

user0073 784983 13.08

user0074 1601963 26.70

user0075 2720502 45.34

user0076 3455548 57.59

user0077 965783 16.10

user0078 791552 13.19

user0079 786153 13.10

user0080 1013715 16.90

 The time to complete the form by each user is graphically represented by
Figure 4.5. Each user is on the OX axis. On the left side of the chart is placed the user
with the shortest completion time of the form, user 50, with a total completion time
of 4 minutes and 9 seconds. On the right side of the chart is user 55, who completed
the form in one hour, 20 minutes and 45 seconds (80 minutes and 45 seconds). The

average time to complete the form is 17 minutes and 36 seconds and it is submitted
separately on the graph.

Figure 4.5 Graphical representation of the time spent by each user to complete the form, in

ascending order

BUPT

54 Free-text keystroke dynamics data set for continuous authentication

Table 4.2 shows the total number of key events collected from each of the 80

users who filled out the form. The total number of key events collected from all users
is 410,633. The average number per user is 5132 key events. Each key event contains
Key Code, Down Event or Up Event and the Time Stamp.
 The largest number of key events, a number of 6829, is collected from the
65th user in 16 minutes and 52 seconds. On the second place is user 66, with a
number of 6781 key events, collected in a time interval of 23 minutes and 37 seconds.
 The fewest key events collected were provided by the users with the shortest

time spent on the collection platform, user 24 and user 50, with 1121 key events,
respectively 1237 key events. User 36 has also used only 3123 key events, collected
in 10 minutes and 39 seconds.

Table 4.2 Number of key events collected from users

User TotalKeyEvent
s

TotalKeyEvent
s

410633

Average 5132

user0001 3905

user0002 5715

user0003 5671

user0004 5992

user0005 4938

user0006 3815

user0007 4422

user0008 5303

user0009 4889

user0010 4021

user0011 6057

user0012 5181

user0013 4696

user0014 5872

user0015 5153

user0016 5312

user0017 4273

user0018 5311

user0019 5379

user0020 4521

user0021 6153

user0022 4612

user0023 3231

user0024 1121

user0025 5083

user0026 5618

user0027 6229

user0028 4550

user0029 3710

user0030 4999

user0031 4871

user0032 5335

user0033 5959

user0034 4977

user0035 5682

user0036 3123

user0037 4942

user0038 5648

user0039 5010

user0040 5759

user0041 5604

user0042 5655

user0043 5766

user0044 5157

user0045 6043

user0046 5762

user0047 5039

user0048 5557

user0049 5112

user0050 1237

user0051 6111

user0052 5587

user0053 5451

user0054 3309

user0055 5088

user0056 4757

user0057 4520

user0058 5336

user0059 5565

user0060 4282

user0061 6606

user0062 4406

user0063 4725

user0064 4896

BUPT

 Acquisition and initial processing of input data from 80 volunteers (how typing on
the keyboard) 55

user0065 6829

user0066 6781

user0067 6465

user0068 5005

user0069 6034

user0070 5590

user0071 5954

user0072 5642

user0073 5545

user0074 6263

user0075 5809

user0076 3991

user0077 5523

user0078 5863

user0079 5427

user0080 5303

Figure 4.6 graphically represents the number of key events collected from

each user. Users are sorted in descending order by the total number of key events
/user. The average number of key events (5132) collected is highlighted in the graph.

The highest number of key events collected is 6829, being provided on the left side
of the graph, and the lowest number of key events collected is 1121, being specified
on the right side of the graph.

Figure 4.6 Graphical representation of the number of key events collected from each user, in

descending order

4.3 Acquisition and initial processing of input data
from 80 volunteers (how typing on the keyboard)

 The information about the keys and the typing method is transferred in a
Google Sheets file in the form of three integer vectors from the form filled in by the
users. The first vector contains the code of the keys pressed, the second vector
contains the time at which keystrokes occurred, and the third vector contains a vector
with digits 0 and 1, which represent Key Down Event and Key Up Event.

In order to correlate the data from the 3 vectors and to create the text file

containing the information about key events, it is wrote below the code presented in
Code 4.2.

Code 4.2 Part of the code that creates key events files
 int startTime=0, totalTime=0, sumTime=0, nTime=0;
 int totalKeyEvents=0, sumTotalKeyEvents=0, nTotalKeyEvents=0;
 do

BUPT

56 Free-text keystroke dynamics data set for continuous authentication

 {
 fscanf(f,"%s",user);

 fscanf(g,"%s",user);
 fscanf(h,"%s",user);
 if(strcmp(user,"-1")==0)
 break;
 if(user[0]=='u' && user[1]=='s' && user[2]=='e' && user[3]=='r')
 {
 strcpy(fileUser,"UsersKeyEvents/");

 strcat(fileUser,user);
 strcat(fileUser,".txt");
 m=fopen(fileUser,"w");
 fprintf(k,"%s\n",user);

 fprintf(l,"%s",user);
 fprintf(o,"%s",user);
 fscanf(f,"%c%c",&c,&c);

 fscanf(g,"%c%c",&c,&c);
 fscanf(h,"%c%c",&c,&c);
 n=0;
 do
 {
 fscanf(f,"%c%d",&c,&keyEvents[n].letter);

 fscanf(g,"%c%d",&c,&keyEvents[n].timestamp);
 fscanf(h,"%c%d",&c,&keyEvents[n].event);
 if(keyEvents[n].letter!=-1)
 {
 fprintf(k,"%d %d
%d\n",keyEvents[n].letter,keyEvents[n].event,keyEvents[n].timestamp);
 fprintf(m,"%d %d

%d\n",keyEvents[n].letter,keyEvents[n].event,keyEvents[n].timestamp);

 }
 if(n==0)
 {
 startTime=keyEvents[n].timestamp;
 totalKeyEvents=0;
 }

 totalKeyEvents++;
 n++;
 }while(keyEvents[n-1].letter!=-1);
 n--;
 totalTime=keyEvents[n-1].timestamp-startTime;
 sumTime=sumTime+totalTime;

 nTime++;
 fprintf(l,"\t%d\t%.2f\n",totalTime,(float)totalTime/60000);
 sumTotalKeyEvents=sumTotalKeyEvents+totalKeyEvents;
 nTotalKeyEvents++;
 fprintf(o,"\t%d\n",totalKeyEvents);

 fprintf(k,"-1\n");
 fclose(m);

 }
 }while(strcmp(user,"-1")!=0);

BUPT

 Acquisition and initial processing of input data from 80 volunteers (how typing on
the keyboard) 57

 In the algorithm written to analyze the data, for each key event it is used a
structure to retain the three information collected. The three pieces of information are
collected as integers.
 The first information obtained about a key event is the key code. Each key is
coded by an integer between 8 and 222. The second information collected about a
key event is an integer representing the captured event. The captured event can be

Key Down or Key Up. I coded the Key Down event with the number 0, and the Key
Up event with the number 1. The third information collected about a key event is the
time at which the Key Down or Key Up event occurred, taking the time of the computer
system expressed in milliseconds.
 The three information collected about a key event were retained in the code
with the help of a structure that contains 3 integers. In Code 4.3 is presented the

structure used in the program.

Code 4.3 The structure used to store information about a key event
typedef struct {
 int letter; //key code
 int event; //0 - key down, 1 - key up
 int timestamp; // time of event
}keyEvent;

Figure 4.7 shows how to store key events collected from users in a text file.

The first line of the file contains the name of the first user, and the following lines
contain information about each key event separately. On each line the 3 numbers are
divided by the SPACE key. After I have been written all the information about a user
to the file, I have added a line containing the number -1 in order to point out in this

way my step forward to the information about the next user. This format is repeated
for each user in the database.

Figure 4.7 The text file that stores key events information

BUPT

58 Free-text keystroke dynamics data set for continuous authentication

4.4 Analysis of keys collected from users

In order to analyze the collected data, each key event was examined, thus,
the text typed by each user was reconstructed. From the initial data containing the
key events included each of them 3 types of data: key code, event (down or up) and
timestamp, it is obtained information regarding to the total time as each key was
pressed (DU), Key Down event time, Key Up event time, Key Code, Key, Previous

Key, Next Key, the time between the previous key and the analyzed key, the time
between the previously mentioned key and the next key. The order of reconstruction
of the text typed by each user took into account the timestamps from each Key Down
Event. The total time each key (DU) was pressed was calculated according to the
following formula that I will present in the followings:

 DU = TimeStampKeyUpEvent – TimeStampKeyDownEvent (4.2)

The time between two keys (UD) was calculated as the difference between

Time of First Key Up Event and Time of Second Key Down Event as in the formula
below:

UD = TimeStampSecondKeyDownEvent – TimeStampFirstKeyUpEvent (4.3)

The keystroke time (DU) will always be a positive number, although the time

between two keys (UD) can also be a negative one. A user can press the second key
before picking up the first. This way FirstKeyUpEvent can come right after the
SecondKeyDownEvent happened.

4.5 Processing the input data so as to generate a user
pattern for each user

The structure that stores information about a key is presented below in the
Code 4.4 section.

Code 4.4 The structure used to store information about a key
typedef struct {
 int letter; //Key Code
 int DU, UDprev, UDnext; //DU = keystroke time, UDprev - previous flight

time, UDnext - next flight time
 int U,D; //U - Up timestamp, D - Down timestamp
 int letterPrev, letterNext; //Key Code of previous and next keys
 char key[20],keyPrev[20],keyNext[20]; //Key, Previous Key and Next Key
}onegraph;

 Information about a key is extracted from the key events row via the

constructOneGraphs function which is presented below in the Code 4.5 section.
 If the time intervals (DU or UD) exceed 999 milliseconds, they end up capped

at a higher value. If the time between 2 keys is negative and is less than -199, it will
be also capped at such a minimum value. These limitations are chosen due to the fact
that there are few cases in which these values are exceeded, for example when a user
gets up from the keyboard helps to longer the time between 2 keys (UD), but it is

BUPT

 Processing the input data so as to generate a user pattern for each user 59

irrelevant for this study. Also, if, for example, the SHIFT key is pressed and held while
other keys are pressed, the pressing time will exceed the 999 milliseconds interval,

but this additional data is not of a relevance for the present study as it can vary
greatly depending on the length of the word that is typed while the SHIFT key is
pressed.

Code 4.5 The function that extracts key information from key events
int constructOneGraphs(int n, char user[])
{

 int letter,event,timestamp;
 int i;
 n=0;
 do

 {
 fscanf(f,"%d",&letter);
 if(letter==-1)

 {
 break;
 }
 fscanf(f,"%d%d",&event,×tamp);
 if(event==1)
 {

 if(n!=0)
 {
 for(i=n-1;i>=0;i--)
 {
 if(oneGraphs[i].letter==letter)
 {
 oneGraphs[i].U=timestamp;

 while(oneGraphs[i].letter==oneGraphs[i-1].letter && oneGraphs[i-1].U==0)

 {
 deleteOneGraph(i-1,n);
 i--;
 n--;
 }
 break;

 }
 }
 }
 }
 if(event==0)
 {

 oneGraphs[n].letter=letter;
 keycodeToKey(oneGraphs[n].key,letter);
 oneGraphs[n].D=timestamp;
 oneGraphs[n].U=0;
 n++;

 }
 }while(letter!=-1);

 n--;
 for(i=0;i<n;i++) //construct oneGraphs

BUPT

60 Free-text keystroke dynamics data set for continuous authentication

 {
 oneGraphs[i].DU= oneGraphs[i].U - oneGraphs[i].D;

 if(oneGraphs[i].DU>999)
 oneGraphs[i].DU=999;
 if(oneGraphs[i].DU<0)
 {
 deleteOneGraph(i,n);
 n--;
 }

 if(i==0)
 {
 oneGraphs[i].UDprev=0;
 oneGraphs[i].letterPrev=0;

 strcpy(oneGraphs[i].keyPrev,"");
 oneGraphs[i].UDnext=oneGraphs[i+1].D-oneGraphs[i].U;
 oneGraphs[i].letterNext=oneGraphs[i+1].letter;

 strcpy(oneGraphs[i].keyNext,oneGraphs[i+1].key);
 }
 else
 {
 if(i==n-1)
 {

 oneGraphs[i].UDprev=oneGraphs[i].D-oneGraphs[i-1].U;
 oneGraphs[i].letterPrev=oneGraphs[i-1].letter;
 strcpy(oneGraphs[i].keyPrev,oneGraphs[i-1].key);
 oneGraphs[i].UDnext=0;
 oneGraphs[i].letterNext=0;
 strcpy(oneGraphs[i].keyNext,"");
 }

 else

 {
 oneGraphs[i].UDprev=oneGraphs[i].D-oneGraphs[i-1].U;
 oneGraphs[i].letterPrev=oneGraphs[i-1].letter;
 strcpy(oneGraphs[i].keyPrev,oneGraphs[i-1].key);
 oneGraphs[i].UDnext=oneGraphs[i+1].D-oneGraphs[i].U;
 oneGraphs[i].letterNext=oneGraphs[i+1].letter;

 strcpy(oneGraphs[i].keyNext,oneGraphs[i+1].key);
 }
 }
 if(oneGraphs[i].UDnext<-199)
 oneGraphs[i].UDnext=-199;
 if(oneGraphs[i].UDnext>999)

 oneGraphs[i].UDnext=999;
 if(oneGraphs[i].UDprev<-199)
 oneGraphs[i].UDprev=-199;
 if(oneGraphs[i].UDprev>999)
 oneGraphs[i].UDprev=999;

 }
 for(i=0;i<n;i++)

 {

BUPT

 Processing the input data so as to generate a user pattern for each user 61

 fprintf(g, "%s\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%s\t%d\t%s\n",
oneGraphs[i].key, oneGraphs[i].letter, oneGraphs[i].D, oneGraphs[i].U,

oneGraphs[i].DU, oneGraphs[i].UDprev, oneGraphs[i].UDnext,
oneGraphs[i].letterPrev, oneGraphs[i].keyPrev, oneGraphs[i].letterNext,
oneGraphs[i].keyNext);
 }
 return n;
}

After running the function presented above, it is created the text file that
contains data about each key pressed but also about the relationship with the
neighboring keys. The outline of the text file is shown in Figure 4.8. On the first line
of the file is the username, while on the following lines are the information about a

key separated by the TAB key as follows:
Key, KeyCode, TimeStampKeyDownEvent, TimeStampKeyUpEvent, DUtime,

UDtimePreviousKey, UDtimeNextKey, PreviousKeyCode, PreviousKey, NextKeyCode,

NextKey.

Figure 4.8 The file used to store information about a key

BUPT

62 Free-text keystroke dynamics data set for continuous authentication

4.6 Keys distribution analysis

Using information obtained from the 410.633 of key events the author rebuilt
the characters typed by each user at the keyboard. A total of 200,299 keys were
typed on the keyboard [IAP21a]. The number of key events is more than double the
keys because a certain key that has been held down for a long time, such as SHIFT
or BACKSPACE generates more than 2 key events. In this case, several Down Key

Events and only one Up Key Event will be generated, instead it is a single keystroke.
A total of 100 different keys were monitored. The frequency with which the

keys appeared in the text is shown in Figure 4.9 and Figure 4.10.

Figure 4.9 The frequency with which the first 50 keys appeared in the text

In the Figure 4.9 appear the first 50 keys, in ascending order of the Key Code,
and in the Figure 4.10 appear the other 50 keys, with higher Key Code.

Figure 4.10 The frequency with which the last 50 keys appeared in the text

The key that was pressed most often by users in the experiment was the
SPACE key. The SPACE key has been pressed 32,387 times in total. Of the total keys,

BUPT

 Keys distribution analysis 63

it represents the percentage of 16.17%. The next 3 frequently used keys are the
vowels A, E and I. A was used 20,965 times and represents 10.47% of the total keys.

E has been pressed 18,256 times and represents 9.11% of the total keys. The I key
has been pressed 15,994 times and represents 7.99% of the total keys. The
BACKSPACE key is also frequently pressed, which has been pressed 12,195 times.

In Table 4.3 are all the keys pressed by users in the order of their frequency
in the data set collected.

Table 4.3 The keys typed by users, in descending order of frequency

Key
Key
Code

Total
number

Perc
ent.

TOTAL 200299
Space

bar 32 32387 16,17

A 65 20965 10,47

E 69 18256 9,11

I 73 15994 7,99

Backsp

ace 8 12195 6,09

T 84 10292 5,14

R 82 10030 5,01

N 78 8750 4,37

U 85 8370 4,18

S 83 8210 4,1

C 67 7982 3,99

L 76 6087 3,04

O 79 5780 2,89

M 77 5556 2,77

P 80 5083 2,54

D 68 4982 2,49

, 188 2159 1,08

F 70 2108 1,05

Shift 16 2054 1,03

. 190 1848 0,92

V 86 1811 0,9

B 66 1449 0,72

Z 90 1328 0,66

G 71 1124 0,56

CapsLo
ck 20 988 0,49

[219 540 0,27

- 189 422 0,21

H 72 363 0,18

J 74 351 0,18

; 186 260 0,13

ArrowL

eft 37 230 0,11

0 48 220 0,11

X 88 212 0,11

' 222 200 0,1

Arrow

Right 39 188 0,09

] 221 162 0,08

1 49 156 0,08

\ 220 98 0,05

Ctrl 17 94 0,05

Enter 13 88 0,04

Alt 18 74 0,04

2 50 74 0,04

K 75 69 0,03

9 57 67 0,03

Y 89 60 0,03

/ 191 53 0,03

= 187 52 0,03

3 51 46 0,02

W 87 42 0,02

Delete 46 38 0,02

Arrow

Down 40 37 0,02

8 56 36 0,02

5 53 34 0,02

Arrow
Up 38 28 0,01

BUPT

64 Free-text keystroke dynamics data set for continuous authentication

7 55 28 0,01

(NumP
ad)- 109 28 0,01

6 54 27 0,01

-
Firefox 173 20 0,01

' 192 19 0,01

NumLo
ck 144 15 0,01

4 52 14 0,01

Tab 9 10 0,005

;
Firefox 59 10 0,005

Q 81 7 0,003

(NumP
ad)8 104 7 0,003

(NumP
ad)1 97 6 0,003

=

Firefox 61 4 0,002

(NumP
ad)7 103 4 0,002

(NumP
ad)/ 111 4 0,002

End 35 3 0,001

(NumP
ad)0 96 3 0,001

PageD

own 34 2 0,001

(NumP

ad)3 99 2 0,001

Home 36 1

0,000

5

(NumP
ad)5 101 1

0,000
5

(NumP
ad)6 102 1

0,000
5

(NumP
ad)9 105 1

0,000
5

 The most common 30 keys used by users are represented graphically in Figure

4.11. The first 30 keys represent 98.73% of the keys used.

Figure 4.11 Graphical representation of the most used keys

BUPT

 Keys distribution analysis 65

Out of 100 keys that were monitored were not used 23 keys. Table 4.4 shows
the keys that were not used in the dataset. Next to each key is their specific key-

code.

Table 4.4 The keys not used at all by users

 Key KeyCode Total number Percentage

1 Pause 19 0 0%

2 Esc 27 0 0%

3 PageUp 33 0 0%

4 PrintScrn 44 0 0%

5 Insert 45 0 0%

6 (NumPad)2 98 0 0%

7 (NumPad)4 100 0 0%

8 (NumPad)* 106 0 0%

9 (NumPad)+ 107 0 0%

10 (NumPad). 110 0 0%

11 F1 112 0 0%

12 F2 113 0 0%

13 F3 114 0 0%

14 F4 115 0 0%

15 F5 116 0 0%

16 F6 117 0 0%

17 F7 118 0 0%

18 F8 119 0 0%

19 F9 120 0 0%

20 F10 121 0 0%

21 F1 122 0 0%

22 F12 123 0 0%

23 ScrollLock 145 0 0%

 Analyzing studies carried out regarding the use of characters in Romanian,
the conclusion is that the database collects respect the general rules, this database

accurately reproduces the general characteristic of the Romanian language. According
to the study conducted in [LAI12], the most used consonants in Romanian are the
consonants R and T, while the least used are X and J, except for the letters K, Q, W
and Y, which are not specific to the language. The data set falls within these rules,
the most used consonants being T and R, and the least used consonants being J, X,

K, Q, W and Y.

The distribution of letters of the English alphabet (a-z) in the dataset is shown
in Table 4.5.

BUPT

66 Free-text keystroke dynamics data set for continuous authentication

Table 4.5 The letters, in descending order of frequency

 Key KeyCode
Total
number Percentage

 TOTAL 145261 72,52%

1 A 65 20965 14,43%

5 E 69 18256 12,57%

9 I 73 15994 11,01%

20 T 84 10292 7,09%

18 R 82 10030 6,9%

14 N 78 8750 6,02%

21 U 85 8370 5,76%

19 S 83 8210 5,65%

3 C 67 7982 5,49%

12 L 76 6087 4,19%

15 O 79 5780 3,98%

13 M 77 5556 3,82%

16 P 80 5083 3,5%

4 D 68 4982 3,43%

6 F 70 2108 1,45%

22 V 86 1811 1,25%

2 B 66 1449 1%

26 Z 90 1328 0,91%

7 G 71 1124 0,77%

8 H 72 363 0,25%

10 J 74 351 0,24%

24 X 88 212 0,15%

11 K 75 69 0,05%

25 Y 89 60 0,04%

23 W 87 42 0,03%

17 Q 81 7 0,005%

In Figure 4.12 is rendered graphically the distribution of letters used. It can

be seen in the graph that the first five letters as frequency, represent more than 50%
of the total letters. The letters A, E, I, T and R are the most frequently used in the
text by users. These are three vowels and two consonants. They are followed by five
consonants: S, C, N, L and M. The most common letters are the letters that a user

finds faster on the keyboard and have the shortest keystroke times.

BUPT

 Differences between users 67

Figure 4.12 Graphical representation of letters frequency

4.7 Differences between users

Each user has his own unique way to type text on the keyboard. This pattern
is specific and does not change during a writing session or short term. The typing
pattern may change over time or may differ if the same user uses different keyboards.
The differences between different users, on the other hand, can be analyzed even
visually, as for example in Figure 4.13. The graph shows the typing times for user0001

and user0002 from the database. The graph shows how the differences between the
typing times for user0001 are larger, both the average of the times and the standard

deviation. Most of the time intervals for user0001 are between 50 and 150
milliseconds. Instead, user0002 has a smaller difference between keystrokes. At
user0002 most of the time intervals are in the range of 50-75 milliseconds [IAP21a].

Figure 4.13 Typing pattern from two different users [IAP21a]

BUPT

68 Free-text keystroke dynamics data set for continuous authentication

 Figure 4.14 shows the first 1000 time intervals between two consecutive keys,
flight time (UD time). This time interval can also have negative values, while the

pressing time of a single key cannot have negative values. A negative value is taken
when the second key in a di-graph is pressed before the first key is raised. The figure
shows the times for three users: user0001, user0002 and user0003. We can see how
user0001 has the most negative time values, while user0003 has the most time values
close to 0. The time value can be close to 0 when the second key is pressed exactly
when the first he gets up. User0002 has the fewest negative time intervals, even their
average being the highest of the time averages of the 3 users analyzed. In the analysis

of the typing pattern, both the times when the keys are pressed and the times
between two consecutive keys are analyzed.

Figure 4.14 Time interval for flight time for three different users

 A user's profile in terms of testing can be achieved based on the most frequent

time intervals. Figure 4.15 graphically represents the modes of distribution of typing
time (DU time) for a number of 7 users: user0006, user0007, user0008, user0009,
user0010, user0011 and user0012. The time distribution is a normal distribution,
close to a Gaussian distribution or a Laplace distribution. In contrast, both the mean
and the standard deviation differ from user to user.

Figure 4.15 Key time distribution for seven different users

BUPT

 Conclusions 69

The distribution of time intervals between two consecutive keys is represented

for a total of five different users in Figure 4.16. It is observed for two users, user0056
and user0059, a maximum of number of key intervals at the value 0 on the graph.
Also, user0056 has the most negative intervals. A distribution of time intervals totally
different to the other four users has user0055. Times are distributed at higher values.
This means that user0055 is typing at a slower pace.

Figure 4.16 The distribution of time intervals between two consecutive keys

The differences between users can be seen from the graphs presented in this
chapter. These differences help us to form a pattern of each user and to be able to
identify it according to these particular characteristics.

4.8 Conclusions

This chapter was about the data set collected for the present research. The first
subchapter 4.1, Platform for collecting data about keyboard typing from 80
volunteers, presented the platform for collecting data about keyboard typing and how
data was collected from 80 users. After presenting the platform with the help of which

data were collected from users, it proceeded to the analysis of these collected data
and presented the particular characteristics, in subchapters 4.2 Analysis of time and
key events collected from users, 4.3 Acquisition and initial processing of input data
from 80 volunteers (how typing on the keyboard) and 4.4 Analysis of keys collected
from users. It showed how they were processed using an algorithm written in the C
programming language. The subchapter 4.5, Processing the input data so as to

generate a user pattern for each user, presented the structures that store user typing

data. The subchapter 4.6, Keys distribution analysis, presented the analysis of the
collected keys and the subchapter 4.7, Differences between users, graphically

BUPT

70 Free-text keystroke dynamics data set for continuous authentication

displayed the typing pattern for different users. This chapter addressed the validation
of O1 from the first chapter of this thesis.

