
 
FREE-TEXT KEYSTROKE DYNAMICS 

DATA SET AND ALGORITHMS FOR 
CONTINUOUS AUTHENTICATION 

IN EDUCATIONAL PLATFORMS 

WITH MASSIVE OPEN ONLINE 
COURSES (MOOC) 

 
 

 
Teză destinată obţinerii 

titlului ştiinţific de doctor inginer 
la 

Universitatea Politehnica Timişoara 
în domeniul Calculatoare și Tehnologia Informației 

de către 
 

 
Augustin-Cătălin IAPĂ 

 
 
 

 

Conducător ştiinţific: prof.univ. emerit dr.ing Vladimir-Ioan CREȚU 

Referenţi ştiinţifici: prof.univ.dr.ing. Dorian GORGAN 

    prof.univ.dr.ing. Viorel NEGRU 

    prof.univ.dr.ing. Nicolae ROBU 

 

 

 
 

Ziua susţinerii tezei: 9 aprilie 2021 

BUPT



Seriile Teze de doctorat ale  UPT sunt: 

1. Automatică             9. Inginerie Mecanică 

2. Chimie           10. Ştiința Calculatoarelor 
3. Energetică           11. Ştiința și Ingineria Materialelor 
4. Ingineria Chimică          12. Ingineria sistemelor 
5. Inginerie Civilă                     13. Inginerie energetică 
6. Inginerie Electrică          14. Calculatoare și tehnologia informației 
7. Inginerie Electronică și Telecomunicații        15. Ingineria materialelor 
8. Inginerie Industrială          16. Inginerie și Management 

 
 

 
Universitatea Politehnica Timişoara a iniţiat seriile de mai sus în scopul diseminării 
expertizei, cunoştinţelor şi rezultatelor cercetărilor întreprinse în cadrul Şcolii 
doctorale a universităţii. Seriile conţin, potrivit H.B.Ex.S Nr. 14 / 14.07.2006, tezele 
de doctorat susţinute în universitate începând cu 1 octombrie 2006. 

 
 
 
 

Copyright © Editura Politehnica – Timişoara, 2021 
 

 
 
 
Această publicaţie este supusă prevederilor legii dreptului de autor. Multiplicarea 
acestei publicaţii, în mod integral sau în parte, traducerea, tipărirea, reutilizarea 

ilustraţiilor, expunerea, radiodifuzarea, reproducerea pe microfilme sau în orice altă 
formă este permisă numai cu respectarea prevederilor Legii române a dreptului de 

autor în vigoare şi permisiunea pentru utilizare obţinută în scris din partea Universităţii 
Politehnica Timişoara. Toate încălcările acestor drepturi vor fi penalizate potrivit Legii 
române a drepturilor de autor. 
 
 
 
 

 
 

România, 300159 Timişoara, Bd. Republicii 9, 
Tel./fax 0256 403823 

e-mail: editura@edipol.upt.ro 
 

 

 
 
 
 
 

 

BUPT



Cuvânt înainte 
 
 Prezenta lucrare a fost elaborată în cadrul Departamentului de Calculatoare și 
Tehnologia Informației al Universității Politehnica Timişoara.  
 Îi mulțumesc în mod deosebit, în primul rând, mentorului meu, domnului 

profesor emerit dr. ing. Vladimir-Ioan Crețu, conducătorul meu de doctorat, pentru 
reușita prezentei lucrări, pentru răbdarea cu care mi-a coordonat pașii pe tot parcursul 
perioadei de studii doctorale în scopul finalizării cu succes a acestui drum. Sfaturile 
pertinente și observațiile domnului profesor au fost întotdeauna acordate la 
momentele potrivite. 
 De asemenea, mulțumesc membrilor echipei de îndrumare: doamnei dr. ing. 

Diana Andone pentru ideea de a studia modul de identificare al utilizatorului în funcție 
de tipologia tastării, fiind un domeniu de interes și intens cercetat științific, doamnei 
prof. dr. ing. Carmen Holotescu pentru sfaturile oferite ori de câte ori le-am solicitat 
dar și pentru îndrumarea și încurajarea publicării primelor lucrări științifice, precum și 
domnului profesor emerit dr. ing. Ionel Jian pentru îndrumarea oferită. 
 Pe parcursul studiilor doctorale am avut și oportunitatea de a preda în calitate 
de student doctorand, cadru didactic asociat, studenților de la Facultatea de 

Automoatică și Calculatoare. Pentru oferirea acestei oportunități le mulțumesc în mod 
deosebit domului profesor dr. ing. Horia Ciocârlie, domnului profesor dr. ing. Vladimir-
Ioan Crețu și