The next chapter presents the free-text continuous authentication algorithm
based on keystroke dynamics developed for processing the data obtained from the
users and presented in this chapter.

BUPT

5 ALGORITHM DEVELOPMENT FOR KEYSTROKE
DYNAMICS AUTHENTICATION

The previous chapter was about the data set collected for the present

research. It presented the platform for collecting data about keyboard typing, how
data was collected from 80 users and the data analysis.

In this chapter is presented the authentication algorithm based on keystroke
dynamics. First of all, the algorithm developed for processing the data obtained from
the users is presented. The algorithm simulates user authentication based on
keystroke dynamics and measures the obtained performances. In the chapter it is

presented the architecture of the algorithm in the subchapter 5.1 The architecture of
the authentication algorithm and the structure of the algorithm in the subchapter 5.2
The structure of the authentication algorithm. The development of this algorithm is
established by O2.

5.1 The architecture of the authentication algorithm

The architecture of the keystroke dynamic authentication system has two
important parts. The first is the system training phase part, part in which users enroll
in the system providing data on how to type. In this phase a pattern is created for
each user and is stored in the database to be used in the continuous authentication

phase. The second part is the continuous authentication phase. In this phase the
system continuously verifies the users connected with a valid username and
password. Throughout the time a user is logged in to the account, the system takes
data from it on the typing mode and continuously compares the resulting pattern with
the pattern in the database. As long as there is acceptable similarity between the two
patterns the user remains logged in to the system. When the system finds that the
two patterns are no longer similar, the one taken from the user logged in to the

account and the one from the database, the system generates an alarm signal and
the user is removed from the account. He can re-enter the account by re-entering the
username and password [IAP21a]. The architecture of the keystroke dynamic
authentication system described in this phrase is visually represented in Figure 5.1,
the scheme adapted by the author starting from the figure made in the paper [PIL15].

BUPT

72 Algorithm development for keystroke dynamics authentication

Figure 5.1 The architecture of the keystroke dynamics authentication system [IAP21a]

5.2 The structure of the authentication algorithm

The developed algorithm is presented in Appendix 1 to this thesis. The

collection and initial processing of input data are the first steps taken in order to obtain
key events of each user. This data represents the input data for the continuous

authentication algorithm based on keystroke dynamics. Once the sample size is set,
the next step is to divide the user data into key event sequences. The algorithm

transforms key events into information about keys and information about diagrams,
and then forms the time vectors needed to calculate distances. After the steps
described above have been completed, the distances between the vectors are
calculated, in order to establish the similarity between two users. Four types of
distances are used: Euclidean distance, Manhattan distance, R distance and A

distance. With these distances calculated for each user in the database, we proceed
to simulate the authentication in the system, in turn by each user in the database.
Following the simulation of the authentication in the system, four performance
indicators of the algorithm are generated: False Acceptance Rate (FAR), False
Rejection Rate (FRR), True Acceptance Rate (TAR) and True Rejection Rate (TRR).
Based on these, the Equal Error Rate (EER) can be calculated, the main indicator of

the performance of the algorithms used in this thesis. Also, to view the performances,
two graphs are generated: FAR and FRR chart and ROC curve.

In the Figure 5.2 are presented the structure of the authentication algorithm
based on keystroke dynamics.

BUPT

 The structure of the authentication algorithm 73

Collecting data from users

Initial data processing to

obtain key events Setting the size of a sample

Dividing data from users into

sequences of the established size

Transforming key events into keys informations
and di-graphs informations (user patterns)

Formation of time vectors for each data

sequence

Calculation of

Euclidean
distances

Calculation of
Manhattan
distances

Calculation of

R distances

Calculation of

A distances

Simulation of authentication based on

distances calculated between users

Generate False
Rejection Rate

(FRR)

Generate False
Acceptance
Rate (FAR)

Generate True
Acceptance Rate

(TAR)

Generate True
Rejection Rate

(TRR)

Calculate the
Equal Error
Rate (EER)

Generate the
FAR-FRR

chart

Generate
the

ROC curve

Figure 5.2 The structure of the authentication algorithm based on keystroke dynamics

BUPT

74 Algorithm development for keystroke dynamics authentication

5.3 Conclusions

In this chapter was presented the authentication algorithm based on
keystroke dynamics. First of all, the algorithm developed for processing the data
obtained from the users was presented. The algorithm simulates user authentication
based on keystroke dynamics and measures the obtained performances. In this

chapter was presented the architecture of the algorithm, in the subchapter 5.1 The
architecture of the authentication algorithm, and the structure of the algorithm, in the
subchapter 5.2 The structure of the authentication algorithm. The development of this
algorithm was established by O2.

The next chapter, Chapter 6 - Experiments and results, will presents the

simulation with the algorithm presented in this chapter various possibilities of
accessing accounts by users who provided the data for research purposes. The next

chapter will present a series of experiments that are performed that aim to obtain
better results in terms of the degree of success with which authentication based on
keystroke dynamics is done.

BUPT

6 EXPERIMENTS AND RESULTS - SIMULATION
OF SYSTEM AUTHENTICATION BY GENUINE

USERS OR IMPOSTORS

In the previous chapter was presented the authentication algorithm based on
keystroke dynamics, its architecture and its structure. If in the previous chapters was
presented the path validation O1 and O2, in this chapter it is followed the validation

of the other two objectives of the present thesis: O3 and O4.
In this chapter it is presented a series of experiments performed to measure

the performance of the written algorithm for the purpose of this research and to
analyze the results obtained. Gradually, experiments with the keystroke time of a
single key, in the subchapter 6.1, and experiments with di-graphs, in the subchapter
6.2, are presented. Both in the analysis of the characteristics with a single key and
with a di-graph, the degree of Equal Error Rate (EER) is calculated in order to

appreciate the performances of the algorithms. The results are presented in the case
of experiments using Euclidean distance (in the subchapters 6.1.1 and 6.2.3),
Manhattan distance (in the subchapters 6.1.2 and 6.2.4), R distance (in the
subchapter 6.1.3) and A distance (in the subchapters 6.1.4 and 6.2.5). The chapter
also investigates, in the subchapter 6.1.5 The sample size, the differences in

performance if the pattern is built for each user with various sample sizes, starting

from 200 key events / pattern and up to 3000 key events / pattern. At the end of
the chapter, following all the experiments performed and presented, the author
proposes, in the subchapter 6.4, Proposing new metrics for calculating distances
between users, the modification of two metrics obtaining new metrics for calculating
the distances between two vectors that have higher performances than the classical
calculation methods. For the two new metrics, the performances obtained in terms of
Equal Error Rate (EER) are presented. By proposing these metrics, O3 is validated. It

also proposes, in the subchapter 6.5, Proposed user pattern, a structure for retaining
a user's pattern, a structure that takes up small memory and requires little time to
perform all the necessary calculations in the algorithms. By proposing the user
pattern, O4 is validated. In the end of the Chapter, in the subchapter 6.6 Comparison
of the related works, the performances obtained in the present research are compared
with those obtained by other authors in their researches.

6.1 Experiments with the keystroke time of a single key

Within the scientific research for this thesis, the author has created a database
with a number of 410,633 key events from 80 users.

BUPT

76 Experiments and results - Simulation of system authentication by
genuine users or impostors

In the first experiment it was divided the data obtained from 80 users into
sets of 1000 key events, obtaining 370 data sequences. From each set it was made a
pattern that indicates the calculations of the average keystroke times, made for each
key separately. It was taking into account only the keys that contain a letter (a-z),
thus obtained for each user a vector of 27 real numbers, each number representing
the average of the pressing times of that letter [IAP21a].

6.1.1 Experiments with Euclidian distance

To calculate the similarities between two vectors (two distinct users or two
vectors obtained from the text of the same user) it was applied the calculation of the

Euclidean distance. In this way it was acquired values between 0 (for the same vector,
as expected) and 642.36, the largest distance calculated between the vectors. Under
these conditions, it was simulated a number of 136,161 attempts to access the 370
accounts by the other 369 users.
 Under these circumstances, it was considered that the user has successfully
accessed the account if the Euclidean distance (calculated between the vector
resulting from the user's key events and the vector resulting from the key events of

the account to be accessed) was less than a certain threshold. In case it was higher
than the certain threshold, it was considered that he failed to access the account.
Code 6.1 shows the function that calculate Euclidian distance.

Code 6.1 calculateEuclidianDistance() function
int calculateEuclidianDistances()

{
 int i,j,k;
 float dist;
 for(i=0;i<nPatterns;i++)

 {
 for(j=i;j<nPatterns;j++)
 {

 dist=0;
 for(k=65;k<=90;k++)
 if(patterns[i].distributions[k].mean!=0 &&
patterns[j].distributions[k].mean!=0)
 {
 dist=dist+pow(patterns[i].distributions[k].mean-
patterns[j].distributions[k].mean, 2);

 }
 dist=sqrt(dist);
 patterns[i].distance[j]=dist;
 patterns[j].distance[i]=dist;
 }
 }

 return 1;
}

In the end of the first experiment, it was calculated the performance indicators

established in the literature: False Acceptance Rate (FAR), False Rejection Rate (FRR),
TAR (True Acceptance Rate), TRR (True Rejection Rate), ERR (Equal Error Rate). So

BUPT

 Experiments with the keystroke time of a single key 77

as to calculate these indicators, the value of the threshold below which the account
cannot be accessed went from 0 to 643. The results are shown in Figure 6.1 and

Figure 6.2.
The ERR (Equal Error Rate) value calculated for this experiment is 17.5%, at

a limit imposed at a maximum distance of 76. The ERR value is at the intersection,
on the graph of FAR and FRR.

Figure 6.1 FAR and FRR for Euclidian distance

To calculate FAR and FRR values was used function calculateFARandFRR()

from Code 6.2.

Code 6.2 calculateFARandFRR() function

int calculateFARandFRR()
{
 int i,j,k, sw=0, iERR=0;

 float ERR=0, FAR=0, FRR=0, TAR=0, TRR=0, TA=0, TR=0, FA=0, FR=0;
 for(i=1;i<1000;i++)
 {
 TA=0, TR=0, FA=0, FR=0;
 for(j=0;j<nPatterns;j++)
 {
 for(k=j+1;k<nPatterns;k++)

 {
 if(patterns[j].user[4]==patterns[k].user[4] &&
patterns[j].user[5]==patterns[k].user[5] &&
patterns[j].user[6]==patterns[k].user[6] &&
patterns[j].user[7]==patterns[k].user[7])
 {
 if(patterns[j].distance[k]<i)

 TA++;
 else
 FR++;
 }

BUPT

78 Experiments and results - Simulation of system authentication by
genuine users or impostors

 else
 {
 if(patterns[j].distance[k]<i)
 FA++;
 else
 TR++;

 }
 }
 }
 FAR=FA/(FA+TR)*100;
 FRR=FR/(FR+TA)*100;
 TAR=TA/(TA+FR)*100;

 TRR=TR/(TR+FA)*100;

 if(FAR>FRR && sw==0)
 {
 ERR=FAR;
 iERR=i;
 sw=1;
 }

 printf("%d\t%.2f\t%.2f\t%.2f\t%.2f\n",i,FAR,FRR,TAR,TRR);
 }
 printf("ERR= %.2f in %d",ERR, iERR);
 return 1;
}

In the Figure 6.2 is the ROC curve resulted for Euclidian distance algorithm.

It shows the relation between True Acceptance Rate (TAR) and False Acceptance Rate
(FAR).

Figure 6.2 ROC Curve for Euclidian distance

BUPT

 Experiments with the keystroke time of a single key 79

6.1.2 Experiments with Manhattan distance

In this section, to calculate the similarities between two vectors (two distinct

users or two vectors obtained from the text of the same user) it was applied the
calculation of the Manhattan distance. In this way it was acquired values between 0
(for the same vector, as expected) and the largest distance calculated between the
vectors. Under these conditions, it was simulated a number of 136,161 attempts to

access the 370 accounts by the other 369 users.
 Under these circumstances, it was considered that the user has successfully
accessed the account if the Manhattan distance (calculated between the vector
resulting from the user's key events and the vector resulting from the key events of
the account to be accessed) was less than a certain threshold. In case it was higher

than the certain threshold, it was considered that he failed to access the account.
Code 6.3 shows the function that calculate Manhattan distance.

Code 6.3 The function that calculates the Manhattan distances
float calculateManhattanDistances()
{
 int i,j,k;
 float dist,max=0;

 for(i=0;i<nPatterns;i++)
 {
 for(j=i;j<nPatterns;j++)
 {
 dist=0;
 for(k=65;k<=90;k++)
 if(patterns[i].distributions[k].mean!=0 &&

patterns[j].distributions[k].mean!=0)
 {

 dist=dist+fabs(patterns[i].distributions[k].mean-
patterns[j].distributions[k].mean);
 }
 patterns[i].distance[j]=dist;
 patterns[j].distance[i]=dist;

 if(max<dist)
 max=dist;
 }
 }
 return max;
}

It was calculated the performance indicators established in the literature:
False Acceptance Rate (FAR), False Rejection Rate (FRR), TAR (True Acceptance
Rate), TRR (True Rejection Rate), ERR (Equal Error Rate). So as to calculate these
indicators, the value of the threshold below which the account cannot be accessed
went from 0 to 643. The results are shown in Figure 6.3 and Figure 6.4.

BUPT

80 Experiments and results - Simulation of system authentication by
genuine users or impostors

Figure 6.3 FAR and FRR for Manhattan distance

In the Figure 6.4 is the ROC curve resulted for Euclidian distance algorithm.

It shows the relation between True Acceptance Rate (TAR) and False Acceptance Rate
(FAR).

Figure 6.4 ROC curve Manhattan distance

BUPT

 Experiments with the keystroke time of a single key 81

The ERR (Equal Error Rate) value calculated for this experiment was 13.78%,
at a limit imposed at a maximum Manhattan distance of 246. The ERR value was at

the intersection, on the graph, of FAR and FRR.
In the Figure 6.5 are the ROC curves for Euclidian (green) and Manhattan

(blue) distances

Figure 6.5 ROC curves for Euclidian (green) and Manhattan (blue) distances

6.1.3 Experiments with R distance

In this section, to calculate the similarities between two vectors (two distinct
users or two vectors obtained from the text of the same user) it was applied the
calculation of the R distance. In this way it was acquired values between 0 (for the

same vector, as expected) and the largest distance calculated between the vectors.
Under these conditions, it was simulated a number of 136,161 attempts to access the
370 accounts by the other 369 users.
 Under these circumstances, it was considered that the user has successfully
accessed the account if the R distance (calculated between the vector resulting from
the user's key events and the vector resulting from the key events of the account to
be accessed) was less than a certain threshold. In case it was higher than the certain

threshold, it was considered that he failed to access the account. Code 6.4 shows the
function that calculate R distance.

Code 6.4 The function that calculates the R distances
float calculateRdistances()
{

 int i,j,k,k2,sw;

 float dist,max=0;
 distribution aux;

 for(i=0;i<nPatterns;i++)

BUPT

82 Experiments and results - Simulation of system authentication by
genuine users or impostors

 {
 for(k=0;k<223;k++)
 {
 patterns[i].distributions[k].keyCode=k;
 }
 patternsR[i]=patterns[i];

 sw=0;
 while(sw==0)
 {
 sw=1;
 for(j=65;j<=90;j++)
 {

 if(patternsR[i].distributions[j].mean < patternsR[i].distributions[j+1].mean)

 {
 aux=patternsR[i].distributions[j];
 patternsR[i].distributions[j]=patternsR[i].distributions[j+1];
 patternsR[i].distributions[j+1]=aux;
 sw=0;
 }
 }

 }
 }

 for(i=0;i<nPatterns;i++)
 {
 for(j=i;j<nPatterns;j++)

 {
 dist=0;
 for(k=65;k<=90;k++)

 for(k2=65;k2<=90;k2++)

if(patternsR[i].distributions[k].keyCode==patternsR[j].distributions[k2].keyCode)
 {

 if(patternsR[i].distributions[k].mean!=0 &&
patterns[j].distributions[k2].mean!=0)
 {
 dist=dist+abs(k2-k);
 }
 break;
 }

 patternsR[i].distance[j]=dist;
 patternsR[j].distance[i]=dist;
 if(max<dist)
 max=dist;
 }
 }

 return max;

}
It was calculated the performance indicators established in the literature:

False Acceptance Rate (FAR), False Rejection Rate (FRR), TAR (True Acceptance
Rate), TRR (True Rejection Rate), ERR (Equal Error Rate). So as to calculate these

BUPT

 Experiments with the keystroke time of a single key 83

indicators, the value of the threshold below which the account cannot be accessed
went from 0 to 643. The results are shown in Figure 6.6 and Figure 6.7.

Figure 6.6 FAR and FRR for R distance

Figure 6.7 ROC curve for R distnace

The ERR (Equal Error Rate) value calculated for this experiment is 30.32%,
at a limit imposed at the maximum R distance of 83. The ERR value is at the

intersection, on the graph, of FAR and FRR.
In the Figure 6.8 are the ROC curves for Euclidian (green), Manhattan (blue)

and R (red) distances.

BUPT

84 Experiments and results - Simulation of system authentication by
genuine users or impostors

Figure 6.8 ROC curves for Euclidian (green), Manhattan (blue) and R (red) distances

6.1.4 Experiments with A distance

In this section, to calculate the similarities between two vectors (two distinct
users or two vectors obtained from the text of the same user) it was applied the
calculation of the A distance. In this way it was acquired values between 0 (for the

same vector, as expected) and the largest distance calculated between the vectors.
Under these conditions, it was simulated a number of 136,161 attempts to access the
370 accounts by the other 369 users.
 Under these circumstances, it was considered that the user has successfully

accessed the account if the A distance (calculated between the vector resulting from
the user's key events and the vector resulting from the key events of the account to
be accessed) was less than a certain threshold. In case it was higher than the certain

threshold, it was considered that he failed to access the account. Code 6.5 shows the
function that calculate A distance.

Code 6.5 The function that calculates the A distances
float calculateADistances()
{

 int i,j,k;
 float dist,max=0, t=1.25;
 for(i=0;i<nPatterns;i++)
 {
 for(j=i;j<nPatterns;j++)
 {
 dist=0;

 for(k=65;k<=90;k++)
 if(patterns[i].distributions[k].mean!=0 &&

patterns[j].distributions[k].mean!=0)
 {
 if(patterns[i].distributions[k].mean > patterns[j].distributions[k].mean)
 {

BUPT

 Experiments with the keystroke time of a single key 85

 if(patterns[i].distributions[k].mean/patterns[j].distributions[k].mean < t)
 dist++;

 }
 else
 {
 if(patterns[j].distributions[k].mean/patterns[i].distributions[k].mean < t)
 dist++;
 }
 }

 dist=1-dist/27;
 patterns[i].distance[j]=dist;
 patterns[j].distance[i]=dist;
 if(max<dist)

 max=dist;
 }
 }

 return max;
}

It was calculated the performance indicators established in the literature:
False Acceptance Rate (FAR), False Rejection Rate (FRR), TAR (True Acceptance
Rate), TRR (True Rejection Rate), ERR (Equal Error Rate). So as to calculate these

indicators, the value of the threshold below which the account cannot be accessed
went from 0 to 643. The results are shown in Figure 6.9 and Figure 6.10.

Figure 6.9 FAR and FRR for A distance

BUPT

86 Experiments and results - Simulation of system authentication by
genuine users or impostors

Figure 6.10 ROC curve for A distance

The ERR (Equal Error Rate) value calculated for this experiment is 13.90%,

at a limit imposed at the maximum A distance of 0,41. The ERR value is at the
intersection, on the graph, of FAR and FRR.

In the Figure 6.11 are the ROC curves for Euclidian (green), Manhattan (blue)

and R (red) and A (yellow) distances.

Figure 6.11 ROC curves for Euclidian (green), Manhattan (blue), R (red) and A (yellow)

distances

It depends on what value we choose for the constant t. The authors of [KIL09]
concluded that the best value for t is 1.25. We performed the first test with t = 1.25
according to the conclusions of the study that proposes A distance. After gradually
changing the coefficient t, on the interval 1-3, with a step of 0.01, a more efficient

BUPT

 Experiments with the keystroke time of a single key 87

value for t was identified in point 1.13. At this value of t, the calculated value of EER
is minimal, of 11.85%. In Table 6.1 are the values of the EER at each increment of

the coefficient t. Above 1.5, the higher the coefficient t, the higher the EER rate.

Table 6.1 EER (Equal Error Rate) value at different value of t coefficient

t
coefficient EER

1,01 29,73

1,02 21,93

1,03 18,31

1,04 15,86

1,05 14,07

1,06 20,03

1,07 17,73

1,08 15,74

1,09 13,86

1,1 12,25

1,11 15,66

1,12 13,68

1,13 11,83

1,14 14,57

1,15 12,65

1,16 15,12

1,17 12,79

1,18 15,16

1,19 12,64

1,2 14,84

1,21 16,9

1,22 13,8

1,23 15,7

1,24 17,64

1,25 13,9

1,26 15,71

1,27 17,56

1,28 19,35

1,29 21,18

1,3 16,23

1,31 17,81

1,32 19,47

1,33 21,07

1,34 22,69

1,35 24,33

1,36 25,95

1,37 27,55

1,38 29,1

1,39 21,39

1,4 22,74

1,41 24,08

1,42 25,36

1,43 26,72

1,44 28,17

1,45 29,48

1,46 30,87

1,47 32,16

1,48 33,5

1,49 34,74

 In Figure 6.12 is a graph that contain the EER (Equal Error Rate) value at

different value of t coefficient.

Figure 6.12 EER (Equal Error Rate) value at differrent value of t coefficient

BUPT

88 Experiments and results - Simulation of system authentication by
genuine users or impostors

In the Figure 5.13 is ROC curve for A distance with the best t coefficient,
t=1.13.

Figure 6.13 ROC curve for the best t coefficient

In the Figure 6.14 are the ROC curves for Euclidian (green), Manhattan (blue)
and R (red), A with t=1.25 (yellow), and A with t=1.13 (black) distances.

Figure 6.14 ROC curves for Euclidian (green), Manhattan (blue), R (red), A (t=1.25) (yellow)

and A (t=1.13) (black) distances

BUPT

 Experiments with the keystroke time of a single key 89

6.1.5 The sample size

With the algorithm presented in Code 6.6, the data obtained from the 80 uses

could be divided into samples of different sizes in order to test the performances of
the algorithms at various sample sizes.

Code 6.6 The algorithm that make the sample
int main(void)

{
 int i,j;
 char c,user[20], fileUser[20], line[30], localKeyEventsList[150000];

 f=fopen("keyEventsListAllUsers.txt","r");

 g=fopen("keyEventsListSegmentationAllUser.txt","w");

 do{
 fscanf(f,"%s",user);
 if(strcmp(user,"-1")==0)
 break;
 fscanf(f,"%c",&c);
 if(user[0]=='u' && user[1]=='s' && user[2]=='e' && user[3]=='r')

 {
 j=1;
 do
 {
 strcpy(localKeyEventsList,"");
 for(i=0;i<LENGTH;i++)
 {

 fgets(line,30,f);
 if(strcmp(line,"-1\n")==0)

 break;
 strcat(localKeyEventsList,line);
 }
 if(i==LENGTH)
 {

 if(j<10)
 {
 fprintf(g,"%s.0%d\n%s-1\n",user,j,localKeyEventsList);
 printf("%s.0%d\n",user,j);
 }
 else

 {
 fprintf(g,"%s.%d\n%s-1\n",user,j,localKeyEventsList);
 printf("%s.%d\n",user,j);
 }
 }
 else

 {

 break;
 }
 j++;

BUPT

90 Experiments and results - Simulation of system authentication by
genuine users or impostors

 }while(i==LENGTH);
 }
 }while(strcmp(user,"-1")!=0);
 fprintf(g,"-1");
 return 0;

}
 The first tests performed and presented up to this paragraph were performed
at a sample size length of 500 keys, ie at 1000 key events. Figure 6.15 shows the
results obtained according to the Equal Error Rate (EER). It is observed that the
performance of the algorithms increases with the increase of the sample size length
from which results pattern for the user [IAP21b].

Figure 6.15 EER decreases as the sample size is larger [IAP21b]

 In the case of all distances calculated in the experiment, a trend of increasing
performance is seen in direct proportion to the increase of sample size. EER values
are recorded in Table 5.2. These vary from 39.68%, in the case of R distance at 200
key events (100 keys), to 5.83% in the case of A distance, t = 1.13 and 3000 key
events (1500 keys).

Table 6.2 EER values depending on the sample size and distance used

Sample size
(key
events)

200 500 1000 1600 2000 2600 3000

Euclidian
distance

24,53 20,31 17,5 17,86 17,31 15,59 9,59

Manhattan
distance

22,03 17,52 13,78 14,17 14,5 11,71 9,16

R distance 39,68 36,01 30,32 29,89 25,37 29,48 36

A distance
(t=1,25)

22,12 20,68 13,9 15,24 12,11 14,42 12,02

A distance
(t=1,13)

24,31 15,2 11,83 12,06 9,07 7,28 5,83

BUPT

 Experiments with the keystroke time of a single key 91

Next, tests will be performed at a sample length of 2000 key events. That

means a sample size of 1000 keys.
Tests have been done to see if ERR improves with the modification of various

variables. Instead of calculating the distances according to the average DU on each
letter, the same distances were calculated but according to the average of standard
deviations for each letter. The results were much poorer. Likewise, the results
remained weaker when the sum of the 2 distances was made, the first based on the
average of the DU times and the second based on the average of the standard

deviations.
Another set of tests were done using the UD times of numbers and letters.

Previous tests used only the 27 letters of the English alphabet, omitting the other
characters. The success rate of the tests in this case was lower than if only the letters

of the alphabet were used. In contrast, the difference was not as large as if the
standard deviation were used as a benchmark instead of the mean time.

The results obtained were weaker even if the times recorded on all system

keys were used, and not only on the letters of the English alphabet.
It was noticed that different results are obtained depending on the number of

characters analyzed when calculating the distances. In the following tests, the number
of letters on which the analysis was performed was further limited. The 5 most used
letters were selected first. The 5 most used letters are: A, E, I, T and R. In these
cases, there have been improvements to the methods using Euclidian Distance and

Manhattan Distance, instead of worsening the results for A Distance.
The 10 most used letters were then selected, according to statistics. The 10

most used letters are: A, E, I, T, R, N, U, S, C and L. In this case much better results
are obtained for Euclidian Distance and Manhattan Distance.

The most used 15 letters are: A, E, I, T, R, N, U, S, C, L, O, M, P, D and F. In
this case much better results are obtained for Euclidian Distance if Manhattan
Distance. Instead, for Manhattan Distance, the best EER rate was obtained at this

sample size. Figure 6.16 shows the FAR and FRR graph.

Figure 6.16 FAR and FRR for Manhattan distance for the first 15 letters

BUPT

92 Experiments and results - Simulation of system authentication by
genuine users or impostors

It can be seen on the graph in Figure 6.16 that the EER has a value of 7.74%,
the lowest obtained in this experiment at this sample size. And in the generated curve
ROC graph it is observed that the algorithm is more efficient in this case. Figure 6.17
generates the ROC curve graph for Manhattan Distance that takes into account the
15 most used letters.

Figure 6.17 ROC curve for Manhattan distance for the first 15 letters

 Overlapping the ROC curve chart over the other ROC curves, it can be seen
that it has the best performance in all points on the chart. Figure 6.18 shows the

performance of these parameters.

Figure 6.18 ROC curves with different distances

BUPT

 Experiments with the keystroke time of a single key 93

 Another approach was to analyze standard deviation on each key, for each
user. The lower the standard deviation, the more it means that the user types the

letter in the same way. In order to have an image on the entire database, standard
deviation of all users was made. This time, the letters that fall into the lowest standard
deviation have been selected. In Table 6.3 are the average values of the standard
deviation on each letter.

Table 6.3 Standard deviation for each letter

Key Standard deviation

I 1,03

E 1,12

A 1,15

U 1,27

T 1,3

N 1,33

O 1,42

L 1,57

M 1,75

R 1,75

S 1,86

P 1,9

C 2,24

D 2,37

G 3,23

V 3,33

F 3,45

B 4,09

Z 5,32

H 5,68

J 6,27

X 7,57

K 8,39

Y 8,9

Q 12,37

W 12,53

 By modifying the test parameters, the EER performances presented in Table

6.4 were obtained. Analyzing the data from the two tables, it was concluded that the
best results can be obtained either with the algorithm using A Distance, with t = 1.13,

and comparing the times obtained for all keys collected, or the algorithm using
Manhattan Distance or Euclidean with the most common 14 letters.

Table 6.4 EER values in different conditions

 All Keys Only Letters (a-z)
Only Letters (a-z)
and digits (0-9)

Euclidian distance 25,82% 18,53% 17,31%

Manhattan distance 17,33% 14,28% 14,50%

A disctance (t=1,25) 11,67% 12,11% 13,85%

A distance (t=1,13) 7,47% 9,07% 9,85%

 Table 6.5 presents the test results for the 4 algorithms used, on the first line
of the table, in various scenarios. This time the tests were done only on the keys

which are letters (a-z), omitting the other keys (signs, spaces, numbers, etc.).
Significant improvements are observed when only certain letters are selected. At the
first test, all 27 letters were included in the test.

BUPT

94 Experiments and results - Simulation of system authentication by
genuine users or impostors

A first series of tests were made for the most used in keys by users. There is
a major improvement in the EER indicator for Euclidean Distance and Manhattan
Distance when only the first 14 letters are used (A, E, I, T, R, N, U, S, C, L, O, M, P
and D). The best performance was obtained at the EER value of 6.71%.

The second series of tests were done for letters that have the smallest
standard deviation.

There is a major improvement in the EER indicator for Euclidean Distance and
Manhattan Distance, as in the first test, when only the first 14 letters are used. The
best performance was obtained at the EER value of 6.80%.

Table 6.5 EER values in different conditions

Euclidian
distance

Manhattan
distance

A disctance
(t=1,25)

A distance
(t=1,13)

All Letters (a-z) 18,53% 14,28% 12,11% 9,07%

The most frequent keys
(first 15 keys)

8,1% 7,74% 13,26% 11,2%

The most frequent
keys(14)

6,71% 7,13% 14,37% 8,57%

The most frequent keys(13) 8,03% 7,78% 11,08% 10,93%

The most frequent keys(12) 7,85% 7,67% 8,64% 7,70%

The most frequent keys(11) 7,84% 8,18% 9,53% 9,10%

The most frequent keys(10) 8,14% 8,2% 10,01% 10,86%

The most frequent keys(9) 8,77% 8,64% 11,21% 13,73%

The most frequent keys(8) 9,10% 9,30% 12,54% 9,40%

The most frequent keys(5) 11,24% 9,92% 25,41% 23,85%

The smallest standard
deviation keys(first 15
keys)

8,9% 7,66% 12,54% 12,24%

The smallest standard
deviation keys (14)

6,80% 7,20% 15,09% 9,90%

The smallest standard
deviation keys (13)

8,15% 8,67% 8,43% 7,47%

The smallest standard
deviation keys (12)

8,44% 8,66% 9,44% 9,70%

The smallest standard
deviation keys (10)

10,07% 8,77% 12,18% 8,48%

The smallest standard
deviation keys (5)

8,49% 9,03% 17,68% 10,03%

BUPT

 Experiments with di-graphs 95

 Figure 6.19 shows graphically the values obtained from the tests, presented
in the tables above.

Figure 6.19 EER values in different conditions

6.2 Experiments with di-graphs

After the analysis performed on the individual characters of the data set and

obtaining the presented results, the formation and analysis of di-graphs was

continued. Di-graphs are pairs of two consecutive characters. The characteristics of a

di-graph are: the total time of the di graph (DUtotal), the time of pressing the first
key (DU1), the time of pressing the key 2 (DU2), the time between the two keys
(UD), the time between the two down events (DD) and the time between the two up
events (UU). The structure of a di-graph is presented in Code 6.7.

Code 6.7 A di-graph struct
typedef struct {

 int letter1, letter2;
 float DUtotal, DU1, DU2, DD, UU, UD;
 char key1[20],key2[20];
 char word[50];
}digraph;
digraph diGraphs[MAX];

In order to transform the information held up to this point into information
relevant to di-graph, the constructDiGraphs (n, user) function presented in Code 6.8

was used.

Code 6.8 The function that builds the di-graph
int constructDiGraphs(int n, char user[])

BUPT

96 Experiments and results - Simulation of system authentication by
genuine users or impostors

{
 int i;
 for(i=0;i<n-1;i++) //construct diGraphs
 {
 diGraphs[i].letter1=oneGraphs[i].letter;

 diGraphs[i].letter2=oneGraphs[i+1].letter;
 strcpy(diGraphs[i].key1, oneGraphs[i].key);
 strcpy(diGraphs[i].key2, oneGraphs[i+1].key);
 diGraphs[i].DU1=oneGraphs[i].DU;
 diGraphs[i].DU2=oneGraphs[i+1].DU;
 diGraphs[i].UD=oneGraphs[i+1].UDprev;

 diGraphs[i].DD=diGraphs[i].UD+diGraphs[i].DU1;

 diGraphs[i].UU=diGraphs[i].UD+diGraphs[i].DU2;
 diGraphs[i].DUtotal=diGraphs[i].DU1+diGraphs[i].UD+diGraphs[i].DU2;
 constructWord(diGraphs[i].word,i,2);
fprintf(h,"%s\t%s\t%d\t%d\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%s\n",diGraphs
[i].key1,diGraphs[i].key2,diGraphs[i].letter1,diGraphs[i].letter2,diGraphs[i].DU1,diG
raphs[i].DU2,diGraphs[i].UD,diGraphs[i].DD,diGraphs[i].UU,diGraphs[i].DUtotal,diGr
aphs[i].word);

 }
 return 1;
}

Di-graph analysis takes into account the order in which characters are typed
by users. From the database collected from users, a total number of 200,227 di-

graphs could be created and analyzed. The total number of unique di-graphs is 1,530.
This means that there are only 1,530 unique 2-character combinations. The most
used di-graphs in the text are presented in Table 6.6 These are di-graphs that appear

in texts taken from users more than 1000 times each.

Table 6.6 The most used di-graphs

No.
Key
Code 1

Key
Code 2 Key 1 Key 2

No. of
aparitions

Average of
DUtotal time

1 8 8 Backspace Backspace 6938 3,39

2 65 32 A Spacebar 6663 3,39

3 69 32 E Spacebar 6630 3,27

4 73 32 I Spacebar 4034 6,33

5 32 83 Spacebar S 3866 8,69

6 73 78 I N 3121 7,31

7 32 67 Spacebar C 3104 11,09

8 82 69 R E 3027 6,39

9 32 80 Spacebar P 2911 12,97

10 32 68 Spacebar D 2846 11,58

11 32 65 Spacebar A 2654 12,4

BUPT

 Experiments with di-graphs 97

12 65 82 A R 2606 9,38

13 84 69 T E 2453 8,19

14 68 69 D E 2343 8,45

15 67 65 C A 2289 8,93

16 32 73 Spacebar I 2170 16,85

17 65 84 A T 2160 11,51

18 85 32 U Spacebar 2034 11,61

19 188 32 , Spacebar 2012 12,51

20 32 77 Spacebar M 1846 18,05

21 84 65 T A 1812 12,01

22 78 32 N Spacebar 1769 12,09

23 83 84 S T 1752 13,84

24 84 73 T I 1631 13,38

25 82 65 R A 1540 15,28

26 83 73 S I 1526 12,71

27 69 65 E A 1514 17,45

28 78 84 N T 1508 16

29 83 65 S A 1498 13,93

30 82 73 R I 1468 14,03

31 84 32 T Spacebar 1457 16,65

32 69 83 E S 1452 18,25

33 67 69 C E 1435 14,54

34 77 65 M A 1380 14,44

35 69 82 E R 1373 16,97

36 32 8 Spacebar Backspace 1372 46,92

37 85 78 U N 1325 17,41

38 190 32 , Spacebar 1311 28,81

39 32 70 Spacebar F 1287 27,34

40 76 65 L A 1272 15,25

41 85 76 U L 1258 21,55

42 32 16 Spacebar Shift 1210 52,88

43 80 69 P E 1189 16,93

44 84 82 T R 1170 17,07

45 67 85 C U 1167 16,37

46 76 32 L Spacebar 1154 21,6

47 32 69 Spacebar E 1153 30,22

BUPT

98 Experiments and results - Simulation of system authentication by
genuine users or impostors

48 76 69 L E 1117 16,62

49 32 76 Spacebar L 1106 32,08

50 65 67 A C 1103 22,21

51 80 82 P R 1071 21,22

52 69 78 E N 1063 20,61

53 65 78 A N 1046 21,16

54 65 76 A L 1043 21,54

55 32 79 Spacebar O 1035 37,73

56 79 82 O R 1021 22,86

From the table it can extract the most common combination of 2 keys is di-

graph Backspace-Backspace with a number of 6,938 occurrences. This key
combination is pressed even the fastest by a user, on average in 3.39 milliseconds.
The next 4 frequency key combinations are letter combinations and the SPACE key.
Di-graphs: A-Space, E-Space, I-Space and Space-S. The first two-letter combination
that appears most frequently is the I-N di-graph with a number of 3121 occurrences.
A total of 56 di-graphs appear in the text more than 1000 times. It is observed in
Figure 6.20 that the total typing time of a di-graph increases as the frequency of using

the 2 keys decreases. The figure shows the total typing time of each di-graph. On the
left are di-graphs the most common, while on the right the least common. The
increasing trend of typing time is observed.

Figure 6.20 Di-graph time increases with decreasing frequency of use

6.2.1 Creating the user pattern

For each unique combination of a di-graph, the mean and standard deviation

were calculated for all 5 calculated times. The structure that retains the information
about a unique di-graphs at the level of each user is presented in Code 6.9.

BUPT

 Experiments with di-graphs 99

Code 6.9 The pattern struct
typedef struct{

 int letter1,letter2;
 double meanDUtotal, meanDU1, meanDU2, meanDD, meanUU, meanUD;
 int nr;
 double stdDevDUtotal, stdDevDU1, stdDevDU2, stdDevDD, stdDevUU, stdDevUD;
 float minDUtotal, maxDUtotal;
 }userDiPattern;

typedef struct{
 char user[20];
 userDiPattern pattern[10000];
 int nPattern;

 int sampleSize;
 float distance[5000]; //distance from other users
 }diPattern;

 diPattern diPatterns[5000];
 int nDiPatterns=0;

Using the constructDiPattern (user, n) function, the required data about each
unique graph for each user was calculated. For each combination of 2 keys, the
averages of the 5 time intervals specific to a di-graph were calculated. In addition to

the average, the minimum and maximum values of the times were retained and the
standard deviation for each of the 6 time intervals specific to a di-graph was
calculated. With the help of these data, it was possible to calculate the similarity
between users for each unique graph.

In the vector distance[5000] within diPatterns[] the distance calculated in
various ways between the resulting vectors for each two users will be retained. The
shorter the calculated distance, the more likely it is to be accessed by the right user.

The function that builds the patterns is in Code 6.10.

Code 6.10 The function that build the patterns
int constructDiPattern(char user[], int n)
{
 int i,j;
 strcpy(diPatterns[nDiPatterns].user,user);

 diPatterns[nDiPatterns].sampleSize=n-1;
 for(i=0;i<n-1;i++)
 {
 for(j=0;j<diPatterns[nDiPatterns].nPattern;j++)
 {
 if(diGraphs[i].letter1 == diPatterns[nDiPatterns].pattern[j].letter1 &&

diGraphs[i].letter2 == diPatterns[nDiPatterns].pattern[j].letter2)
 break;
 }
 diPatterns[nDiPatterns].pattern[j].letter1=diGraphs[i].letter1;
 diPatterns[nDiPatterns].pattern[j].letter2=diGraphs[i].letter2;

 diPatterns[nDiPatterns].pattern[j].nr++;
 diPatterns[nDiPatterns].pattern[j].meanDUtotal+=diGraphs[i].DUtotal;

 diPatterns[nDiPatterns].pattern[j].meanDU1+=diGraphs[i].DU1;
 diPatterns[nDiPatterns].pattern[j].meanDU2+=diGraphs[i].DU2;

BUPT

100 Experiments and results - Simulation of system authentication by
genuine users or impostors

 diPatterns[nDiPatterns].pattern[j].meanDD+=diGraphs[i].DD;
 diPatterns[nDiPatterns].pattern[j].meanUU+=diGraphs[i].UU;
 diPatterns[nDiPatterns].pattern[j].meanUD+=diGraphs[i].UD;
 if(diPatterns[nDiPatterns].pattern[j].minDUtotal>diGraphs[i].DUtotal ||
j==diPatterns[nDiPatterns].nPattern)

 diPatterns[nDiPatterns].pattern[j].minDUtotal=diGraphs[i].DUtotal;
 if(diPatterns[nDiPatterns].pattern[j].maxDUtotal<diGraphs[i].DUtotal ||
j==diPatterns[nDiPatterns].nPattern)
 diPatterns[nDiPatterns].pattern[j].maxDUtotal=diGraphs[i].DUtotal;
 if(j==diPatterns[nDiPatterns].nPattern)
 diPatterns[nDiPatterns].nPattern++;

 }

 for(j=0;j<diPatterns[nDiPatterns].nPattern;j++)
 {
diPatterns[nDiPatterns].pattern[j].meanDUtotal/=diPatterns[nDiPatterns].pattern[j].
nr;
diPatterns[nDiPatterns].pattern[j].meanDU1/=diPatterns[nDiPatterns].pattern[j].nr;
diPatterns[nDiPatterns].pattern[j].meanDU2/=diPatterns[nDiPatterns].pattern[j].nr;
diPatterns[nDiPatterns].pattern[j].meanDD/=diPatterns[nDiPatterns].pattern[j].nr;

diPatterns[nDiPatterns].pattern[j].meanUU/=diPatterns[nDiPatterns].pattern[j].nr;
diPatterns[nDiPatterns].pattern[j].meanUD/=diPatterns[nDiPatterns].pattern[j].nr;
 }
 for(j=0;j<diPatterns[nDiPatterns].nPattern;j++)
 {
 for(i=0;i<n;i++)

 {
 if(diGraphs[i].letter1 == diPatterns[nDiPatterns].pattern[j].letter1 &&
diGraphs[i].letter2 == diPatterns[nDiPatterns].pattern[j].letter2)

 {
diPatterns[nDiPatterns].pattern[j].stdDevDUtotal+=pow(diPatterns[nDiPatterns].pat
tern[j].stdDevDUtotal+diGraphs[i].DUtotal,2);
diPatterns[nDiPatterns].pattern[j].stdDevDU1+=pow(diPatterns[nDiPatterns].patter

n[j].stdDevDU1+diGraphs[i].DU1,2);
diPatterns[nDiPatterns].pattern[j].stdDevDU2+=pow(diPatterns[nDiPatterns].patter
n[j].stdDevDU2+diGraphs[i].DU2,2);
diPatterns[nDiPatterns].pattern[j].stdDevDD+=pow(diPatterns[nDiPatterns].pattern
[j].stdDevDD+diGraphs[i].DD,2);
diPatterns[nDiPatterns].pattern[j].stdDevUU+=pow(diPatterns[nDiPatterns].pattern
[j].stdDevUU+diGraphs[i].UU,2);

diPatterns[nDiPatterns].pattern[j].stdDevUD+=pow(diPatterns[nDiPatterns].pattern
[j].stdDevUD+diGraphs[i].UD,2);
 }
 }
 }
 for(j=0;j<diPatterns[nDiPatterns].nPattern;j++)

 {

diPatterns[nDiPatterns].pattern[j].stdDevDUtotal=sqrt(diPatterns[nDiPatterns].patte
rn[j].stdDevDUtotal/diPatterns[nDiPatterns].pattern[j].nr);
diPatterns[nDiPatterns].pattern[j].stdDevDU1=sqrt(diPatterns[nDiPatterns].pattern[
j].stdDevDU1/diPatterns[nDiPatterns].pattern[j].nr);

BUPT

 Experiments with di-graphs 101

diPatterns[nDiPatterns].pattern[j].stdDevDU2=sqrt(diPatterns[nDiPatterns].pattern[
j].stdDevDU2/diPatterns[nDiPatterns].pattern[j].nr);

diPatterns[nDiPatterns].pattern[j].stdDevDD=sqrt(diPatterns[nDiPatterns].pattern[j]
.stdDevDD/diPatterns[nDiPatterns].pattern[j].nr);
diPatterns[nDiPatterns].pattern[j].stdDevUU=sqrt(diPatterns[nDiPatterns].pattern[j]
.stdDevUU/diPatterns[nDiPatterns].pattern[j].nr);
diPatterns[nDiPatterns].pattern[j].stdDevUD=sqrt(diPatterns[nDiPatterns].pattern[j]
.stdDevUD/diPatterns[nDiPatterns].pattern[j].nr);
 }

 nDiPatterns++;
 return 1;
}

6.2.2 Authentication accuracy

Authentication accuracy is assessed with Equal Error Rate (EER), the

percentage at which False Acceptance Rate (FAR) and False Rejection Rate (FRR) have
equal value. Another indicator of algorithm performance, in addition to EER, is,
according to [ZHO12] [KIL09] Zero Miss False Acceptance Rate (ZMFAR). ZMFAR is
represented by the minimum percentage of FRR (False Rejection Rate) when FAR

(False Alarm Rate) has the value equal to 0. In Figure 20 are graphically represented
the two performance indicators of a user authentication algorithm in the system.

Figure 6.21 Graphical reprezentation of Equal Error Rate (EER) and ZMFAR (Zero Miss False

Acceptance Rate)

 For clearer information, the Zero Miss False Acceptance Rate (ZMFAR) for the
algorithm was further calculated. The best performances obtained according to the
two error rates in [ZHO12] and [KIL09] are presented in the Table 6.7.

BUPT

102 Experiments and results - Simulation of system authentication by
genuine users or impostors

Table 6.7 Performance for two algorithms from other studies in terms of EER and
ZMFAR

Paper Algorithm EER (%) ZMFAR (%)

[ZHO12] Zhong,

Deng and Jain
Nearest Neighbor 8.4 40.5

[KIL09] Killourhy
and Maxion

Manhattan
(scaled)

9.4 46.8

 Access tests were further performed for a sample size of 1000 keys (2000 key

events). The first results obtained for di-graphs are presented in Table 6.8. The table
contains the EER values. It is surprising that from the first tests very good results
were obtained for the EER value in the case of the algorithm that uses A distance.

Table 6.8 EER values in different conditions

EER

keys
distance

All Keys Only letters
Only letters and

digits

Euclidian distance 23,13 23,93 23,86

Manhattan distance 19,66 18,5 18,5

A distance (t=1,25) 6,55 9,48 9,46

A distance (t=1,13) 6,62 8,21 8,21

 In Table 6.9 are the values obtained for Zero Miss False Acceptance Rate
(ZMFAR) in the case of tests performed whose EER is presented in Table 9. As in the
case of EER, the lowest values of ZMFAR were obtained for the algorithm using A
distance. The lowest value obtained for ZMFAR is 49.71% in the case of the A distance
algorithm, when only di-graphs containing only letters (a-z) were monitored, the

other characters being eliminated from the algorithm.

Table 6.9 ZMFAR values in different conditions

ZMFAR

keys

distance All Keys Only letters

Only letters

and digits

Euclid distance 53,76 53,76 53,76

Manhattan distance 52,6 53,18 53,18

A distance (t=1,25) 52,6 53,18 53,18

A distance (t=1,13) 52,02 49,71 49,71

Considering the first results obtained for values of di-graphs, it was concluded
that if only the letters of the English alphabet (a-z) are analyzed or if the letters of
the English alphabet (a-z) are analyzed and the numbers (0-9) the results obtained

are similar. For this reason, two types of tests were performed. The first type of tests
in which only di-graphs containing only letters were analyzed, and the second type of
di-graphs tests consisting of all the keys taken, whether they are letters, numbers,
punctuation marks, spaces or other special characters.

BUPT

 Experiments with di-graphs 103

6.2.3 Experiments with Euclidian distance at di-graphs

In this section, to calculate the similarities between two vectors (two distinct

users or two vectors obtained from the text of the same user) it was applied the
calculation of the Euclidean distance at di-graphs. It was considered that the user has
successfully accessed the account if the Euclidean distance (calculated between the
vector resulting from the user's key events and the vector resulting from the key
events of the account to be accessed) was less than a certain threshold. In case it

was higher than the certain threshold, it was considered that he failed to access the
account. Code 6.11 shows the function that calculate Euclidian distance at di-graphs.

Code 6.11 The function that calculates Euclidian distance
float EuclidianDistanceDiGraph(int first)

{
 int user1,user2,i,j,nr=0;

 float max=0;

 for(user1=0;user1<nDiPatterns;user1++)
 {
 for(user2=0;user2<nDiPatterns;user2++)
 {

 diPatterns[user1].distance[user2]=0;
 }
 }
 for(user1=0;user1<nDiPatterns;user1++)
 {
 for(user2=0;user2<nDiPatterns;user2++)
 {

 nr=0;
 for(i=0;i<diPatterns[user1].nPattern;i++)

 {
 for(j=0;j<diPatterns[user2].nPattern;j++)
 {
 if(diPatterns[user1].pattern[i].letter1 ==
diPatterns[user2].pattern[j].letter1 && diPatterns[user1].pattern[i].letter2 ==

diPatterns[user2].pattern[j].letter2)
 {
 break;
 }
 }
 if(j!=diPatterns[user2].nPattern)

 {
diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanDUtotal-
diPatterns[user2].pattern[j].meanDUtotal,2);
diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanDU1-
diPatterns[user2].pattern[j].meanDU1,2);
diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanDU2-

diPatterns[user2].pattern[j].meanDU2,2);

diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanDD-
diPatterns[user2].pattern[j].meanDD,2);
diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanUU-

BUPT

104 Experiments and results - Simulation of system authentication by
genuine users or impostors

diPatterns[user2].pattern[j].meanUU,2);
diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanUD-
diPatterns[user2].pattern[j].meanUD,2);
 nr+=6;
 }
 }

 diPatterns[user1].distance[user2]=sqrt(diPatterns[user1].distance[user2]);
 if(max<diPatterns[user1].distance[user2])
 {
 max=diPatterns[user1].distance[user2];
 }
 }

 }

 return max;
}

In order to be able to compare the performances of the different types of
tests, tests were performed to work only with the most used di-graphs. For the
algorithm that uses Euclidian distance, accesses of the accounts were simulated and
took into account one by one, first the most used di-graph, ie the one consisting of

the letters IN, then the first two (IN and RE), then the first 3, 4 etc. The performances
obtained for the first 50 tests are found in Table 6.10 and represented graphically in
Figure 6.22. The best result obtained in this series of tests is in the case of EER for
the analysis of the first 10 di-graphs as well as the frequency of use. The EER value
is 16.81%.

Table 6.10 EER values with first # di-graphs

First # di-
graphs

EER (%)

1 38,01

2 27,15

3 28,72

4 21,97

5 19,68

6 18,55

7 17,72

8 19,02

9 17,89

10 16,81

11 23,04

12 19,04

13 19,85

14 22,54

15 19,82

16 19,89

17 23,04

18 22,66

19 20,4

20 20,74

21 21,45

22 21,77

23 22,64

24 20,9

25 21,6

26 22,35

27 21,75

28 22,95

29 22,02

BUPT

 Experiments with di-graphs 105

Figure 6.22 EER values with first # di-graphs

6.2.4 Experiments with Manhattan distance at di-graphs

In this section, to calculate the similarities between two vectors (two distinct

users or two vectors obtained from the text of the same user) it was applied the
calculation of the Manhattan distance at di-graphs. It was considered that the user
has successfully accessed the account if the Manhattan distance (calculated between
the vector resulting from the user's key events and the vector resulting from the key
events of the account to be accessed) was less than a certain threshold. In case it

was higher than the certain threshold, it was considered that he failed to access the
account. Code 6.12 shows the function that calculate Manhattan distance at di-graphs.

Code 6.12 The function that calulates Manhattan distance for di-graph
float ManhattanDistanceDiGraph(int first)
{
 int user1,user2,i,j,nr=0;

 float max=0;

 for(user1=0;user1<nDiPatterns;user1++)
 {
 for(user2=0;user2<nDiPatterns;user2++)
 {
 diPatterns[user1].distance[user2]=0;

 }
 }
 for(user1=0;user1<nDiPatterns;user1++)

 {
 for(user2=0;user2<nDiPatterns;user2++)
 {

 nr=0;

BUPT

106 Experiments and results - Simulation of system authentication by
genuine users or impostors

 for(i=0;i<diPatterns[user1].nPattern;i++)
 {
 for(j=0;j<diPatterns[user2].nPattern;j++)
 {
 if(diPatterns[user1].pattern[i].letter1 ==
diPatterns[user2].pattern[j].letter1 && diPatterns[user1].pattern[i].letter2 ==

diPatterns[user2].pattern[j].letter2)
 {

if(firstDiPatterns(first,diPatterns[user1].pattern[i].letter1,diPatterns[user1].pattern[i
].letter2))
 {

 break;

 }
 }
 }
 if(j!=diPatterns[user2].nPattern)
 {
diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanDUtotal-
diPatterns[user2].pattern[j].meanDUtotal;

diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanDU1-
diPatterns[user2].pattern[j].meanDU1);
diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanDU2-
diPatterns[user2].pattern[j].meanDU2);
diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanDD-
diPatterns[user2].pattern[j].meanDD);

diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanUU-
diPatterns[user2].pattern[j].meanUU);
diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanUD-

diPatterns[user2].pattern[j].meanUD);
 nr+=1;
 }
 }

 if(max<diPatterns[user1].distance[user2])
 {
 max=diPatterns[user1].distance[user2];
 }
 }
 }
 return max;

}

In order to be able to compare the performances of the different types of

tests, tests were performed to work only with the most used di-graphs. For the
algorithm that uses Manhattan distance, accesses of the accounts were simulated and
took into account one by one, first the most used di-graph, ie the one consisting of

the letters IN, then the first two (IN and RE), then the first 3, 4 etc. The performances

obtained for the first 50 tests are found in Table 6.11 and represented graphically in
Figure 6.23. The best result obtained in this series of tests is in the case of EER for
the analysis of the first 12 di-graphs as well as the frequency of use. The EER value
is 13.89% [IAP21a].

BUPT

 Experiments with di-graphs 107

Table 6.11 EER values for Manhattan distance at different numbers of di-graphs

First # di-graphs EER(%)

1 38,01

2 29,7

3 22,7

4 19,67

5 16,34

6 15,99

7 15,54

8 15,8

9 16,02

10 16,11

11 15,42

12 13,89

13 14,31

14 16,3

15 15,78

16 15,51

17 15,55

18 15,26

19 15,25

20 16,29

21 16,91

22 17,75

23 17,56

24 17,57

25 16,73

26 16,48

27 16,23

28 16,6

29 17,39

From the analysis of the graph in Figure 6.23 it is observed that better values

for EER are obtained when analyzing a small number of di-graphs but with high
frequency in the text in the database. This also helps in the analysis, being faster to
analyze a smaller number of elements [IAP21a].

Figure 6.23 EER values for Manhattan distance at different numbers of di-graphs [IAP21a]

BUPT

108 Experiments and results - Simulation of system authentication by
genuine users or impostors

6.2.5 Experiments with A distance at di-graphs

In this section, to calculate the similarities between two vectors (two distinct
users or two vectors obtained from the text of the same user) it was applied the
calculation of the A distance at di-graphs. It was considered that the user has

successfully accessed the account if the A distance (calculated between the vector
resulting from the user's key events and the vector resulting from the key events of
the account to be accessed) was less than a certain threshold. In case it was higher
than the certain threshold, it was considered that he failed to access the account.
Code 6.13 shows the function that calculate A distance at di-graphs.

Code 6.13 The function that calulates A distance for di-graph

float ADistanceDiGraph(float t, float first)
{

 int user1,user2,i,j,nr=0;
 float max=0;
 for(user1=0;user1<nDiPatterns;user1++)
 {
 for(user2=0;user2<nDiPatterns;user2++)
 {

 diPatterns[user1].distance[user2]=0;
 }
 }
 for(user1=0;user1<nDiPatterns;user1++)
 {
 for(user2=0;user2<nDiPatterns;user2++)
 {

 nr=0;
 for(i=0;i<diPatterns[user1].nPattern;i++)

 {
 for(j=0;j<diPatterns[user2].nPattern;j++)
 {
 if(diPatterns[user1].pattern[i].letter1 ==
diPatterns[user2].pattern[j].letter1 && diPatterns[user1].pattern[i].letter2 ==

diPatterns[user2].pattern[j].letter2)
 {
 nr++;
 break;
 }
 }

 if(j!=diPatterns[user2].nPattern)
 {
 if(diPatterns[user1].pattern[i].meanDUtotal >
diPatterns[user2].pattern[j].meanDUtotal)
 {
 if(diPatterns[user1].pattern[i].meanDUtotal /

diPatterns[user2].pattern[j].meanDUtotal < t)

 diPatterns[user1].distance[user2]++;
 }
 else

BUPT

 Experiments with di-graphs 109

 {
 if(diPatterns[user2].pattern[j].meanDUtotal /

diPatterns[user1].pattern[i].meanDUtotal < t)
 diPatterns[user1].distance[user2]++;
 }
 }
 }
 diPatterns[user1].distance[user2]=1-diPatterns[user1].distance[user2]/nr;

 if(max<diPatterns[user1].distance[user2])
 {
 max=diPatterns[user1].distance[user2];
 }

 }
 }
 return max;

}

The same analysis as for Euclidean distance and Manhattan distance was
applied to A distance. Figure 6.24 shows graphically the values obtained for EER when
analyzing a different number of di-graphs. In this case, the analysis shows other
conclusions than in Euclidean and Manhattan. It turns out that the best performance

is not obtained by analyzing a few di-graphs, but by analyzing a large number of di-
graphs. The same result is if t takes different values. In this context, in the case of A
distance it is more efficient if all the letters are analyzed.

Figure 6.24 EER values for A distance (t=1,25) at different numbers of di-graphs analized

For the algorithm using A distance it was analyzed which values are the most

advantageous to set for the constant t. The algorithm was applied for values from 1

to 2 with a step of 0.01 and it was concluded that the best values of EER are obtained

BUPT

110 Experiments and results - Simulation of system authentication by
genuine users or impostors

in the interval t = 1.07 - 1.28. The best performance was obtained at t = 1.22. The
EER had a value of 5.52%. In these tests all the typed characters were taken into

account, not only the letters (a-z). The values obtained for EER are presented in Table
6.12 for values of t between 1 and 1.3.

Table 6.12 EER values with A distance, for different values for t

t value EER

1,01 18,56

1,02 12,6

1,03 10,11

1,04 8,51

1,05 7,47

1,06 7,67

1,07 5,83

1,08 6,42

1,09 6,26

1,1 5,85

1,11 5,94

1,12 5,86

1,13 6,62

1,14 5,85

1,15 5,73

1,16 5,78

1,17 5,78

1,18 6,02

1,19 5,61

1,2 6,22

1,21 6,11

1,22 5,52

1,23 5,81

1,24 5,91

1,25 6,62

1,26 6,38

1,27 6,38

1,28 6,95

1,29 7,67

The graph in Figure 6.25 shows the EER values over the entire examined

range (1.00 - 1.99). The graph shows that at lower values of t the best performances
are obtained.

Figure 6.25 EER values with A distance, for different values for t

BUPT

Experiments with di-graphs 111

6.2.6 The results of experiments with di-graphs

The analyzes made up to this point on di-graphs take into account a single

time interval of the di-graph, the total time of the di-graphs, DUtotal. The interval
between key 1 down event and key 2 up event. The interim conclusions are:

• The Manhattan distance algorithm performs better when analyzing a limited
number of di-graphs, those with the highest frequency

• The Euclidean distance algorithm obtains better performances when

analyzing a limited number of di-graphs, the ones with the highest frequency
• Manhattan distance algorithm performs better when analyzing di-graphs

that contain only letters (a-z)
• The Euclidean distance algorithm performs better when analyzing di-graphs

that contain only letters (a-z)

• Under similar conditions, the Manhattan distance algorithm performs better
than the Euclidean distance algorithm. Figure 6.26 shows graphically the results of

the two algorithms for different numbers of di-graphs used in the calculation of the
distance

Given the above conclusions, further, between the two algorithms, only the
Manhattan distance algorithm for di-graphs was analyzed.

Figure 6.26 Euclidean distance performance compared to Manhattan distance performance

In connection with A distance, the intermediate conclusions are:
• The A distance algorithm performs better when analyzing all keys, not just

letters (a-z)
• The A distance algorithm obtains better performances when t is in the range

1.07 - 1.28
• The A distance algorithm performs better when analyzing all key

combinations, not just the most common ones

Analyzing the intermediate conclusions, it can be said that the A distance
algorithm needs more resources to function, both memory space and time. From
these perspectives, the most efficient to use, among the analyzed algorithms,
according to the obtained results, is the Manhattan distance algorithm.

BUPT

 Experiments and results - Simulation of system authentication by
genuine users or impostors

112

6.2.7 Choosing the time components of a di-graph

 Next, experiments were performed with different combinations of the times
generated by a di-graph, not only with the total time of the di-graph. Table 6.13

shows the performances obtained. The 6 times that a di-graph generates are: the
pressing time of the first key (DU1), the pressing time of the second key (DU2), the
total time of the di-graph (DUtotal), the time between the two keys (UD), the interval
between pressing the first and pressing the second key (DD) and the interval between
raising the first key and raising the second key (UU).

Table 6.13 The most efficient combinations of times for calculating the distance

[IAP21a]

 Components EER (%)

1 Dutotal, DU1, DU2 5,23

2 DU1, DU2, UD 5,42

3 DU1, DU2 5,69

4 Dutotal, DU1, DU2, UD 6,47

5 All without UU 6,52

6 DU1, DU2, UU, DD 6,61

7 DU1, DU2, UU, DD, UD 7,11

8 All 6 intervals 7,53

9 All without DD 7,58

10 All without UD 7,68

11 DU1 8,46

12 All without DU2 8,7

13 All without DU1 8,75

14 Dutotal + UD 10,06

15 UU, DD, UD 11,15

16 DU2 11,23

17 UD 11,46

18 UU 12,32

19 Dutotal 13,89

20 DD 15,18

The best performances were obtained when using only 3 of the 6 times

generated by the di-graph: the pressing time of the first key (DU1), the pressing time
of the second key (DU2) and the total time of di-graph (DUtotal). For these
components EER = 5.23% was obtained when calculating the distance with Manhattan
distance and using the times only from the most frequent 12 di-graphs.

BUPT

Experiments with di-graphs 113

In Figure 6.27 are represented graphically FAR and FRR for the case where
the best performance was obtained, calculating the distance using the 3 time intervals

of the 6: DU1, DU2 and DUtotal. The EER value obtained in this case is 5.32%. The
simulation was performed using only the first 12 di-graphs, the most common
[IAP21a].

Figure 6.27 FAR and FRR for Manhattan Distance DU1, DU2,UD , first 12 di-graphs, only letters

[IAP21a]

The graph in Figure 6.28 shows the ROC curves for the best performing case

in this experiment. EER value = 5.32% [IAP21a].

Figure 6.28 ROC curve. Manhattan Distance DU1, DU2,UD , first 12 di-graphs, only letters

[IAP21a]

BUPT

 Experiments and results - Simulation of system authentication by
genuine users or impostors

114

6.3 The Distances between users

The distance calculated between two user patterns is shown in Figure 6.29 for
the first 18 users out of a total of 160. The sample size used is 1000 keys (2000 key
events). Thus, from the characters taken from the 80 users, 160 patterns resulted in

the following way: from those who typed less than 2000 keys, only the first 1000
were valued, and the rest were ignored. Those who typed under 3000 keys generated
2 samples, each of 1000 keys, and those who typed over 3000 keys generated 3
samples each. For each sample, distances were calculated between the pattern
generated by it and the other 159 samples. In the figures it can be seen that the
smallest distances were calculated between samples from the same user. The sample

name consists of: UserNumber.SampleNumber.

Figure 6.29 Distances between first 18 users from all 160. Green is a small distance and red is

a big distance

Figure 6.30 shows the entire database, with all 160 samples, the green color

representing the short distance and the red color representing the large distance. The
green color shows the small distance between samples from the same users or the
red color if the distances are the largest. The figure above shows the upper left part
with more details.

Figure 6.30 Distances between 160 users. Green is a small distance and red is a big distance

BUPT

Proposing new metrics for calculating distances between users 115

6.4 Proposing new metrics for calculating distances

between users

This subchapter addresses O3, formulated in the first chapter of this thesis. The
performance improvement of two metrics is analyzed. The first metric starts from the

distance of Manhattan and proposes a modification of it in case of calculating the
distance with the help of the times from one key only. The second metric proposed in
this subchapter also starts from the distance of Manhattan, but the times used in the
distance calculation are times used in the di-graphs.

6.4.1 New metric for calculating distances based on individual key

time

Following the experiments performed in this research and presented in detail

in this chapter, research undertaken in other scientific research has concluded that
changes in the metrics used to calculate distances can be generated to improve the

performance of algorithms.
In the case of calculating distances only from the information of each key, not

a di-graph, if a Manhattan distance calculated between two components within two
time vectors is very small, it can be ignored, or even lead to a decrease the entire
distance, because the probability of coming from the same user is high. In this
judgment it was proposed by this paper to adjust the difference between 𝑥𝑖 and 𝑦𝑖
with a certain percentage of the standard deviation calculated for the first user. It was

chosen not to subtract a fixed value, but a certain percentage of the standard
deviation because this is a property of all times relative to a certain key, just like their
average. In formula 6.1 is the formula that was applied following this reasoning.

d(x, y) = ∑(|xi − yi| − C × σxi

14

i=1

)

(6.1)

Where d(x,y) is the distance between the two vectors x and y, C is the
coefficient and 𝜎𝑥𝑖

 is the standard deviation from 𝑥𝑖.

Applying the proposed new formula, different values were generated for the
C coefficient and the performance obtained by the algorithm was monitored. In Table
6.14 are the values obtained for the EER for each coefficient in the first column of the
table. The green color represents a small value and the red color a higher value of
the error. It can be seen in the table that the best performances were obtained in the

range C = 0.12-0.38. The best performance was obtained when C = 0.31, respectively
EER = 5.33%.

Table 6.14 EER values with modified Manhattan metrics

Coefficient

(C)

EER

(%)

0 7,13

0,01 6,87

0,02 6,87

0,03 6,62

0,04 6,53

0,05 6,46

0,06 6,59

0,07 6,12

0,08 6,07

0,09 6,08

0,1 5,81

0,11 5,75

0,12 5,47

BUPT

 Experiments and results - Simulation of system authentication by
genuine users or impostors

116

0,13 5,41

0,14 5,58

0,15 5,54

0,16 5,5

0,17 5,49

0,18 5,51

0,19 5,52

0,2 5,5

0,21 5,5

0,22 5,49

0,23 5,51

0,24 5,52

0,25 5,5

0,26 5,52

0,27 5,51

0,28 5,55

0,29 5,38

0,3 5,34

0,31 5,33

0,32 5,38

0,33 5,47

0,34 5,48

0,35 5,51

0,36 5,47

0,37 5,48

0,38 5,47

0,39 5,86

0,4 6,45

0,41 6,98

0,42 7,47

0,43 8,06

0,44 8,62

0,45 9,32

0,46 9,91

0,47 10,58

0,48 11,25

0,49 12

0,5 12,64

0,51 13,37

0,52 14,18

0,53 15,01

0,54 15,77

0,55 16,45

0,56 17,2

0,57 18,1

0,58 18,86

0,59 19,65

Figure 6.31 shows graphically the EER values obtained for different values of
the C coefficient. The values represented in the graph are those in the table above.
As well as the table, the graph shows that the best performances were obtained in
the range C = 0.12-0.38. The best performance was obtained when C = 0.31,
respectively EER = 5.33%.

Figure 6.31 EER values with modified Manhatten metrics

Following the experiment described above, the decision was made to propose

a new metric, a metric that starts from the distance of Manhattan, but which adjusts

BUPT

Proposing new metrics for calculating distances between users 117

with . 31 × 𝜎𝑥𝑖
. The new metric proposed in this paper is presented in formula (6.2)

below:

d(x, y) = ∑(|xi − yi| − 0.31 × σxi

14

i=1

)

 (6.2)
Where d(x,y) is the distance between the two vectors x and y and 𝜎𝑥𝑖

 is the

standard deviation from 𝑥𝑖.

The proposed new distance metric improves performance coefficient EER of
7.13% to the value of 5.33%. This means a 25.24% improvement in performance.

6.4.2 New metric for calculating distances based on di-graphs

times

In this subchapter we propose a second metric, derived from the change in
the calculation of the distances between two vectors, based on the times from the di-
graphs.

In the experiments performed, the following conclusions were reached:
1. The best performance is obtained using the Manhattan metric for

calculating distances.
2. The best performances are obtained when analyzing the times coming only

from the most frequent 12 di-graphs
3. The best performances are obtained if only 3 of the 6 times generated by

a di-graph are used in the distance calculation, namely: the pressing time of the first
key, the pressing time of the second key and the total time al di-graphs.

The formula that summarizes the above is at (6.3):

d(x, y) = ∑|xDU1i − yDU1i|

12

i=1

+ ∑|xDU2i − yDU2i|

12

i=1

+ ∑|xDUtotali − yDUtotali|

12

i=1

 (6.3)

 Having this calculation formula as a starting point, changes were made to it
in order to obtain better performance. It has been observed that minimizing the share

of total time in distance calculation generates better performance. In this context, the
scaling of the total distance weight was applied by dividing the Manhattan distance
by the coefficient C, as in the formula presented in (6.4), while the weight of the
pressing time of the first key and the weight of the pressing time of the second key
they remained the same:

d(x, y) = ∑|xDU1i − yDU1i|

12

i=1

+ ∑|xDU2i − yDU2i|

12

i=1

+ ∑ |
xDUtotali − yDUtotali

C
|

12

i=1

 (6.4)
 For the coefficient C, values from 1 to 15 were assigned, but also higher

values, the conclusion of the experiment being that the best performances are
obtained in the range 2-7. The values obtained for EER are presented in Table 6.15.

BUPT

 Experiments and results - Simulation of system authentication by
genuine users or impostors

118

Table 6.15 EER values with modified distance metrics

Coefficient EER (%)

1 5,33

2 3,64

3 3,27

4 3,33

5 3,64

6 3,71

7 3,86

8 4,2

9 4,31

10 4,38

11 4,34

12 4,37

13 4,35

14 4,35

15 4,32

100 5,23

1000 5,54

 From the values presented in the table it results that the best performance is
obtained at the value of C = 3. In this case, the EER value is 3.27%. This value is the
best performance obtained in the present thesis. The performance improvement with
the modified formula presented in (6.5) is done by 37.47%. From the initial value of
performance, calculated with the classic Manhattan metric, by EER = 5.23%, the
performance reached 3.27%. The 1.96 percentage point improvement represents a
37.47% improvement in performance.

d(x, y) = ∑|xDU1i − yDU1i|

12

i=1

+ ∑|xDU2i − yDU2i|

12

i=1

+ ∑ |
xDUtotali − yDUtotali

3
|

12

i=1

(6.5)
Figure 6.32 graphically represents the values of False Acceptance Rate (FAR)

and False Rejection Rate (FRR) for the best performance obtained in the present

research. The intersection, on the graph, of FAR and FRR is at the point of

EER=3.27%.

Figure 6.32 FAR and FRR graph for the best performance of this research

Figure 6.33 shows several ROC curves generated from the experiments
performed for this paper and described in detail in this chapter. The best performance
obtained during the research, with the proposed new metric is on the red graph. It
can be seen that it is the best performance from the graph in the figure.

BUPT

Proposed user pattern 119

Figure 6.33 ROC curve for the best performance of this research - the red one

6.5 Proposed user pattern

This subchapter follows the O4 approach.
Considering the results obtained during this chapter, an efficient pattern will

be proposed both in terms of size and time required for the calculations to combine
the two solutions at the end of this chapter. The pattern will contain information about
the 14 most used letters (a-z) and the 12 most used di-graphs that contain only

letters (a-z). For the 14 letters, the average and the standard deviation of the pressing
times of the respective letter will be retained. For the 12 di-graphs, 3 averages will
be retained: DU1 average, DU2 average and Dutotal average. The proposal
formulated for the retention of the pattern is represented graphically in Table 6.16 :

Table 6.16 Proposed user pattern

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Key

A E I T R N U S C L O M P D

Key DU
mean

Key DU
std. deviation

di-graph
DU1 mean

di-graph
DU2 mean

di-graph
DUtotal mean

di-graph

IN RE AR TE DE CA AT TA ST TI RA SI

BUPT

 Experiments and results - Simulation of system authentication by
genuine users or impostors

120

6.6 Comparison of the related works

This subchapter compares the performance obtained with the proposals made
in this thesis with the performances obtained in other researches presented in the
literature. Table 6.17 presents the performances obtained in other researches, the

results were being published and centralized in the paper [TSA19]. The last two lines
of the table are the two results obtained by applying the new metrics proposed in this
paper.

The performances presented in the table vary from the best EER performance
= 0.44% to EER performance = 77%. Of the 11 results presented in the table, the
performance obtained in this thesis is among the top three. Analyzing the best

performance, by the algorithm Kim et al. [KIM18], of EER = 0.44%, the large volume

of training characters it uses is noticeable, while in this paper the analyzed volume is
1000 key / sample. The larger the sample size, the better the performance.

Table 6.17 Comparison of the related works [TSA19]

Method Year

of

training
participants

Experimental time

(# of training
characters)

Classifier
EER
(%)

Monrose &
Rubin
[MON97]

1997 42 7 Weeks Statistics 77.0

Gunetti &
Picardi
[GUN05]

2005 40 1–2 Months Statistics 15.0

Villani et al.
[VIL06]

2006 40 – Statistics 3.6

Davoudi &
Kabir [DAV09]

2009 21 1–2 Months Statistics –

Samura &
Nishimura

[SAM09]

2009 112 –
Euclidean
distance

5.3

Park & Cho
[PAR10]

2010 35 – Statistics 8.9

Messerman et
al. [MES11]

2011 55 12 Months Statistics 2.0

Alsultan et al.
[ALS16]

2016 21
–

(7200 characters)
SVM and

decision tree
–

Alsultan et al.
[ALS18]

2017 25
–

(7200 characters)
SVM and

decision tree
–

Alsultan et al.
[ALS17]

2017 30
–

(1000 characters)
SVM and

decision tree
–

Kim et al.
[KIM18]

2018 150

–
(18,000 English

and 7000 Korean

characters)

Five
algorithms

0.44

Tsai & Shih
(KD) [TSA19]

2018 100
2 Weeks

(1000 characters)
Statistics 20.0

BUPT

Conclusions 121

Tsai & Shih

(KD & KC-Map)
[TSA19]

2018 100
2 Weeks

(1000 characters)
Statistics +

KCMS
15.7

The approach
proposed in
this research

2020 80
1 Session

(1000
characters)

Modified
distance for
individual

keys

5.33

The approach
proposed in
this research

2020 80
1 Session

(1000
characters)

Modified
distance for
di-graphs

3.27

Following the comparison of the performances with those from other

researches, it can be stated that the proposals made within the present thesis bring
improvements to the field, by improving the performances of the authentication
algorithm based on keystroke dynamics.

Commercial continuous authentication products based on keystroke dynamic
exist. In Romania, Typing DNA is a company, a start-up, that received funds of 6.2
million euros in 2020 to create a typing identity for security [STE20]. They describe

their company as follows [TYP21]: ”At TypingDNA we are obsessed with passive
authentication and typing biometrics. Our mission is to improve security without
compromising user experience. We started research in 2014 and launched publicly in
late 2016. Our technology really shines at being the most available online biometric
technology - it works with any keyboard, on any device, works passively behind the
scenes, and doesn’t need more than one previous sample to start working. We provide

typing biometrics authentication as a service, an API that anyone can use for 2FA and
fraud prevention use cases. We are present in New York, USA and Romania, EU.”

Comparing the algorithm developed in this paper and the algorithm applied
by Typing DNA, the same principle is used, the collection and analysis of the typing
mode and are used in the analysis of both a keystroke time and flight time [TYP21].
However, there are also differences listed below [TYP21]: (1) this paper uses the

times from the most common 14 typed letters, while the solution from Typing DNA

uses the times from the most common 44 keys, (2) this paper uses the time collected
from di-graphs, while the solution from Typing DNA does not use sequences of 2 or
more keys and (3) this paper applies the distance calculation method, while the
solution from Typing DNA uses methods based on machine learning.

6.7 Conclusions

This chapter presented the experiments performed using the algorithm

developed and the data collected. The experiments performed in this chapter were
divided into two branches. First of all, experiments were performed to calculate the
similarity between users only with the help of the times for each key, in subchapter

6.1 Experiments with the keystroke time of a single key. The results were calculated
and presented using Euclidean distance (in subchapter 6.1.1), Manhattan distance (in
subchapter 6.1.2), R distance (in subchapter 6.1.3) and A distance (in subchapter
6.1.4). Second, experiments were performed to calculate the similarity between two

users using the times generated by the di-graphs, in subchapter 6.2 Experiments with
di-graphs. Experiments were performed based on Euclidean distance (in subchapter

6.2.3), Manhattan Distance (in subchapter 6.2.4) and A distance (in subchapter

BUPT

 Experiments and results - Simulation of system authentication by
genuine users or impostors

122

6.2.5). The subchapter 6.3 The distance between users presented the way to calculate
the distance between the vectors generated for users.

In subchapter 6.4, Proposing new metrics for calculating distances between
users, the two proposals for modified metrics that generate better results, as well as
the performance of the Equal Error Rate (EER) indicator, were presented. O3 was
addressed in this subchapter. With the help of the two metrics, the performances of

the authentication algorithm have been improved by 25.24%, respectively by
37.47%. The best performance obtained with the modified metric was EER = 3.27%.

In subchapter 6.5 Proposed user pattern, the pattern user proposal resulting
from the experiments and the obtained performances was presented, so that the
information that retains the characteristics of a user to occupy the optimal memory
space and can contribute to a fast algorithm. A structure that retains the average and

standard deviation, of the keystroke time, for the most frequently used 14 letters and

the average of the keystroke times of the first key, of the second key and of the total
time for the most frequently used 12 di-graphs was proposed. The structure thus
obtained occupies 256 bytes in memory for each user. O4 was addressed in this
subchapter.

At the end of the chapter, in subchapter 6.6 Comparison of the related work,
the performance obtained with the help of the proposed metrics and other results
obtained in similar research in the literature were compared.

The next chapter, Conclusions and Future Works, presents the general
conclusions of this thesis as well as research that can be carried out in further research
presented in this thesis.

BUPT

7 CONCLUSIONS AND FUTURE WORKS

The previous chapter, Experiments and results, covered the experiments
performed during the present research, detailed the results obtained and parts of the
algorithm used for continuous authentication in educational systems.

This chapter summarizes the conclusions drawn from the previous chapters
and future research directions in this field, starting from the results presented in this
paper. The author's own contributions to the field of keystroke dynamics are

presented in the subchapter 7.1.1 The personal contribution: the proposal of two new
metrics for calculating the distance between two vectors in order to allow the
approximation of the degree of similarity between two patterns from two different
users or from the same user. Also, the data collected from the 80 users about how to
type on the keyboard is a contribution to the advantage of future researches because
they will be available to all researchers interested in conducting investigation in the
field. Another own contribution is the proposal of a pattern in order to retain the

minimum necessary data about a user so to obtain performances in the continuous
authentication.

The last part of this chapter, the subchapter 7.2, Future works, presents the
future research directions. The field still needs to be exploited, and future research

directions may bring higher performance than those currently obtained.

7.1 Conclusions

The present research aimed to approach the field of continuous authentication

using free-text keystroke dynamics, especially for online education platforms. Also,

at the beginning of the research, 4 objectives were formulated that were pursued
throughout the research.

Each of us has a rhythm, a certain speed, a typing pattern, formed in time
and unique while typing on a keyboard. We can differentiate the users of a computer,
can identify them or authenticate them in a system only by capturing these details.
To analyze a user's typing pattern, we need to capture and process it using an
algorithm.

In order to be able to identify a certain user who would now be in front of a
computer, using a keyboard, it is necessary, beforehand, to have his typing
characteristics in a database. The database is needed in order to compare the typing

mode captured live with the patterns of the users enrolled in the respective system,
thus, helping to be identified. In other words, the mode of operation is similar to the
username and password authentication. The computer users enter their username

BUPT

 Conclusions and future works 124

and their password, and the system searches them in the database to compare what
the user entered with what he has previously registered, in order to make a decision.

The first objective, O1, of this thesis was to collect a database with the typing
mode from at least 80 users, in order to test the algorithm from O2, but also to make
it available to other interested researchers. The first objective was presented in
Chapter 4.

The second objective, O2, of this thesis was to implement an algorithm for
authenticating the users of a computer based on the keystroke dynamics, the
keyboard typing mode. The second objective was presented in Chapter 5 and in

Appendix 1.
The algorithm can process and analyze the text typed on the keyboard in two

situations:
1. when a user enters from the keyboard each time the same key combination

- fixed text keystroke dynamics
2. when the user types different text each time, based on his freewill - free

text keystroke dynamics

The present thesis addressed the second type of analysis - free text keystroke
dynamics. This type was chosen because (1) the user can do any kind of computer
work, and the algorithm works in the background, without the user having to take
additional steps and (2) it is not explored yet so far, and the accuracy performance
of user identification of current algorithms can be improved.

The keystroke dynamics authentication algorithm takes over, for each key

pressed, the key code, the time when it was pressed and the time at which it was
picked up. In this way, for each user we will have a long series of keys and times. By
processing this input data, it is possible to identify the user. With the help of the
pressing times, respectively of leaving the key, we can easily calculate the total time
when a certain key has been pressed or the total time elapsed between two
consecutive keys.

The data that can be analyzed within such an algorithm can be subjected to

report to:

1. analysis of the characteristics of one key at a time (individual key analysis)
2. analysis of the characteristics of a pair of consecutive keys in one step (di-

graph analysis)
3. analysis of the characteristics of a group of three consecutive keys at one

step (tri-graph analysis)
4. generic, analysis of the characteristics of a group of n consecutive keys at

one step (n-graph analysis)
The present thesis addressed the situation from points 1. one key analysis

and 2. di-graph analysis from above. The reason why it was decided to approach these
analyses is due to the fact that the analysis can be done on shorter text strings,
without having to wait for a user to type a very long text in order to be analyzed. The
analysis can be done on shorter strings because it is more likely that a single key or

a pair of keys will be repeated several times in two texts to be compared shorter, the
probability that a group of 3 consecutive keys, four or even more to appear in both
texts.

Regardless of the analysis type of the user's typing mode (one key, di-graph,
tri-graph or n-graph analysis) the input data for the authentication algorithm are time

vectors (intervals when a key has been pressed, or how long it took to press the next
key). The algorithm will process this input data to decide if the user who is now at the

computer is the one who claims to be and can log in to the system. Time vectors are
vectors of real numbers.

BUPT

Conclusions 125

In order to analyze the vectors of real numbers (time vectors) and to decide
their similarity, different methods can be approached: (1) distance based classifier,

(2) statistical classifier -generic, (3) probability classifier, (4) clustering, (5) machine
learning methods - generic, (6) neural networks, (7) fuzzy logic, (8) decision tree, (9)
evolutional computing, (10) SVM - support vector machines etc.

The present thesis addressed the distance based classifier method because,
although it is the first method used in this field, it is still the most used due to its best
results.

The algorithms developed so far in the field of authentication based on

keystroke dynamics do not have a success rate of 100%. They cannot identify or
authenticate without error, even in small proportions. The errors that it can produce
when authenticating a user in the system can be False Acceptance or False Rejection,
when it allows the access of an impostor user or if it does not allow the access of the

real user in the system. Depending on the failure rate, two performance indicators of
the algorithm are generated: False Acceptance Rate (FAR) and False Rejection Rate
(FRR). Generating values of the two performance indicators, their intersection on the

graph brings about a much more generic performance indicator: Equal Error Rate
(EER).

The third objective, O3, of this thesis was to propose at least two new metrics
for calculating the distances between two vectors that generate better performance
compared to the Equal Error Rate (EER) performance indicator than the classical
methods. The third objective was presented at the end of Chapter 6, in subchapter

6.4 Proposing new metrics for calculating distances between users. With the two
metrics, the performances of the authentication algorithm are improved by 25.24%,
respectively by 37.47%. The best performance obtained with the modified metric is
EER = 3.27%.

In order for the authentication algorithm based on keystroke dynamics to
work efficiently and in real time, while a user types on the keyboard, it is necessary
both the execution time to be as short as possible, but also the database about the

pattern of enrolled users in the system to be as supple as possible. Regarding the

structure of the information in the database, it needs to be the most relevant about
the typing of a user, also easy to access.

The fourth objective, O4, of this thesis was to propose a data structure as
efficient as possible, which should contain the most relevant information about the
typing mode of a user. The fourth objective was presented at the end of Chapter 6,
in subchapter 6.5 Proposed user pattern. It is proposed a structure that retains the

average and standard deviation, of the keystroke time, for the most frequently used
14 letters and the average of the keystroke times of the first key, of the second key
and of the total time for the most frequently used 12 di-graphs. The structure obtained
occupy 256 bytes in memory for one user.

Given that the authentication method using keystroke dynamics has a certain
vulnerability, a certain error rate, as well as any other authentication system, a two-

step authentication is required, with two different methods, thus, the keystroke
dynamics authentication method can be used successfully as the second mandatory
authentication method.

This authentication method can be successfully applied as a second
mandatory method in the case of authentication within online education platforms and

especially during exams, when the user's identity must be confirmed throughout the
session, not only once at the beginning. This additional verification, in addition to the

username and password, as the first method of authentication, for example, would be
required for two more reasons:

BUPT

 Conclusions and future works 126

1. The educational systems with Massive Open Online Courses (MOOC) have
seen a great growth from its appearance until today, reaching tens of millions of users,

there are exams on these platforms with thousands of students at the same time and
2. The medical crisis generated by the SARS-CoV-2 virus in 2020 provoked

unprecedented travel restrictions around the globe, and the educational system was
contrived to turn into an online one.

7.1.1 The personal contributions

The personal contributions presented in this research are:
1. A free-text keystroke dynamics algorithm for continuous authentication has

been developed. The algorithm can be found in Appendix 1 - Free-text keystroke

dynamics algorithm for continuous authentication and it was presented in Chapter 4.
2. It was created a database with typing mode from 80 users, 410.000 key

events, a total time of approximately 24 hours for the acquisition of the necessary
data. Detailed in Chapter 5

3. A modify Manhattan distance metric has been proposed, calculated on the
most used 14 letters. The proposed new distance metric improves performance
coefficient EER from 7.13% to the value of 5.33%. This means a 25.24%
improvement in performance. Details about the proposed new metric are in the

subchapter 6.5 Proposing new metrics for calculating distances between users, 6.4.1
New metric for calculating distances based on individual key time.

4. A modify distance metric has been proposed, calculated on the most used
12 di-graphs. The proposed new distance metric improves performance coefficient
EER from 5.23% to the value of 3.27%. This means a 37,47% improvement in
performance. Details about the proposed new metric are in the subchapter 6.4
Proposing new metrics for calculating distances between users, 6.4.2 New metric for

calculating distances based on di-graphs times.
5. A structure for user pattern with the efficiency of the space used but also

with the premises to make the necessary calculations in a short time has been
proposed. The total space occupied by such a pattern for a user is only 256 bytes (64
floats). The proposal formulated for the retention of the pattern is represented in
subchapter 6.5 Proposed user pattern.

7.2 Future works

This thesis has reached its established objectives, and the conclusions
presented in the previous subchapter open new possibilities to continue research in

new directions, such as:
• Expanding the keystroke dynamics database by collecting data from a larger

number of users;
• Expanding the database by collecting data from the 80 users in new sessions

in order to research the evolution of the typing pattern over time
• Analysis of new algorithms, based on different techniques compared to

calculating distances between time vectors

• Applying the metrics proposed in this paper to other databases available from
other scientific research

• Analysis of the particularities of the special characters from the Romanian
language, which are not found in English: Ă, Î, Â, Ş, Ț.

BUPT

Future works 127

• Character analysis punctuation, SPACE, ENTER, TAB, BACKSPACE etc.
• Changing data collection conditions: changing the keyboard, under stress,

etc.
• Analysis of the word in which the di-graph appears
• Developing keystroke dynamics authentication algorithms based on tri-graphs
• Developing keystroke dynamics authentication algorithms based on n-graphs
• Developing keystroke dynamics authentication algorithms for mobile devices,

not only for classic computers and laptops
• Integration of the algorithm developed in existing and functional educational

platforms. Testing it in a real educational environment, as well as improving the
impact by applying the principles of Design-Based Research can pave the way for new
research directions. A first platform in which the developed algorithm can be
integrated is in the Moodle platform of the Politehnica University of Timisoara

BUPT

ACKNOWLEDGEMENTS

This thesis was supported by the Sectoral Operational Programme Human

Resources Development POSDRU/159/1.5/S/137516 financed from the European
Social Fund and by the Romanian Government.

BUPT

REFERENCES

References

[ACM12] Association for Computing Machinery ACM, HOW TO CLASSIFY WORKS

USING ACM’S COMPUTING CLASSIFICATION SYSTEM, 2012, https://dl.acm.org/ccs

[AHM14] A. A. Ahmed and I. Traore, “Biometric recognition based on free-text
keystroke dynamics,” IEEE transactions on cybernetics, vol. 44, pp. 458-472, 2014.

[ALI17] Ali, M.L., Monaco, J.V., Tappert, C.C. et al. Keystroke Biometric Systems for
User Authentication. J Sign Process Syst 86, 175–190 (2017).
https://doi.org/10.1007/s11265-016-1114-9

[ALS16] Alsultan, Arwa & wei, Honq & Warwick, Kevin. (2016). Free-text Keystroke
Dynamics Authentication for Arabic Language. IET Biometrics. 5. 10.1049/iet-
bmt.2015.0101.

[ALS17] A. Alsultan, K. Warwick, H. Wei, Non-conventional keystroke dynamics for
user authentication, Pattern Recognit. Lett. 89 (2017) 53–59.

[ALS18] A. Alsultan, K. Warwick, H. Wei, Improving the performance of free-text

keystroke dynamics authentication by fusion, Appl. Soft Comput. 70 (2018) 1024–

1033.

[ANI16] Anil K. Jain, Karthik Nandakumar, and Arun Ross. 2016. 50 years of biometric
research: Accomplishments, challenges, and opportunities. Pattern Recognition
Letters 79 (2016), 80 – 105.

[ARA03] L. C. F. Araújo, L. H. R. Sucupira Jr., M. G. Lizárraga, L. L. Ling, and J. B. T.
Yabu-uti, “A fuzzy logic approach in typing biometrics user authentication,” in Proc.
1st Indian Int. Conf. Artificial Intelligence, 2003, pp. 1038–1051.

[ARA04] Araújo, Lívia & Sucupira, Luiz & Lizarraga, Miguel & Ling, Lee & Yabu-uti,
João. (2004). User Authentication through Typing Biometrics Features. 3072. 694-
700. 10.1007/978-3-540-25948-0_94.

[ARW17] Arwa Alsultan, Kevin Warwick, Hong Wei, Non-conventional keystroke
dynamics for user authentication, Pattern Recognition Letters, Volume 89, 2017,

Pages 53-59, ISSN 0167-8655

[AVA17] Avar Pentel. 2017. Predicting Age and Gender by Keystroke Dynamics and
Mouse Patterns. In Adjunct Publication of the 25th Conference on User Modeling,

BUPT

 References 130

Adaptation and Personalization (UMAP '17). Association for Computing Machinery,
New York, NY, USA, 381–385. DOI:https://doi.org/10.1145/3099023.3099105

[AYO19] B. Ayotte, J. Huang, M. K. Banavar, D. Hou and S. Schuckers, "Fast
Continuous User Authentication Using Distance Metric Fusion of Free-Text Keystroke
Data," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Long Beach, CA, USA, 2019, pp. 2380-2388, doi:
10.1109/CVPRW.2019.00292.

[BAN12] Banerjee, Salil & Woodard, D.L.. (2012). Biometric Authentication and
Identification Using Keystroke Dynamics: A Survey. Journal of Pattern Recognition

Research. 7. 116-139. 10.13176/11.427.

[BAR06] N. Bartlow and B. Cukic, "Evaluating the Reliability of Credential Hardening
through Keystroke Dynamics," 2006 17th International Symposium on Software
Reliability Engineering, Raleigh, NC, 2006, pp. 117-126, doi:
10.1109/ISSRE.2006.25.

[BER02] BERGADANO, F., GUNETTI, D., AND PICARDI, C. 2002. User authentication
through keystroke dynamics. ACM Transactions on Information and System Security

5, 4.

[BHA18] Bhanja, Samit & Das, Abhishek. (2018). Impact of Data Normalization on
Deep Neural Network for Time Series Forecasting.

[BOU17] P. Bours and S. Brahmanpally, "Language dependent challenge-based
keystroke dynamics," 2017 International Carnahan Conference on Security
Technology (ICCST), Madrid, 2017, pp. 1-6, doi: 10.1109/CCST.2017.8167838.

[CAL19] Calot, Enrique & Ierache, Jorge & Hasperué, Waldo. (2019). Document Typist
Identification by Classification Metrics Applying Keystroke Dynamics Under
Unidealised Conditions. 19-24. 10.1109/ICDARW.2019.70136.

[CHA20] Chang, TY., Tsai, CJ., Yeh, JY. et al. New soft biometrics for limited resource
in keystroke dynamics authentication. Multimed Tools Appl 79, 23295–23324 (2020).
https://doi.org/10.1007/s11042-020-09042-x

[CLO12] Clow, D. (2012, April). The learning analytics cycle: closing the loop

effectively. In Proceedings of the 2nd International Conference on Learning Analytics
and Knowledge (pp. 134-138). ACM.

[COL99] O. Coltell, J. M. Badfa, and G. Torres, “Biometric identification system
basedin keyboardfiltering,” in Proc. IEE 33rd Annu. Int. Carnahan Conf. Security
Technology, 1999, pp. 203–209.

[COU20] Coursera Platform, 2020, www.coursera.org

[DAN12] J. Daniel. 2012. Making Sense of MOOCs: Musings in a Maze of Myth,

Paradox and Possibility. Technical Report. Korea National Open University.

BUPT

References 131

http://www.tonybates.ca/wp-content/uploads/Making-Sense-of-MOOCs.pdf
Retrieved February 2014

[DAS16] Dasgupta, Dipankar & Roy, Arunava & Nag, Abhijit. (2016). Toward the
design of adaptive selection strategies for multi-factor authentication. Computers &
Security. 63. 10.1016/j.cose.2016.09.004.

[DAV09] H. Davoudi, E. Kabir, A new distance measure for free text keystroke
authentication, in: Proceedings of the 14th International CSI Computer Conference,
October, 2009, pp. 570–575.

[DEN13] Deng, Yunbin & Zhong, Yu. (2013). Keystroke Dynamics User Authentication

Based on Gaussian Mixture Model and Deep Belief Nets. ISRN Signal Processing. 2013.
10.1155/2013/565183.

[DOW14] Downes, S. 2008. Places to go: Connectivism & Connective Knowledge.
Innovate 5 (1). http://www.innovateonline.info/index.php?view=article&id=668
January 2014

[DUN08] T. Dunstone and N. Yager. Biometric System and Data Analysis: Design,
Evaluation, and Data Mining. Springer, 1 edition, 2008.

[DYF12] Dyckhoff, A. L., Zielke, D., Bültmann, M., Chatti, M. A., & Schroeder, U.
(2012). Design and Implementation of a Learning Analytics Toolkit for Teachers.
Educational Technology & Society, 15 (3), 58–76.

[EDX20] EdX Platform, 2020, www.edX.org

[FAB08] Fabio Roli, Luca Didaci, and GianLuca Marcialis. 2008. Adaptive Biometric

Systems That Can Improve with Use. In Advances in Biometrics, NaliniK. Ratha and

Venu Govindaraju (Eds.). Springer London, 447–471.

[FAB97] Fabian Monrose and Aviel Rubin. 1997. Authentication via keystroke
dynamics. In Proceedings of the 4th ACM conference on Computer and
communications security (CCS '97). Association for Computing Machinery, New York,
NY, USA, 48–56. DOI:https://doi.org/10.1145/266420.266434

[FAW06] Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition
Letters, 27(8), 861–874. doi:10.1016/j.patrec.2005.10.010.

[FLI10] Flior, E., & Kowalski, K. (2010, April). Continuous biometric user
authentication in online examinations. Paper presented at the ITNG2010 - Seventh
International Conference on Information Technology: New Generations, Las Vegas,
NV.

[FOR77] G. Forsen, M. Nelson, and R. Staron, Jr. "Personal attributes authentication

techniques", Technical Report RADC-TR-77-333, Rome Air Development Center,
October 1977.

BUPT

 References 132

[GUN05] D. Gunetti and C. Picardi, “Keystroke analysis of free text,” ACM Transactions
on Information and System Security, vol. 8, pp. 312–347, 2005

[HAB17] M. Habib and J. Alqatawna, "A Proposed Password-Free Authentication
Scheme Based on a Hybrid Vein-Keystroke Approach," 2017 International Conference
on New Trends in Computing Sciences (ICTCS), Amman, 2017, pp. 173-178, doi:
10.1109/ICTCS.2017.27.

[HAI00] S. Haidar, A. Abbas, and A. K. Zaidi, “A multi-technique approach for user
identification through keystroke dynamics,” in Proc. IEEE Int. Conf. Systems, Man,
and Cybernetics, vol. 2, 2000, pp. 1336–1341.

[HOL13] Holotescu, C., Grosseck, G., Cretu V. 2013. MOOC'S ANATOMY:
MICROBLOGGING AS THE MOOC'S CONTROL CENTER, The 9th International Scientific
Conference eLearning and software for Education Bucharest, April 25-26, 2013

[HUA16] J. Huang, D. Hou, S. Schuckers and S. Upadhyaya, "Effects of text filtering
on authentication performance of keystroke biometrics," 2016 IEEE International
Workshop on Information Forensics and Security (WIFS), Abu Dhabi, 2016, pp. 1-6,
doi: 10.1109/WIFS.2016.7823899.

[HUA17] J. Huang, D. Hou, S. Schuckers, T. Law and A. Sherwin, "Benchmarking
keystroke authentication algorithms," 2017 IEEE Workshop on Information Forensics
and Security (WIFS), Rennes, 2017, pp. 1-6, doi: 10.1109/WIFS.2017.8267670.

[IAP14a] Iapa, A.C. (2014), Outstanding research in MOOC and future development,
Proceedings of the 10th International Scientific Conference "eLearning and Software
for Education" Bucharest, Editura Universitatii Nationale de Aparare "Carol I" 2014

Volume 1, 251-254, DOI: 10.12753/2066-026X-14-035

[IAP14b] IAPA C., MOOC and Learning Analytics: interaction evolution, Social Media
in Academia: Research and Teaching - SMART 2014, 6, 2014

[IAP21a] Iapa A.C., Cretu V.I., Modified Distance Metric That Generates Better
Performance For The Authentication Algorithm Based On Free-Text Keystroke
Dynamics, IEEE 15th International Symposium on Applied Computational Intelligence
and Informatics, Timisoara, Romania, 2021 – paper sent, unpublished

[IAP21b] Iapa A.C., Cretu V.I., Evaluating the performance of authentication
algorithms based on keystroke dynamics used in online educational platforms, The
17th International Scientific Conference eLearning and Software for Education,
Bucharest, Romania, 2021 – paper sent, unpublished

[IBM01] IBM Software Group. Analytics for achievement. Ottawa, Ontario, 2001.
http://public.dhe.ibm.com/common/ssi/ecm/en/ytw03149caen/YTW03149CAEN.
PDF.

[ILO03] Ilonen, Jarmo. (2003). Keystroke dynamics. Advanced Topics in Information
processing–lecture (2003).

BUPT

References 133

[IMP20] Agarwal , A., 2020 Impact Report, edX

[IVA16] Ivanova, Malinka, Holotescu, C., Grosseck, G., Iapa, C. "RELATIONS

BETWEEN LEARNING ANALYTICS AND DATA PRIVACY IN MOOCs." The International
Scientific Conference eLearning and Software for Education. Vol. 3. " Carol I" National
Defence University, 2016.

[JAI05] Jain, Anil & Nandakumar, Karthik & Ross, Arun. (2005). Score normalization
in multimodal biometric system. Pattern Recognition. 38. 2270-2285.
10.1016/j.patcog.2005.01.012.

[JAI99] A. K. Jain, R. Bolle, and S. Pankanti, Eds., Biometrics: Personal Identification

in Networked Society, Kluwer Academic, 1999

[JAY19] Jay R. Young, Randall S. Davies, Jeffrey L. Jenkins & Isaac Pfleger (2019):
Keystroke Dynamics: Establishing Keyprints to Verify Users in Online Courses,
Computers in the Schools, DOI: 10.1080/07380569.2019.1565905

[JES06] Jesse Davis and Mark Goadrich. 2006. The relationship between Precision-
Recall and ROC curves. In Proceedings of the 23rd international conference on
Machine learning (ICML '06). Association for Computing Machinery, New York, NY,

USA, 233–240. DOI:https://doi.org/10.1145/1143844.1143874

[JOY90]R. Joyce andG. Gupta, “Identity authentication basedon keystroke latencies,”
Commun. ACM, vol. 33, no. 2, pp. 168–176, 1990. [BLE91] D. Bleha and M. Obaidat,
“Dimensionality reduction and feature extraction applications in identifying computer
users,” IEEE Trans. Syst., Man, Cybern., vol. 21, no. 2, pp. 452–456, Mar.–Apr. 1991.

[JUN20] Junhong Kim, Pilsung Kang, Freely typed keystroke dynamics-based user

authentication for mobile devices based on heterogeneous features, Pattern
Recognition, Volume 108, 2020, 107556, ISSN 0031-3203

[KAI11] Kai Xi, Yan Tang, Jiankun Hu, Correlation Keystroke Verification Scheme for
User Access Control in Cloud Computing Environment, The Computer Journal, Volume
54, Issue 10, October 2011, Pages 1632–1644,
https://doi.org/10.1093/comjnl/bxr064

[KAN14] Kang, Jeonil & Nyang, Daehun & Lee, KyungHee. (2014). Two-factor face

authentication using matrix permutation transformation and a user password.
Information Sciences. 269. 1–20. 10.1016/j.ins.2014.02.011.

[KIL09] K. S. Killourhy and R. A. Maxion, "Comparing anomaly-detection algorithms
for keystroke dynamics," 2009 IEEE/IFIP International Conference on Dependable
Systems & Networks, Lisbon, 2009, pp. 125-134, doi: 10.1109/DSN.2009.5270346.

[KIM18] J. Kim, H. Kim, P. Kang, Keystroke dynamics-based user authentication using

freely typed text based on user-adaptive feature extraction and novelty detection,

Appl. Soft Comput. 62 (2018) 1077–1087.

BUPT

 References 134

[KOC19] Kochegurova, Elena & Luneva, Elena & Gorokhova, Ekaterina. (2019). On
Continuous User Authentication via Hidden Free-Text Based Monitoring: Volume 2.

10.1007/978-3-030-01821-4_8.

[LAI12] Laiu-Despău Octavian, Curiozităţi şi amuzamente ale limbii române
introducere în ludolingvistică , Editura BrumaR, Timişoara: Brumar, 2012, ISBN 978-
973-602-779-6

[LAT11] Latha, L. and S. Thangasamy. “Efficient approach to Normalization of
Multimodal Biometric Scores.” (2011).

[LEG88] J. Leggett and G. Williams, “Verifying identity via keystroke characterstics,”

International Journal of Man-Machine Studies, 1988.

[LIM14] Y. M. Lim, A. Ayesh and M. Stacey, "Detecting cognitive stress from keyboard
and mouse dynamics during mental arithmetic", Proc. Sci. Inf. Conf. (SAI), pp. 146-
152, Aug. 2014.

[LIN97] D. T. Lin, “Computer-access authentication with neural network based
keystroke identity verification,” in Proc. Int. Conf. Neural Networks, vol. 1, 1997, pp.
174–178.

[LOZ17] Lozhnikov, Pavel & Sulavko, Alexey & Ekaterina, Buraya & Viktor, Pisarenko.
(2017). Authentication of Computer Users in Real-Time by Generating Bit Sequences
Based on Keyboard Handwriting and Face Features. Voprosy kiberbezopasnosti. 24-
34. 10.21681/2311-3456-2017-3-24-34.

[MAA14] A. Maas, C. Heather, C. T. Do, R. Brandman, D. Koller and A. Ng, "Offering
verified credentials in massive open online courses: Moocs and technology to advance

learning and learning research (ubiquity symposium)", Ubiquity, vol. 2014, no. May,
pp. 2, 2014.

[MAT20] MATT WEBER, 2020, "Harvard EdCast: edX Marks the Spot",
http://www.gse.harvard.edu/news-impact/2013/11/harvard-edcast-edx-marks-
thespot/

[MES11] A. Messerman, T. Mustafic, S. A. Camtepe and S. Albayrak. Continuous and
non-intrusive identity verification in real-time environments based on free-text

keystroke dynamics. Proceedings of IEEE International Joint Conference on
Biometrics. 1–8, 2011

[MON00] F. Monrose andA. D. Rubin, “Keystroke dynamics as a biometric for
authentication,” Future Gen. Comput. Syst., vol. 16, no. 4, pp. 351–359, 2000.

[MON02] Monrose F, Reiter MK, Wetzel S (2002) Password hardening based on
keystroke dynamics. Int J Inf Secur 1(2):69–83

[MON06] Montalvao, Jugurta & Freire, Eduardo. (2006). On the equalization of

keystroke timing histograms. Pattern Recognition Letters. 27. 1440-1446.
10.1016/j.patrec.2006.01.010.

BUPT

References 135

[MON97] F. Monrose and A. Rubin. Authentication via keystroke dynamics.
Proceedings of the 4th ACM Conference on Computer and Communications Security.

48–56, 1997.

[MON99] F. Monrose, M. K. Reiter, andS. Wetzel, “Passwordhardening based on
keystroke dynamics,” in Proc. 6th ACM Conf. Computer Security, Singapore, Nov.
1999

[NAN05] Nandakumar, Jain, Ross. 2005. Score Normalization in Multimodal Biometric
Systems, Pattern Recognition 38, 2270-2285.

[OBA97] M. S. Obaidat and B. Sadoun, “Verification of computer user using keystroke

dynamics,” IEEE Trans. Syst., Man, Cybern., vol. 27, no. 2, pp. 261–269, Mar.–Apr.
1997.

[PAR10] S. Park, J.P. Cho, User Authentication based on keystroke analysis of long
free texts with a reduced number of features, in: Proceedings of IEEE International
Conference on Communication Systems, Networks and Applications, July, 2010, pp.
433–435.

[PAT15] PATRO, S GOPAL & Sahu, Kishore Kumar. (2015). Normalization: A

Preprocessing Stage. IARJSET. 10.17148/IARJSET.2015.2305.

[PAU19] Paulo Henrique Pisani, Abir Mhenni, Romain Giot, Estelle Cherrier, Norman
Poh, et al.. Adaptive Biometric Systems: Review and Perspectives. ACM Computing
Surveys, Association for Computing Machinery, 2019, 1,
ff10.1145/nnnnnnn.nnnnnnnff. ffhal-02175778

[PIC12] Picciano, A. G. (2012). The Evolution of Big Data and Learning Analytics in

American Higher Education. Journal of Asynchronous Learning Networks, 16(3), 9-20.

[PIL15] Pilsung Kang and Sungzoon Cho. 2015. Keystroke dynamics-based user
authentication using long and free text strings from various input devices. Inf. Sci.
308, C (July 2015), 72–93. DOI:https://doi.org/10.1016/j.ins.2014.08.070

[POL00] POLEMI, D. 2000. Biometric techniques: review and evaluation of biometric
techniques for identification and authentication, including an appraisal of the areas
where they are most applicable. Report prepared for the European Commission DG

XIII-C.4 on the Information Society Technologies (IST) (Key action 2: New Methods
of Work and Electronic Commerce). Report available at:
www.cordis.lu/infosec/src/stud5fr.html.

[ROB98] J. A. Robinson, V. M. Liang, J. A. Michael, andC. L. MacKenzie, “Computer
user verification login string keystroke dynamics,” IEEE Trans. Syst., Man, Cybern.,
vol. 28, no. 2, pp. 236–241, Mar.–Apr. 1998.

[ROT14] J. Roth, X. Liu and D. Metaxas, "On Continuous User Authentication via

Typing Behavior," in IEEE Transactions on Image Processing, vol. 23, no. 10, pp.
4611-4624, Oct. 2014, doi: 10.1109/TIP.2014.2348802.

BUPT

 References 136

[RUE97] W. G. de Ru and J. H. P. Eloff, “Enhanced password authentication through
fuzzy logic,” IEEE Expert, vol. 17, no. 6, pp. 38–45, Nov.–Dec. 1997.

[RYB08] Rybnik, M., Tabedzki, M., & Saeed, K. (2008). A keystroke dynamics based
system for user identification. Proceedings of the 2008 Seventh Computer Information
Systems and Industrial Management Applications Conference (pp. 225–230).
doi:10.1109/CISIM.2008.8

[SAL10] E. Al Solami, C. Boyd, A. Clark, and A. K. Islam, "Continuous Biometric
Authentication: Can It Be More Practical?", IEEE Int'l Conf. on High Performance
Computing and Communications (HPCC), pp. 647-652, 2010.

[SAL18] S. Salmeron-Majadas, R. S. Baker, O. C. Santos and J. G. Boticario, "A
Machine Learning Approach to Leverage Individual Keyboard and Mouse Interaction
Behavior From Multiple Users in Real-World Learning Scenarios," in IEEE Access, vol.
6, pp. 39154-39179, 2018, doi: 10.1109/ACCESS.2018.2854966.

[SAM09] T. Samura and H. Nishimura, "Keystroke timing analysis for individual
identification in Japanese free text typing," 2009 ICCAS-SICE, Fukuoka, 2009, pp.
3166-3170.

[SCH14] Scheffel, M., Drachsler, H., Stoyanov S., & Specht, M. (2014). Quality
Indicators for Learning Analytics. Educational Technology & Society, 17 (4), 117–132.

[SHU13] P. Shukla and R. Solanki, "Web based keystroke dynamics application for
identifying emotional state", Int. J. Adv. Res. Comput. Commun. Eng., vol. 2, no. 11,
pp. 4489-4493, Nov. 2013.

[SIE11] Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning

and education. Educause Review, 46(5), 30-32.

[SIE12] Siemens, G. (2012, April). Learning analytics: envisioning a research
discipline and a domain of practice. In Proceedings of the 2nd International
Conference on Learning Analytics and Knowledge (pp. 4-8). ACM.

[SOL11] E. A. Solami, C. Boyd, A. Clark and I. Ahmed, "User-representative feature
selection for keystroke dynamics," 2011 5th International Conference on Network and
System Security, Milan, 2011, pp. 229-233, doi: 10.1109/ICNSS.2011.6060005.

[SPI75] R. Spillane, "Keyboard Apparatus for Personal Identification", IBM Technical
Disclosure Bulletin, vol. 17, no. 3346, 1975.

[STE10] D. Stefan and D. Yao. Keystroke-Dynamics Authentication Against Synthetic
Forgeries. In International Conference on Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom), 2010.

[STE20] Stefan Koritar. (2020). Romanian startup Typing DNA raises €6.2 million in
Series A funding to create ‘typing identity’ for security (2020).

BUPT

References 137

[SZE03] G. Szekely. E-statistics: The energy of statistical samples. ´ Bowling Green
State University, Department of Mathematics and Statistics Technical Report,

3(05):1–18, 2003. 3

[TAB14] Tabak, John (2014), Geometry: The Language of Space and Form, Facts on
File math library, Infobase Publishing, p. 150, ISBN 9780816068760

[TEH13] Teh, Pin Shen & Teoh, Andrew & Yue, Shigang. (2013). A Survey of Keystroke
Dynamics Biometrics. TheScientificWorldJournal. 2013. 408280.
10.1155/2013/408280.

[TSA14] Tsai CJ, Chang TY, Cheng PC, Lin JH (2014) Two novel biometric features in

keystroke dynamics authentication systems for touch screen devices. Sec Commun
Netw 7(4):750–758

[TSA19] Tsai, Cheng-Jung & Shih, Kuen-Jhe. (2019). Mining a new biometrics to
improve the accuracy of keystroke dynamics-based authentication system on free-
text. Applied Soft Computing. 80. 10.1016/j.asoc.2019.03.033.

[TYP21] TypingDNA, Continuous authentication for desktops & laptops with keystroke
dynamics technology, typingdna.com, February 2021

[UMP85] D. Umphress and G. Williams, "Identity Verification through Keyboard
Characteristics", Int'l J. Man-Machine Studies, Vol. 23, No. 3, pp. 263-273, 1985.

[VAC07] J. R. Vacca. Biometric Technologies and Verification Systems. Butterworth-
Heinemann, 1 edition, 2007.

[VAN20] Vandenbosch, B., Most Popular Courses of 2020: A Year of Mental Health,

Contract Tracing, and Job-Relevant Skills, Coursera Blog.

[VIL06] M. Villani, C. Tappert, G. Ngo, J. Simone, H.S. Fort, S.H. Cha, Keystroke
biometric recognition studies on long-text input under ideal and applicationoriented
conditions, in: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition Workshop, June, 2006, pp. 39–46.

[WON01] F. W. M. H. Wong, A. S. M. Supian, A. F. Ismail, L. W. Kin, andO. C. Soon,
“Enhanceduser authentication through typing biometrics with artificial neural
networks andk-nearest neighbor algorithm,” in Conf. Rec. 35th Asilomar Conf.

Signals, Syst., Comput., vol. 2, 2001, pp. 911–915.

[YUE04] Yu, Enzhe & Cho, Sungzoon. (2004). Keystroke dynamics identity verification
- Its problems and practical solutions. Computers & Security. 23. 428-440.
10.1016/j.cose.2004.02.004.

[ZAC10] R. Zack, C. Tappert, and S. Cha, "Performance of a long-text-input keystroke

biometric authentication system using an improved k-nearest-neighbor classification
method", IEEE Int'l Conf. on Biometrics: Theory Applications and Systems (BTAS),

pp. 1-6, 2010.

BUPT

 References 138

[ZHO12] Y. Zhong, Y. Deng and A. K. Jain, "Keystroke dynamics for user
authentication," 2012 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition Workshops, Providence, RI, 2012, pp. 117-123, doi:
10.1109/CVPRW.2012.6239225.

[ZHO15] Zhong, Yu & Deng, Yunbin. (2015). A Survey on Keystroke Dynamics
Biometrics: Approaches, Advances, and Evaluations. 10.15579/gcsr.vol2.ch1.

[ZIL98] Zilberman, A.G.: Security method and apparatus employing authentication
by keystroke dynamics (1998) United States Patent 6,442,692.

BUPT

APPENDIX 1 – THE ALGORITHM

The keystroke dynamics authentication algorithm

#include <stdio.h>
#include<stdlib.h>

#include <string.h>

#include <math.h>

#define MAX 500000
FILE *f,*m, *g,*h,*k,*l, *o,*p,*q;
double

oneMeanDU=0,oneMeanUD=0,diMeanDUtotal=0,triMeanDUtotal=0,fourMeanDUtotal
=0,oneStdDevDU=0,oneStdDevUD=0,diStdDevDUtotal=0,triStdDevDUtotal=0,fourS
tdDevDUtotal=0;

typedef struct{
 char key[20];
 int keyCode;

}keyAndKeyCode;
keyAndKeyCode keyAndKeyCodes[100];

typedef struct
{

 int nr;
 int keyCode;

 float dist[100]; //distributia intervalelor de timp /10 0=0-9, 1=10-19, 2=20-29,
..., 99=990-999
 double mean;
 double stdDev;
}distribution;
distribution distributions[230];

typedef struct
{
 char user[20];
 float distance[5000]; //distanta la fiecare dintre utilizatorii din lista
 distribution distributions[230];//pe fiecare litera
}pattern;

pattern patterns[5000];
int nPatterns=0;

pattern patternsR[5000];

typedef struct{
 float DU;

BUPT

 Appendix 1 – The algorithm 140

 float UD;
} akd;

akd allKeysDistribution[120];

typedef struct {
 int letter; //key code
 int event; //0 - key down, 1 - key up
 int timestamp; // time of event
}keyEvent;

keyEvent keyEvents[MAX];

typedef struct {
 int letter; //Key Code

 float DU, UDprev, UDnext; //DU = keystroke time, UDprev - previous flight time,
UDnext - next flight time
 int U,D; //U - Up timestamp, D - Down timestamp

 int letterPrev, letterNext; //Key Code of previous and next keys
 char key[20],keyPrev[20],keyNext[20]; //Keys
}onegraph;
onegraph oneGraphs[MAX];
onegraph allUsersOneGraphs[MAX];

typedef struct {
 int letter1, letter2;
 float DUtotal, DU1, DU2, DD, UU, UD;
 char key1[20],key2[20];
 char word[50];

}digraph;

digraph diGraphs[MAX];

typedef struct{
 int letter1,letter2;
 double meanDUtotal, meanDU1, meanDU2, meanDD, meanUU, meanUD;
 int nr;
 double stdDevDUtotal, stdDevDU1, stdDevDU2, stdDevDD, stdDevUU, stdDevUD;

 float minDUtotal, maxDUtotal;
 }userDiPattern;

 typedef struct{
 char user[20];
 userDiPattern pattern[10000];

 int nPattern;
 int sampleSize;
 float distance[5000];
 }diPattern;

 diPattern diPatterns[5000];
 int nDiPatterns=0;

 diPattern allDiPatterns;

BUPT

The keystroke dynamics authentication algorithm 141

typedef struct {
 int letter1, letter2, letter3;

 float DUtotal, DU1, DU2, DU3, UD1, UD2;
 float D1D2, D1D3, D2D3, U1U2, U1U3, U2U3, D1U2, D2U3,U1D3;
 char key1[20],key2[20],key3[20];
 char word[50];
}trigraph;
trigraph triGraphs[MAX];

typedef struct {
 int letter1, letter2, letter3, letter4;
 float DUtotal, DU1, DU2, DU3, DU4, UD1, UD2, UD3;
 char key1[20],key2[20],key3[20],key4[20];

 char word[50];
}fourgraph;
fourgraph fourGraphs[MAX];

int openFiles()
{
 int i;
 f=fopen("keysAndTheirKeyCodes.txt","r");
 g=fopen("oneGraphsAllUsers.txt","w");

 h=fopen("diGraphsAllUsers.txt","w");
 k=fopen("triGraphsAllUsers.txt","w");
 l=fopen("fourGraphsAllUsers.txt","w");
 o=fopen("meanAndStdDevAllUsers.txt","w");

fprintf(o,"user\toneMeanDU\toneStdDevDU\toneMeanUD\toneStdDevUD\tdiMeanDUt
otal\tdiStdDevDUtotal\ttriMeanDUtotal\ttriStdDevDUtotal\tfourMeanDUtotal\tfourStd

DevDUtotal\n");

 for(i=0;i<100;i++)
 {
 fscanf(f,"%s%d",keyAndKeyCodes[i].key,&keyAndKeyCodes[i].keyCode);
 }
 fclose(f);
 p=fopen("keysDistributionMeanAndStdDevAllUsers.txt","w");

 fprintf(p,"user\texp");
 for(i=0;i<100;i++)
 {
 fprintf(p,"\t%s",keyAndKeyCodes[i].key);
 }
 q=fopen("KeysDistributionAllUsers.txt","w");

 fprintf(q,"user\texp");
 for(i=0;i<100;i++)
 {
 fprintf(q,"\t%d",i*10);
 }

 fprintf(q,"\nuser\texp");
 for(i=0;i<120;i++)

 {
 fprintf(q,"\t%d",(i-20)*10);

BUPT

 Appendix 1 – The algorithm 142

 }
 f=fopen("keyEventsListAllUsers.txt","r");

 return 1;
}

int keycodeToKey(char key[],int letter)
{
 int i;
 for(i=0;i<100;i++)

 {
 if(keyAndKeyCodes[i].keyCode==letter)
 {
 strcpy(key,keyAndKeyCodes[i].key);

 return 1;
 }
 }

 return 0;
}

void deleteOneGraph(int x,int n)
{
 int i;

 for(i=x;i<n-1;i++)
 {
 oneGraphs[i]=oneGraphs[i+1];
 }
}

int constructWord(char word[],int x,int nr)

{

 int i;
 char construct[50]="";
 for(i=x;i<x+nr;i++)
 if(oneGraphs[i].letter<65 || oneGraphs[i].letter>90)
 {
 strcpy(word,"");

 return 0;
 }
 i=x;
 while(i>=0 && oneGraphs[i].letter>=65 && oneGraphs[i].letter<=90)
 {
 i--;

 }
 i++;
 while(oneGraphs[i].letter>=65 && oneGraphs[i].letter<=90 &&
strlen(construct)<49)
 {

 strcat(construct,oneGraphs[i].key);
 i++;

 }
 strcpy(word,construct);

BUPT

The keystroke dynamics authentication algorithm 143

 return 1;
}

int meanAndStdDev(int n)
{
 int i;
 for(i=0;i<n;i++)
 {
 oneMeanDU=oneMeanDU+oneGraphs[i].DU;

 if(i<n-1)
 {
 oneMeanUD=oneMeanUD+oneGraphs[i].UDnext;

 diMeanDUtotal+=diGraphs[i].DUtotal;
 }
 if(i<n-2)

 triMeanDUtotal+=triGraphs[i].DUtotal;
 if(i<n-3)
 fourMeanDUtotal+=fourGraphs[i].DUtotal;
 }
 oneMeanDU=oneMeanDU/n;
 oneMeanUD/=(n-1);

 diMeanDUtotal/=(n-1);
 triMeanDUtotal/=(n-2);
 fourMeanDUtotal/=(n-3);
 for(i=0;i<n;i++)
 {
 oneStdDevDU+=pow(oneGraphs[i].DU-oneMeanDU,2);
 if(i<n-1)

 {

 oneStdDevUD+=pow(oneGraphs[i].UDnext-oneMeanUD,2);

 diStdDevDUtotal+=pow(diGraphs[i].DUtotal-diMeanDUtotal,2);
 }
 if(i<n-2)
 triStdDevDUtotal+=pow(triGraphs[i].DUtotal-triMeanDUtotal,2);

 if(i<n-3)
 fourStdDevDUtotal+=pow(fourGraphs[i].DUtotal-fourMeanDUtotal,2);
 }
 oneStdDevDU=sqrt(oneStdDevDU/n);
 oneStdDevUD=sqrt(oneStdDevUD/(n-1));

 diStdDevDUtotal=sqrt(diStdDevDUtotal/(n-1));
 triStdDevDUtotal=sqrt(triStdDevDUtotal/(n-2));
 fourStdDevDUtotal=sqrt(fourStdDevDUtotal/(n-3));

fprintf(o,"\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n",oneM

eanDU,oneStdDevDU,
oneMeanUD,oneStdDevUD,diMeanDUtotal,diStdDevDUtotal,triMeanDUtotal,triStdDev

DUtotal,fourMeanDUtotal,fourStdDevDUtotal);
 return 1;

BUPT

 Appendix 1 – The algorithm 144

}

int ZNormalization(int n)
{
 int i;
 meanAndStdDev(n);
 for(i=0;i<n;i++)
 {
 oneGraphs[i].DU=fabs(oneGraphs[i].DU-oneMeanDU)/oneStdDevDU;

 oneGraphs[i].UDnext=(oneGraphs[i].UDnext-oneMeanUD)/oneStdDevUD;
 oneGraphs[i].UDprev=(oneGraphs[i].UDprev-oneMeanUD)/oneStdDevUD;
 }
 return 1;

}

int minMaxNormalization(int n)

{
 int i;
 float minDU,maxDU,minUD, maxUD;
 for(i=0;i<n;i++)
 {
 if(i==0)

 {
 minDU=oneGraphs[i].DU;
 maxDU=oneGraphs[i].DU;
 minUD=oneGraphs[i].UDnext;
 maxUD=oneGraphs[i].UDnext;
 }
 if(minDU > oneGraphs[i].DU)

 {

 minDU=oneGraphs[i].DU;
 }
 if(maxDU < oneGraphs[i].DU)
 {
 maxDU=oneGraphs[i].DU;
 }

 if(i!=n-1)
 {
 if(minUD > oneGraphs[i].UDnext)
 {
 minUD=oneGraphs[i].UDnext;
 }

 if(maxUD < oneGraphs[i].UDnext)
 {
 maxUD=oneGraphs[i].UDnext;
 }
 }

 }
 for(i=0;i<n;i++)

 {
 oneGraphs[i].DU=(oneGraphs[i].DU-minDU)/(maxDU-minDU);

BUPT

The keystroke dynamics authentication algorithm 145

 oneGraphs[i].UDnext=(oneGraphs[i].UDnext-minUD)/(maxUD-minUD);
 oneGraphs[i].UDprev=(oneGraphs[i].UDprev-minUD)/(maxUD-minUD);

 }
 return 1;
}

int copyInPattern(char user[])
{
 int i;

 strcpy(patterns[nPatterns].user,user);
 for(i=0;i<230;i++)
 {
 patterns[nPatterns].distributions[i]=distributions[i];

 }
 nPatterns++;
 return 1;

}

float calculateEuclidianDistances()
{
 int i,j,k;
 float dist,max=0,distStdDev;

 for(i=0;i<nPatterns;i++)
 {
 for(j=i;j<nPatterns;j++)
 {
 dist=0;
 distStdDev=0;
 for(k=65;k<=90;k++)

 if(k==65 || k==69 || k==73 || k==84 || k==82 || k==78 || k==85 || k==83

|| k==67 || k==76 || k==79 || k==77 || k==80 || k==68)
 {if(patterns[i].distributions[k].mean!=0 &&
patterns[j].distributions[k].mean!=0)
 {
 dist=dist+pow(patterns[i].distributions[k].mean-
patterns[j].distributions[k].mean,2);

 distStdDev=distStdDev+pow(patterns[i].distributions[k].stdDev-
patterns[j].distributions[k].stdDev,2);
 }
 if(k==57)
 k=64;
 }

 dist=sqrt(dist);
 distStdDev=sqrt(distStdDev);
 patterns[i].distance[j]=dist;
 patterns[j].distance[i]=dist;
 if(max<dist)

 max=dist;
 }

 }
 return max;

BUPT

 Appendix 1 – The algorithm 146

}

float calculateManhattanDistances(float coefficient)
{
 int i,j,k;
 float dist,max=0, distStdDev;
 for(i=0;i<nPatterns;i++)
 {
 for(j=0;j<nPatterns;j++)

 {
 dist=0;
 distStdDev=0;
 for(k=65;k<=90;k++)

 {
 if(k==65 || k==69 || k==73 || k==84 || k==82 || k==78 || k==85 ||
k==83 || k==67 || k==76 || k==79 || k==77 || k==80 || k==68)

 if(patterns[i].distributions[k].mean!=0 &&
patterns[j].distributions[k].mean!=0)
 {
 dist=dist+fabs(patterns[i].distributions[k].mean-
patterns[j].distributions[k].mean)-coefficient*patterns[i].distributions[k].stdDev;
 distStdDev=distStdDev+fabs(patterns[i].distributions[k].stdDev-

patterns[j].distributions[k].stdDev);
 }
 if(k==57)
 k=64;
 }
 patterns[i].distance[j]=dist;
 if(max<dist)

 max=dist;

 }
 }
 return max;
}

float calculateBhattacharyyaDistances()

{
 int i,j,k;
 float dist,max=0;
 for(i=0;i<nPatterns;i++)
 {
 for(j=i;j<nPatterns;j++)

 {
 dist=0;
 for(k=48;k<=90;k++)
 {if(patterns[i].distributions[k].mean!=0 &&
patterns[j].distributions[k].mean!=0)

{
dist=dist+sqrt(patterns[i].distributions[k].mean*patterns[j].distributions[k].

mean);
 }

BUPT

The keystroke dynamics authentication algorithm 147

 //dist=log(dist);
 patterns[i].distance[j]=dist;

 patterns[j].distance[i]=dist;
 if(max<dist)
 max=dist;
 if(k==57)
 k=64;
 }
 }

 }
 return max;
}

float calculateRdistances()
{
 int i,j,k,k2,sw;

 float dist,max=0;
 distribution aux;
 for(i=0;i<nPatterns;i++)
 {
 for(k=0;k<223;k++)
 {

 patterns[i].distributions[k].keyCode=k;
 }
 patternsR[i]=patterns[i];
 sw=0;
 while(sw==0)
 {
 sw=1;

 for(j=65;j<=90;j++)

 {
 if(patternsR[i].distributions[j].mean < patternsR[i].distributions[j+1].mean)
 {
 aux=patternsR[i].distributions[j];
 patternsR[i].distributions[j]=patternsR[i].distributions[j+1];
 patternsR[i].distributions[j+1]=aux;

 sw=0;
 }
 }
 }
 }
 for(i=0;i<nPatterns;i++)

 {
 for(j=i;j<nPatterns;j++)
 {
 dist=0;
 for(k=65;k<=90;k++)

for(k2=65;k2<=90;k2++)
if(patternsR[i].distributions[k].keyCode==patternsR[j].distributions[k2].key

Code)
 {

BUPT

 Appendix 1 – The algorithm 148

 if(patternsR[i].distributions[k].mean!=0 &&
patterns[j].distributions[k2].mean!=0)

 {
 dist=dist+abs(k2-k);
 }
 break;
 }
 patternsR[i].distance[j]=dist;
 patternsR[j].distance[i]=dist;

 if(max<dist)
 max=dist;
 }
 }

 return max;
}

float calculateADistances(float t)
{
 int i,j,k;
 float dist,max=0;
 for(i=0;i<nPatterns;i++)
 {

 for(j=i;j<nPatterns;j++)
 {
 dist=0;
 for(k=65;k<=90;k++)
 {
 if(k==65 || k==69 || k==73 || k==84 || k==82 || k==78 || k==85 ||
k==83 || k==67 || k==76 || k==79 || k==77 || k==80 || k==68)

 if(patterns[i].distributions[k].mean!=0 &&

patterns[j].distributions[k].mean!=0)
 {
 if(patterns[i].distributions[k].mean > patterns[j].distributions[k].mean)
 {
 if(patterns[i].distributions[k].mean/patterns[j].distributions[k].mean < t)
 dist++;

 }
 else
 {
 if(patterns[j].distributions[k].mean/patterns[i].distributions[k].mean < t)
 dist++;
 }

 }
 if(k==57)
 k=64;
 }
 dist=1-dist/37; //27

 patterns[i].distance[j]=dist;
 patterns[j].distance[i]=dist;

 if(max<dist)
 max=dist;

BUPT

The keystroke dynamics authentication algorithm 149

 }
 }

 return max;
}

int calculateFARandFRR(float max, char file[])
{
 FILE *d;
 d=fopen(file,"w");

 int i,j,k, sw=0;
 float ERR=0, FAR=0, FRR=0, TAR=0, TRR=0, TA=0, TR=0, FA=0, FR=0, iERR=0,
coeff=1;
 if(max<=10)

 coeff=1000;
 for(i=0;i<=(int)max*(int)coeff;i++)
 {

 TA=0, TR=0, FA=0, FR=0;
 for(j=0;j<nPatterns;j++)
 {
 for(k=j+1;k<nPatterns;k++)
 {
 if(patterns[j].user[4]==patterns[k].user[4] &&

patterns[j].user[5]==patterns[k].user[5] &&
patterns[j].user[6]==patterns[k].user[6] &&
patterns[j].user[7]==patterns[k].user[7])
 {
 if(patterns[j].distance[k]<(float)i/coeff)
 TA++;
 else

 FR++;

 }
 else
 {
 if(patterns[j].distance[k]<(float)i/coeff)
 FA++;
 else

 TR++;
 }
 }
 }
 FAR=FA/(FA+TR)*100;
 FRR=FR/(FR+TA)*100;

 TAR=TA/(TA+FR)*100;
 TRR=TR/(TR+FA)*100;
 if(FAR>FRR && sw==0)
 {
 ERR=FAR;

 iERR=i;
 sw=1;

 }
 fprintf(d,"\n%.3f\t%.2f\t%.2f\t%.2f\t%.2f",(float)i/coeff,FAR,FRR,TAR,TRR);

BUPT

 Appendix 1 – The algorithm 150

 }
 fprintf(d,"\nERR= %.2f in %.2f",ERR, (float)iERR/coeff);

 printf("EER=\t%.2f\t%.2f\n",ERR, (float)iERR/coeff);
 fclose(d);
 return 1;
}

int RcalculateFARandFRR(float max, char file[])
{

 FILE *d;
 d=fopen(file,"w");
 int i,j,k, sw=0;
 float ERR=0, FAR=0, FRR=0, TAR=0, TRR=0, TA=0, TR=0, FA=0, FR=0, coeff=1,

iERR=0;
 if(max<=10)
 coeff=1000;

 for(i=1;i<(int)max*(int)coeff;i++)
 {
 TA=0, TR=0, FA=0, FR=0;
 for(j=0;j<nPatterns;j++)
 {
 for(k=j+1;k<nPatterns;k++)

 {
 if(patternsR[j].user[4]==patternsR[k].user[4] &&
patternsR[j].user[5]==patternsR[k].user[5] &&
patternsR[j].user[6]==patternsR[k].user[6] &&
patternsR[j].user[7]==patternsR[k].user[7])
 {
 if(patternsR[j].distance[k]<(float)i/coeff)

 TA++;

 else
 FR++;
 }
 else
 {
 if(patternsR[j].distance[k]<(float)i/coeff)

 FA++;
 else
 TR++;
 }
 }
 }

 FAR=FA/(FA+TR)*100;
 FRR=FR/(FR+TA)*100;
 TAR=TA/(TA+FR)*100;
 TRR=TR/(TR+FA)*100;
 if(FAR>FRR && sw==0)

 {
 ERR=FAR;

 iERR=i;
 sw=1;

BUPT

The keystroke dynamics authentication algorithm 151

 }
 fprintf(d,"\n%.2f\t%.2f\t%.2f\t%.2f\t%.2f",(float)i/coeff,FAR,FRR,TAR,TRR);

 }
 fprintf(d,"\nERR= %.2f in %.2f",ERR, iERR/coeff);
 printf("%.2f\t%.2f\n",ERR, iERR/coeff);
 fclose(d);
 return 1;
}

int writeDistances()
{
 int i,j,k;
 FILE *d;

 d=fopen("oneEuclidianDistances.txt","w");
 fprintf(d,"users\t");
 for(i=0;i<nPatterns;i++)

 {
 fprintf(d,"%s\t",patterns[i].user);
 }
 fprintf(d,"\n");
 for(i=0;i<nPatterns;i++)
 {

 fprintf(d,"%s\t",patterns[i].user);
 for(j=0;j<nPatterns;j++)
 {
 fprintf(d,"%.2f\t",patterns[i].distance[j]);
 }
 fprintf(d,"\n");
 }

 fclose(d);

 return 1;
}

int keyDistribution(int n, char user[])
{
 int i,j;

 for(i=0;i<230;i++)
 {
 distributions[i].nr=0;
 distributions[i].mean=0;
 distributions[i].stdDev=0;
 for(j=0;j<100;j++)

 {
 distributions[i].dist[j]=0;
 }
 }
 for(i=0;i<120;i++)

 {
 allKeysDistribution[i].DU=0;

 allKeysDistribution[i].UD=0;
 }

BUPT

 Appendix 1 – The algorithm 152

 for(i=0;i<n;i++)
 {

 distributions[oneGraphs[i].letter].nr++;
 distributions[oneGraphs[i].letter].mean+=oneGraphs[i].DU;
 if(oneGraphs[i].DU<1000)
 {
 distributions[oneGraphs[i].letter].dist[(int)oneGraphs[i].DU/10]++;
 allKeysDistribution[(int)oneGraphs[i].DU/10].DU++;
 }

 if(oneGraphs[i].UDnext<1000 && oneGraphs[i].UDnext>-200)
 {
 allKeysDistribution[(int)oneGraphs[i].UDnext/10+20].UD++;
 }

 }
 for(i=0;i<230;i++)
 {

 if(distributions[i].nr!=0)
 distributions[i].mean=distributions[i].mean/distributions[i].nr;
 }
 for(i=0;i<n;i++)
 {
 distributions[oneGraphs[i].letter].stdDev+=pow(oneGraphs[i].DU-

distributions[oneGraphs[i].letter].mean,2);
 }
 for(i=0;i<230;i++)
 {
 if(distributions[i].nr!=0)
 distributions[i].stdDev=sqrt((float)distributions[i].stdDev/distributions[i].nr);
 }

 fprintf(p,"\n%s\tNr",user);

 for(i=0;i<100;i++)
 {
 fprintf(p,"\t%d",distributions[keyAndKeyCodes[i].keyCode].nr);
 }
 fprintf(p,"\n%s\tMean",user);
 for(i=0;i<100;i++)

 {
 fprintf(p,"\t%.2f", distributions[keyAndKeyCodes[i].keyCode].mean);
 }
 fprintf(p,"\n%s\tStdDev",user);
 for(i=0;i<100;i++)
 {

 fprintf(p,"\t%.2f",distributions[keyAndKeyCodes[i].keyCode].stdDev);
 }
 fprintf(q,"\n%s\tDU",user);
 for(i=0;i<100;i++)
 {

 fprintf(q,"\t%.2f",allKeysDistribution[i].DU);
 }

 fprintf(q,"\n%s\tUD",user);
 for(i=0;i<120;i++)

BUPT

The keystroke dynamics authentication algorithm 153

 {
 fprintf(q,"\t%.2f",allKeysDistribution[i].UD);

 }
 copyInPattern(user);
 return 1;
}

int constructOneGraphs(int n, char user[])
{

 int letter,event,timestamp;
 int i;
 n=0;
 do

 {
 fscanf(f,"%d",&letter);
 if(letter==-1)

 {
 break;
 }
 fscanf(f,"%d%d",&event,×tamp);
 if(event==1)
 {

 if(n!=0)
 {
 for(i=n-1;i>=0;i--)
 {
 if(oneGraphs[i].letter==letter)
 {
 oneGraphs[i].U=timestamp;

 while(oneGraphs[i].letter==oneGraphs[i-1].letter && oneGraphs[i-1].U==0)

 {
 deleteOneGraph(i-1,n);
 i--;
 n--;
 }
 break;

 }
 }
 }
 }
 if(event==0)
 {

 oneGraphs[n].letter=letter;
 keycodeToKey(oneGraphs[n].key,letter);
 oneGraphs[n].D=timestamp;
 oneGraphs[n].U=0;
 n++;

 }
 }while(letter!=-1);

 n--;
 for(i=0;i<n;i++) //construct oneGraphs

BUPT

 Appendix 1 – The algorithm 154

 {
 oneGraphs[i].DU= oneGraphs[i].U - oneGraphs[i].D;

 if(oneGraphs[i].DU>999)
 oneGraphs[i].DU=999;
 if(oneGraphs[i].DU<0)
 {
 deleteOneGraph(i,n);
 n--;
 }

 if(i==0)
 {
 oneGraphs[i].UDprev=0;
 oneGraphs[i].letterPrev=0;

 strcpy(oneGraphs[i].keyPrev,"");
 oneGraphs[i].UDnext=oneGraphs[i+1].D-oneGraphs[i].U;
 oneGraphs[i].letterNext=oneGraphs[i+1].letter;

 strcpy(oneGraphs[i].keyNext,oneGraphs[i+1].key);
 }
 else
 {
 if(i==n-1)
 {

 oneGraphs[i].UDprev=oneGraphs[i].D-oneGraphs[i-1].U;
 oneGraphs[i].letterPrev=oneGraphs[i-1].letter;
 strcpy(oneGraphs[i].keyPrev,oneGraphs[i-1].key);
 oneGraphs[i].UDnext=0;
 oneGraphs[i].letterNext=0;
 strcpy(oneGraphs[i].keyNext,"");
 }

 else

 {
 oneGraphs[i].UDprev=oneGraphs[i].D-oneGraphs[i-1].U;
 oneGraphs[i].letterPrev=oneGraphs[i-1].letter;
 strcpy(oneGraphs[i].keyPrev,oneGraphs[i-1].key);
 oneGraphs[i].UDnext=oneGraphs[i+1].D-oneGraphs[i].U;
 oneGraphs[i].letterNext=oneGraphs[i+1].letter;

 strcpy(oneGraphs[i].keyNext,oneGraphs[i+1].key);
 }
 }
 if(oneGraphs[i].UDnext<-199)
 oneGraphs[i].UDnext=-199;
 if(oneGraphs[i].UDnext>999)

 oneGraphs[i].UDnext=999;
 if(oneGraphs[i].UDprev<-199)
 oneGraphs[i].UDprev=-199;
 if(oneGraphs[i].UDprev>999)
 oneGraphs[i].UDprev=999;

 }
 return n;

}

BUPT

The keystroke dynamics authentication algorithm 155

int constructDiGraphs(int n, char user[])
{

 int i;
 for(i=0;i<n-1;i++) //construct diGraphs
 {
 diGraphs[i].letter1=oneGraphs[i].letter;
 diGraphs[i].letter2=oneGraphs[i+1].letter;
 strcpy(diGraphs[i].key1, oneGraphs[i].key);
 strcpy(diGraphs[i].key2, oneGraphs[i+1].key);

 diGraphs[i].DU1=oneGraphs[i].DU/100;
 diGraphs[i].DU2=oneGraphs[i+1].DU/100;
 diGraphs[i].UD=oneGraphs[i+1].UDprev/100;
 diGraphs[i].DD=diGraphs[i].UD+diGraphs[i].DU1;

 diGraphs[i].UU=diGraphs[i].UD+diGraphs[i].DU2;
diGraphs[i].DUtotal=(diGraphs[i].DU1+diGraphs[i].UD+diGraphs[i].DU2)/3;

constructWord(diGraphs[i].word,i,2);

fprintf(h,"%s\t%s\t%d\t%d\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%s\n",d
iGraphs[i].key1,diGraphs[i].key2,diGraphs[i].letter1,diGraphs[i].letter2,diGr
aphs[i].DU1,diGraphs[i].DU2,diGraphs[i].UD,diGraphs[i].DD,diGraphs[i].UU,
diGraphs[i].DUtotal,diGraphs[i].word);

 }
 return 1;

}

int constructDiPattern(char user[], int n)
{
 int i,j;
 strcpy(diPatterns[nDiPatterns].user,user);
 diPatterns[nDiPatterns].sampleSize=n-1;

 for(i=0;i<n-1;i++)

 {
 for(j=0;j<diPatterns[nDiPatterns].nPattern;j++)
 {
 if(diGraphs[i].letter1 == diPatterns[nDiPatterns].pattern[j].letter1 &&
diGraphs[i].letter2 == diPatterns[nDiPatterns].pattern[j].letter2)
 break;

 }
 if((diGraphs[i].letter1<=90 && diGraphs[i].letter1>=65) &&
(diGraphs[i].letter2<=90 && diGraphs[i].letter2>=65))
 {
 diPatterns[nDiPatterns].pattern[j].letter1=diGraphs[i].letter1;
 diPatterns[nDiPatterns].pattern[j].letter2=diGraphs[i].letter2;

 diPatterns[nDiPatterns].pattern[j].nr++;
 diPatterns[nDiPatterns].pattern[j].meanDUtotal+=diGraphs[i].DUtotal;
 diPatterns[nDiPatterns].pattern[j].meanDU1+=diGraphs[i].DU1;
 diPatterns[nDiPatterns].pattern[j].meanDU2+=diGraphs[i].DU2;
 diPatterns[nDiPatterns].pattern[j].meanDD+=diGraphs[i].DD;

 diPatterns[nDiPatterns].pattern[j].meanUU+=diGraphs[i].UU;
 diPatterns[nDiPatterns].pattern[j].meanUD+=diGraphs[i].UD;

 if(diPatterns[nDiPatterns].pattern[j].minDUtotal>diGraphs[i].DUtotal ||
j==diPatterns[nDiPatterns].nPattern)

BUPT

 Appendix 1 – The algorithm 156

 diPatterns[nDiPatterns].pattern[j].minDUtotal=diGraphs[i].DUtotal;
 if(diPatterns[nDiPatterns].pattern[j].maxDUtotal<diGraphs[i].DUtotal ||

j==diPatterns[nDiPatterns].nPattern)
 diPatterns[nDiPatterns].pattern[j].maxDUtotal=diGraphs[i].DUtotal;
 if(j==diPatterns[nDiPatterns].nPattern)
 diPatterns[nDiPatterns].nPattern++;
 }
 }
 for(j=0;j<diPatterns[nDiPatterns].nPattern;j++)

 {
diPatterns[nDiPatterns].pattern[j].meanDUtotal/=diPatterns[nDiPatterns].pattern[j].
nr;
diPatterns[nDiPatterns].pattern[j].meanDU1/=diPatterns[nDiPatterns].pattern[j].nr;

diPatterns[nDiPatterns].pattern[j].meanDU2/=diPatterns[nDiPatterns].pattern[j].nr;
diPatterns[nDiPatterns].pattern[j].meanDD/=diPatterns[nDiPatterns].pattern[j].nr;
diPatterns[nDiPatterns].pattern[j].meanUU/=diPatterns[nDiPatterns].pattern[j].nr;

diPatterns[nDiPatterns].pattern[j].meanUD/=diPatterns[nDiPatterns].pattern[j].nr;
 }
 for(j=0;j<diPatterns[nDiPatterns].nPattern;j++)
 {
 for(i=0;i<n;i++)
 {

 if(diGraphs[i].letter1 == diPatterns[nDiPatterns].pattern[j].letter1 &&
diGraphs[i].letter2 == diPatterns[nDiPatterns].pattern[j].letter2)
 {
diPatterns[nDiPatterns].pattern[j].stdDevDUtotal+=pow(diPatterns[nDiPatterns].pat
tern[j].stdDevDUtotal+diGraphs[i].DUtotal,2);
diPatterns[nDiPatterns].pattern[j].stdDevDU1+=pow(diPatterns[nDiPatterns].patter
n[j].stdDevDU1+diGraphs[i].DU1,2);

diPatterns[nDiPatterns].pattern[j].stdDevDU2+=pow(diPatterns[nDiPatterns].patter

n[j].stdDevDU2+diGraphs[i].DU2,2);
diPatterns[nDiPatterns].pattern[j].stdDevDD+=pow(diPatterns[nDiPatterns].pattern
[j].stdDevDD+diGraphs[i].DD,2);
diPatterns[nDiPatterns].pattern[j].stdDevUU+=pow(diPatterns[nDiPatterns].pattern
[j].stdDevUU+diGraphs[i].UU,2);
diPatterns[nDiPatterns].pattern[j].stdDevUD+=pow(diPatterns[nDiPatterns].pattern

[j].stdDevUD+diGraphs[i].UD,2);
 }
 }
 }
 for(j=0;j<diPatterns[nDiPatterns].nPattern;j++)
 {

diPatterns[nDiPatterns].pattern[j].stdDevDUtotal=sqrt(diPatterns[nDiPatterns].patte
rn[j].stdDevDUtotal/diPatterns[nDiPatterns].pattern[j].nr);
diPatterns[nDiPatterns].pattern[j].stdDevDU1=sqrt(diPatterns[nDiPatterns].pattern[
j].stdDevDU1/diPatterns[nDiPatterns].pattern[j].nr);

diPatterns[nDiPatterns].pattern[j].stdDevDU2=sqrt(diPatterns[nDiPatterns].pattern[
j].stdDevDU2/diPatterns[nDiPatterns].pattern[j].nr);

diPatterns[nDiPatterns].pattern[j].stdDevDD=sqrt(diPatterns[nDiPatterns].pattern[j]
.stdDevDD/diPatterns[nDiPatterns].pattern[j].nr);

BUPT

The keystroke dynamics authentication algorithm 157

diPatterns[nDiPatterns].pattern[j].stdDevUU=sqrt(diPatterns[nDiPatterns].pattern[j]
.stdDevUU/diPatterns[nDiPatterns].pattern[j].nr);

diPatterns[nDiPatterns].pattern[j].stdDevUD=sqrt(diPatterns[nDiPatterns].pattern[j]
.stdDevUD/diPatterns[nDiPatterns].pattern[j].nr);
 }
 nDiPatterns++;
 return 1;
}

int writeMeanAndStdDevDiPattern()
{
 int i,j,user;
 FILE *d;

 d=fopen("DiPatternMeanStdDev.txt","w");
 for(user=0;user<nDiPatterns;user++)
 {

 fprintf(d,"\n%sL1\t",diPatterns[user].user);
 for(i=0;i<diPatterns[user].nPattern;i++)
 fprintf(d,"%d\t",diPatterns[user].pattern[i].letter1);
 fprintf(d,"\n%sL2\t",diPatterns[user].user);
 for(i=0;i<diPatterns[user].nPattern;i++)
 fprintf(d,"%.d\t",diPatterns[user].pattern[i].letter2);

 fprintf(d,"\n%sNr\t",diPatterns[user].user);
 for(i=0;i<diPatterns[user].nPattern;i++)
 fprintf(d,"%d\t",diPatterns[user].pattern[i].nr);
 fprintf(d,"\n%sMean\t",diPatterns[user].user);
 for(i=0;i<diPatterns[user].nPattern;i++)
 fprintf(d,"%.3f\t",diPatterns[user].pattern[i].meanDUtotal);
 fprintf(d,"\n%sStdDev\t",diPatterns[user].user);

 for(i=0;i<diPatterns[user].nPattern;i++)

 {
 fprintf(d,"%.3f\t",diPatterns[user].pattern[i].stdDevDUtotal);
 }
 }
 fclose(d);
 return 1;

}

int constructAllDiPattern()
{
 int i,j,k, user;
 for(user=0;user<nDiPatterns;user++)

 {
 for(i=0;i<diPatterns[user].nPattern;i++)
 {
 for(j=0;j<allDiPatterns.nPattern;j++)
 {

 if(diPatterns[user].pattern[i].letter1 == allDiPatterns.pattern[j].letter1 &&
diPatterns[user].pattern[i].letter2 == allDiPatterns.pattern[j].letter2)

 break;
 }

BUPT

 Appendix 1 – The algorithm 158

 allDiPatterns.pattern[j].letter1=diPatterns[user].pattern[i].letter1;
 allDiPatterns.pattern[j].letter2=diPatterns[user].pattern[i].letter2;

 allDiPatterns.pattern[j].nr+=diPatterns[user].pattern[i].nr;

allDiPatterns.pattern[j].meanDUtotal+=diPatterns[user].pattern[i].meanDUtotal;
 allDiPatterns.pattern[j].meanDU1+=diPatterns[user].pattern[i].meanDU1;
 allDiPatterns.pattern[j].meanDU2+=diPatterns[user].pattern[i].meanDU2;
 allDiPatterns.pattern[j].meanDD+=diPatterns[user].pattern[i].meanDD;
 allDiPatterns.pattern[j].meanUU+=diPatterns[user].pattern[i].meanUU;

 allDiPatterns.pattern[j].meanUD+=diPatterns[user].pattern[i].meanUD;

allDiPatterns.pattern[j].stdDevDUtotal+=diPatterns[user].pattern[i].stdDevDUtotal;
 allDiPatterns.pattern[j].stdDevDU1+=diPatterns[user].pattern[i].stdDevDU1;

 allDiPatterns.pattern[j].stdDevDU2+=diPatterns[user].pattern[i].stdDevDU2;
 allDiPatterns.pattern[j].stdDevDD+=diPatterns[user].pattern[i].stdDevDD;
 allDiPatterns.pattern[j].stdDevUU+=diPatterns[user].pattern[i].stdDevUU;

 allDiPatterns.pattern[j].stdDevUD+=diPatterns[user].pattern[i].stdDevUD;
 if(j==allDiPatterns.nPattern)
 allDiPatterns.nPattern++;
 }
 }
 for(j=0;j<allDiPatterns.nPattern;j++)

 {
 allDiPatterns.pattern[j].meanDUtotal/=allDiPatterns.pattern[j].nr;
 allDiPatterns.pattern[j].meanDU1/=allDiPatterns.pattern[j].nr;
 allDiPatterns.pattern[j].meanDU2/=allDiPatterns.pattern[j].nr;
 allDiPatterns.pattern[j].meanDD/=allDiPatterns.pattern[j].nr;
 allDiPatterns.pattern[j].meanUU/=allDiPatterns.pattern[j].nr;
 allDiPatterns.pattern[j].meanUD/=allDiPatterns.pattern[j].nr;

 allDiPatterns.pattern[j].stdDevDUtotal/=allDiPatterns.pattern[j].nr;

 allDiPatterns.pattern[j].stdDevDU1/=allDiPatterns.pattern[j].nr;
 allDiPatterns.pattern[j].stdDevDU2/=allDiPatterns.pattern[j].nr;
 allDiPatterns.pattern[j].stdDevDD/=allDiPatterns.pattern[j].nr;
 allDiPatterns.pattern[j].stdDevUU/=allDiPatterns.pattern[j].nr;
 allDiPatterns.pattern[j].stdDevUD/=allDiPatterns.pattern[j].nr;
 }

 return 1;
}

int sortDiPatterns()
{
 int i,j,k,sw=1,allKey=0;

 userDiPattern aux;
 sw=1;
 while(sw!=0)
 {
 sw=0;

 for(i=0;i<allDiPatterns.nPattern-1;i++)
 {

 if(allDiPatterns.pattern[i].nr < allDiPatterns.pattern[i+1].nr)
 {

BUPT

The keystroke dynamics authentication algorithm 159

 aux=allDiPatterns.pattern[i];
 allDiPatterns.pattern[i]=allDiPatterns.pattern[i+1];

 allDiPatterns.pattern[i+1]=aux;
 sw=1;
 }
 }
 }
 for(i=0;i<allDiPatterns.nPattern-1;i++)
 {

 for(j=0;j<100;j++)
 {
 if(keyAndKeyCodes[j].keyCode==allDiPatterns.pattern[i].letter1)
 break;

 }
 for(k=0;k<100;k++)
 {

 if(keyAndKeyCodes[k].keyCode==allDiPatterns.pattern[i].letter2)
 break;
 }
 allKey+=allDiPatterns.pattern[i].nr;
 }
 printf("TOTAL %d taste\n",allKey);

 return 1;
}

int firstDiPatterns(int x,int letter1,int letter2)
{
 int i;
 for(i=0;i<x;i++)

 {

 if(letter1==allDiPatterns.pattern[i].letter1 &&
letter2==allDiPatterns.pattern[i].letter2)
 {
 return 1;
 }
 }

 return 0;
}

float EuclidianDistanceDiGraph(int first)
{
 int user1,user2,i,j,nr=0;

 float max=0;
 for(user1=0;user1<nDiPatterns;user1++)
 {
 for(user2=0;user2<nDiPatterns;user2++)
 {

 diPatterns[user1].distance[user2]=0;
 }

 }
 for(user1=0;user1<nDiPatterns;user1++)

BUPT

 Appendix 1 – The algorithm 160

 {
 for(user2=0;user2<nDiPatterns;user2++)

 {
 nr=0;
 for(i=0;i<diPatterns[user1].nPattern;i++)
 {
 for(j=0;j<diPatterns[user2].nPattern;j++)
 {
 if(diPatterns[user1].pattern[i].letter1 ==

diPatterns[user2].pattern[j].letter1 && diPatterns[user1].pattern[i].letter2 ==
diPatterns[user2].pattern[j].letter2)
 {

if(firstDiPatterns(first,diPatterns[user1].pattern[i].letter1,diPatterns[user1].pattern[i
].letter2))
 {

 break;
 }
 }
 }
 if(j!=diPatterns[user2].nPattern)
 {

diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanDUtotal-
diPatterns[user2].pattern[j].meanDUtotal,2);

diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanDU1-
diPatterns[user2].pattern[j].meanDU1,2);

diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanDU2-

diPatterns[user2].pattern[j].meanDU2,2);

diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanDD-
diPatterns[user2].pattern[j].meanDD,2);

diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanUU-

diPatterns[user2].pattern[j].meanUU,2);

diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanUD-
diPatterns[user2].pattern[j].meanUD,2);
 nr+=6;
 }

 }
 diPatterns[user1].distance[user2]=sqrt(diPatterns[user1].distance[user2]);
 if(max<diPatterns[user1].distance[user2])
 {
 max=diPatterns[user1].distance[user2];

 }
 }

 }
 return max;

BUPT

The keystroke dynamics authentication algorithm 161

}

float ManhattanDistanceDiGraph(int first)
{
 int user1,user2,i,j,nr=0;
 float max=0;
 for(user1=0;user1<nDiPatterns;user1++)
 {
 for(user2=0;user2<nDiPatterns;user2++)

 {
 diPatterns[user1].distance[user2]=0;
 }
 }

 for(user1=0;user1<nDiPatterns;user1++)
 {
 for(user2=0;user2<nDiPatterns;user2++)

 {
 nr=0;
 for(i=0;i<diPatterns[user1].nPattern;i++)
 {
 for(j=0;j<diPatterns[user2].nPattern;j++)
 {

 if(diPatterns[user1].pattern[i].letter1 ==
diPatterns[user2].pattern[j].letter1 && diPatterns[user1].pattern[i].letter2 ==
diPatterns[user2].pattern[j].letter2)
 {

if(firstDiPatterns(first,diPatterns[user1].pattern[i].letter1,diPatterns[user1].pattern[i
].letter2))

 {

 break;
 }
 }
 }
 if(j!=diPatterns[user2].nPattern)
 {

diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanDUtotal-
diPatterns[user2].pattern[j].meanDUtotal);

diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanDU1-
diPatterns[user2].pattern[j].meanDU1);

diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanDU2-
diPatterns[user2].pattern[j].meanDU2);

diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanDD-

diPatterns[user2].pattern[j].meanDD);

diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanUU-
diPatterns[user2].pattern[j].meanUU);

BUPT

 Appendix 1 – The algorithm 162

diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanUD-

diPatterns[user2].pattern[j].meanUD);
 nr+=1;
 }
 }
 if(max<diPatterns[user1].distance[user2])
 {
 max=diPatterns[user1].distance[user2];

 }
 }
 }
 return max;

}

float ADistanceDiGraph(float t, float first)

{
 int user1,user2,i,j,nr=0;
 float max=0;

 for(user1=0;user1<nDiPatterns;user1++)
 {

 for(user2=0;user2<nDiPatterns;user2++)
 {
 diPatterns[user1].distance[user2]=0;
 }
 }
 for(user1=0;user1<nDiPatterns;user1++)
 {

 for(user2=0;user2<nDiPatterns;user2++)

 {
 nr=0;
 for(i=0;i<diPatterns[user1].nPattern;i++)
 {
 for(j=0;j<diPatterns[user2].nPattern;j++)
 {

 if(diPatterns[user1].pattern[i].letter1 ==
diPatterns[user2].pattern[j].letter1 && diPatterns[user1].pattern[i].letter2 ==
diPatterns[user2].pattern[j].letter2)
 {

if(firstDiPatterns(first,diPatterns[user1].pattern[i].letter1,diPatterns[user1].pattern[i

].letter2))
 {
 nr++;
 break;
 }

 }
 }

 if(j!=diPatterns[user2].nPattern)
 {

BUPT

The keystroke dynamics authentication algorithm 163

 if(diPatterns[user1].pattern[i].meanDUtotal >
diPatterns[user2].pattern[j].meanDUtotal)

 {
 if(diPatterns[user1].pattern[i].meanDUtotal /
diPatterns[user2].pattern[j].meanDUtotal < t)
 diPatterns[user1].distance[user2]++;
 }
 else
 {

 if(diPatterns[user2].pattern[j].meanDUtotal /
diPatterns[user1].pattern[i].meanDUtotal < t)
 diPatterns[user1].distance[user2]++;
 }

 }
 }
 diPatterns[user1].distance[user2]=1-diPatterns[user1].distance[user2]/nr;

 if(max<diPatterns[user1].distance[user2])
 {
 max=diPatterns[user1].distance[user2];
 }
 }

 }
 return max;
}

int writeDistancesDiGraph()
{
 int user1, user2;

 FILE *d;

 d=fopen("DistancesDiGraphs.txt","w");
 fprintf(d,"user \t");
 for(user1=0;user1<nDiPatterns;user1++)
 {
 fprintf(d,"%s\t",diPatterns[user1].user);
 }

 for(user1=0;user1<nDiPatterns;user1++)
 {
 fprintf(d,"\n%s\t",diPatterns[user1].user);
 for(user2=0;user2<nDiPatterns;user2++)
 {
 fprintf(d,"%.2f\t",diPatterns[user1].distance[user2]);

 }
 }
 fclose(d);
 return 1;
}

int diGraphsFARandFRR(char file[],float max)

{
 FILE *d;

BUPT

 Appendix 1 – The algorithm 164

 d=fopen(file,"w");
 int i,j,k,user1,user2, sw=0, swZMFAR=0;

 float EER=0, FAR=0, FRR=0, TAR=0, TRR=0, TA=0, TR=0, FA=0, FR=0, coeff=1,
iEER=0, ZMFAR, iZMFAR;
 if(max<=100)
 coeff=100;
 if(max<=10)
 coeff=1000;
 for(i=0;i<((int)max+1)*(int)coeff;i++)

 {
 TA=0, TR=0, FA=0, FR=0;
 for(user1=0;user1<nDiPatterns;user1++)
 {

 for(user2=0;user2<nDiPatterns;user2++)
 {
 if(user1!=user2)

 {
 if(diPatterns[user1].user[4]==diPatterns[user2].user[4] &&
diPatterns[user1].user[5]==diPatterns[user2].user[5] &&
diPatterns[user1].user[6]==diPatterns[user2].user[6] &&
diPatterns[user1].user[7]==diPatterns[user2].user[7])
 {

 if(diPatterns[user1].distance[user2]<(float)i/coeff)
 TA++;
 else
 FR++;
 }
 else
 {

 if(diPatterns[user1].distance[user2]<(float)i/coeff)

 FA++;
 else
 TR++;
 }
 }
 }

 }
 FAR=FA/(FA+TR)*100;
 FRR=FR/(FR+TA)*100;
 TAR=TA/(TA+FR)*100;
 TRR=TR/(TR+FA)*100;
 if(FAR>FRR && sw==0)

 {
 EER=FAR;
 iEER=i;
 sw=1;
 }

 if(FAR!=0 && swZMFAR==0)
 {

 ZMFAR=(FRR+ZMFAR)/2;
 iZMFAR=(iZMFAR+i)/2;

BUPT

The keystroke dynamics authentication algorithm 165

 swZMFAR=1;
 }

 if(FAR==0)
 {
 ZMFAR=FRR;
 iZMFAR=i;
 }
 fprintf(d,"\n%.2f\t%.2f\t%.2f\t%.2f\t%.2f",(float)i/coeff,FAR,FRR,TAR,TRR);
 }

 fprintf(d,"\nEER= %.2f in %.2f",EER, iEER/coeff);
 printf("EER=\t%.2f\t%.2f\n",EER, iEER/coeff);
 printf("ZMFAR=\t%.2f\t%.2f\n", ZMFAR, iZMFAR/coeff);
 fclose(d);

 return 1;
}

int constructTriGraphs(int n, char user[])
{
 int i;
 for(i=0;i<n-2;i++) //construct triGraphs
 {
 triGraphs[i].letter1=oneGraphs[i].letter;

 triGraphs[i].letter2=oneGraphs[i+1].letter;
 triGraphs[i].letter3=oneGraphs[i+2].letter;
 strcpy(triGraphs[i].key1, oneGraphs[i].key);
 strcpy(triGraphs[i].key2, oneGraphs[i+1].key);
 strcpy(triGraphs[i].key3, oneGraphs[i+2].key);
 triGraphs[i].DU1=oneGraphs[i].DU;
 triGraphs[i].DU2=oneGraphs[i+1].DU;

 triGraphs[i].DU3=oneGraphs[i+2].DU;

 triGraphs[i].UD1=oneGraphs[i+1].UDprev;
 triGraphs[i].UD2=oneGraphs[i+2].UDprev;
 triGraphs[i].D1D2=triGraphs[i].UD1+triGraphs[i].DU1;
 triGraphs[i].D1D3=triGraphs[i].D1D2+triGraphs[i].UD2+triGraphs[i].DU2;
 triGraphs[i].D2D3=triGraphs[i].UD2+triGraphs[i].DU2;
 triGraphs[i].U1U2=triGraphs[i].UD1+triGraphs[i].DU2;

 triGraphs[i].U1U3=triGraphs[i].U1U2+triGraphs[i].UD2+triGraphs[i].DU3;
 triGraphs[i].U2U3=triGraphs[i].UD2+triGraphs[i].DU3;
 triGraphs[i].D1U2=triGraphs[i].D1D2+triGraphs[i].DU2;
 triGraphs[i].D2U3=triGraphs[i].D2D3+triGraphs[i].DU3;

 triGraphs[i].U1D3=triGraphs[i].U1U2+triGraphs[i].UD2;
triGraphs[i].DUtotal=triGraphs[i].DU1+triGraphs[i].UD1+triGraphs[i].DU2+t

riGraphs[i].UD2+triGraphs[i].DU3;
 constructWord(triGraphs[i].word,i,3);
fprintf(k,"%s\t%s\t%s\t%d\t%d\t%d\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t
%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%s\n",triGraphs[i].key1,triGrap
hs[i].key2,triGraphs[i].key3,triGraphs[i].letter1,triGraphs[i].letter2,triGraphs[i].lette

r3,triGraphs[i].DU1,triGraphs[i].DU2,triGraphs[i].DU3,triGraphs[i].UD1,triGraphs[i].
UD2,triGraphs[i].D1D2,triGraphs[i].D1D3,triGraphs[i].D2D3,triGraphs[i].U1U2,triGr

aphs[i].U1U3,triGraphs[i].U2U3,triGraphs[i].D1U2,triGraphs[i].D2U3,triGraphs[i].U1
D3,triGraphs[i].DUtotal,triGraphs[i].word);

BUPT

 Appendix 1 – The algorithm 166

 }
 return 1;

}
int constructFourGraphs(int n, char user[])
{
 int i;
 for(i=0;i<n-3;i++) //construct 4Graphs
 {
 fourGraphs[i].letter1=oneGraphs[i].letter;

 fourGraphs[i].letter2=oneGraphs[i+1].letter;
 fourGraphs[i].letter3=oneGraphs[i+2].letter;
 fourGraphs[i].letter4=oneGraphs[i+3].letter;
 strcpy(fourGraphs[i].key1, oneGraphs[i].key);

 strcpy(fourGraphs[i].key2, oneGraphs[i+1].key);
 strcpy(fourGraphs[i].key3, oneGraphs[i+2].key);
 strcpy(fourGraphs[i].key4, oneGraphs[i+3].key);

 fourGraphs[i].DU1=oneGraphs[i].DU;
 fourGraphs[i].DU2=oneGraphs[i+1].DU;
 fourGraphs[i].DU3=oneGraphs[i+2].DU;
 fourGraphs[i].DU4=oneGraphs[i+3].DU;
 fourGraphs[i].UD1=oneGraphs[i+1].UDprev;
 fourGraphs[i].UD2=oneGraphs[i+2].UDprev;

 fourGraphs[i].UD3=oneGraphs[i+3].UDprev;
fourGraphs[i].DUtotal=fourGraphs[i].DU1+fourGraphs[i].UD1+fourGraphs[i].DU2+f
ourGraphs[i].UD2+fourGraphs[i].DU3+fourGraphs[i].UD3+fourGraphs[i].DU4;
 constructWord(fourGraphs[i].word,i,4);
fprintf(l,"%s\t%s\t%s\t%s\t%d\t%d\t%d\t%d\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.
2f\t%.2f\t%.2f\t%s\n",fourGraphs[i].key1,fourGraphs[i].key2,fourGraphs[i].key3,fo
urGraphs[i].key4,fourGraphs[i].letter1,fourGraphs[i].letter2,fourGraphs[i].letter3,fo

urGraphs[i].letter4,fourGraphs[i].DU1,fourGraphs[i].DU2,fourGraphs[i].DU3,fourGra

phs[i].DU4,fourGraphs[i].UD1,fourGraphs[i].UD2,fourGraphs[i].UD3,fourGraphs[i].D
Utotal,fourGraphs[i].word);
 }
 return 1;
}

int closeFiles()
{
 fprintf(g,"-1\n");
 fprintf(h,"-1\n");
 fprintf(k,"-1\n");
 fprintf(l,"-1\n");

 fclose(f);
 fclose(g);
 fclose(h);
 fclose(k);
 fclose(l);

 fclose(o);
 fclose(p);

 fclose(q);
 return 1;

BUPT

The keystroke dynamics authentication algorithm 167

}

int main(void)
{
 int i,n,nAll=0;
 int allKey=0;
 char user[20],fileUser[20];
 openFiles();
 do{

 fscanf(f,"%s",user);
 if(strcmp(user,"-1")==0)
 break;
 if(user[0]=='u' && user[1]=='s' && user[2]=='e' && user[3]=='r')

 {
 strcpy(fileUser,"UsersTexts/");
 strcat(fileUser,user);

 strcat(fileUser,".txt");
 m=fopen(fileUser,"w");
 fprintf(g,"%s\n",user);
 fprintf(h,"%s\n",user);
 fprintf(k,"%s\n",user);
 fprintf(l,"%s\n",user);

 fprintf(o,"%s\n",user);
 n=constructOneGraphs(n, user);
 for(i=0;i<n;i++)

{
fprintf(g,"%s\t%d\t%d\t%d\t%.2f\t%.2f\t%.2f\t%d\t%s\t%d\t%s\n",oneG
raphs[i].key, oneGraphs[i].letter, oneGraphs[i].D,
oneGraphs[i].U,oneGraphs[i].DU,oneGraphs[i].UDprev,oneGraphs[i].UDnext

,oneGraphs[i].letterPrev,oneGraphs[i].keyPrev,oneGraphs[i].letterNext,one

Graphs[i].keyNext);
 }
 for(i=0;i<n;i++)
 {
 allUsersOneGraphs[nAll++]=oneGraphs[i];
 }

 constructDiGraphs(n, user);
 allKey=allKey+n-1;
 constructDiPattern(user,n);
 constructTriGraphs(n, user);
 constructFourGraphs(n, user);
 meanAndStdDev(n);

 keyDistribution(n,user);
 fclose(m);
 fprintf(g,"-1\n");
 fprintf(h,"-1\n");
 fprintf(k,"-1\n");

 fprintf(l,"-1\n");
 }

 }while(strcmp(user,"-1")!=0);

BUPT

 Appendix 1 – The algorithm 168

for(i=0;i<nAll;i++)
 {

 oneGraphs[i]=allUsersOneGraphs[i];
 }
 n=nAll;
 constructDiGraphs(n, "All");
 constructTriGraphs(n, "All");
 constructFourGraphs(n, "All");
 meanAndStdDev(n);

 keyDistribution(n,user);
 float max;
 max=calculateEuclidianDistances();
 writeDistances();

 calculateFARandFRR(max,"FARandFRR_EuclidianDist.txt");
 max=calculateManhattanDistances(0.31);
 printf("%.2f\n",0.31);

 writeDistances();
 calculateFARandFRR(max,"FARandFRR_manhattanDist.txt");
 printf("Manhattan Succes\n");
 max=calculateRdistances();
 writeDistances();
 RcalculateFARandFRR(max,"FARandFRR_R_Dist.txt");

 max=calculateADistances(1.25);
 writeDistances();
 calculateFARandFRR(max,"FARandFRR_A1.25_Dist.txt");
 max=calculateADistances(1.13);
 writeDistances();
 constructAllDiPattern();
 sortDiPatterns();

 writeMeanAndStdDevDiPattern();

 i=10;
 max=EuclidianDistanceDiGraph(i);
 printf("%d\n",i);
 diGraphsFARandFRR("diGraphsFARandFRR_Euclid.txt",max);
 printf("Euclid diGraphs SUCCES\n");
 i=12;

 max=ManhattanDistanceDiGraph(i);
 writeDistancesDiGraph();
 printf("%d\n",i);
 diGraphsFARandFRR("diGraphsFARandFRR_Manhattan.txt",max);
 printf("Manhattan diGraphs SUCCES\n");
 max=ADistanceDiGraph(1.25,i);

 diGraphsFARandFRR("diGraphsFARandFRR_A1.25.txt",max);
 closeFiles();
 return 0;
}

BUPT

SCIENTIFIC ACTIVITY

Web of science papers:

A.C. Iapa, „Outstanding research in mooc and future development”, in 10th

International Scientific Conference on eLearning and Software for Education,
Bucharest, ROMANIA, APR 2014, vol. 1, pp. 251-254. (WOS:000357153000035)

A.C. Iapa, „MOOC and Learning Analytics: interaction and evolution”, in International
Conference on Social Media in Academia - Research and Teaching (SMART),
Timisoara, ROMANIA, SEP 2014, pp. 55-59. (WOS:000367888300009)

M. Ivanova, C. Holotescu, G.Grosseck, C. Iapa, „Relations between learning analytics
and data privacy in MOOCs”, in 12th International Scientific Conference on eLearning
and Software for Education (eLSE), APR 2016, vol 3, pp. 13-20.
(WOS:000385397100001)

Iapa A.C., Cretu V.I., „Modified Distance Metric That Generates Better Performance

For The Authentication Algorithm Based On Free-Text Keystroke Dynamics”, IEEE
15th International Symposium on Applied Computational Intelligence and Informatics,
Timisoara, Romania, 2021 – paper sent, unpublished

Iapa A.C., Cretu V.I., „Evaluating the performance of authentication algorithms
based on keystroke dynamics used in online educational platforms”, The 17th

International Scientific Conference eLearning and Software for Education, Bucharest,
Romania, 2021 – accepted paper, unpublished

Other papers:

M. Popa and C. Iapa, „Embedded weather station with remote wireless control”, 2011
19th Telecommunications Forum (TELFOR) Proceedings of Papers, Belgrade, 2011,
pp. 297-300. (BDI: Scopus, IEEE Xplore)

BUPT

		2021-04-22T11:28:49+0300
	Computerul meu
	DORIN LELEA
	Atest integritatea acestui document

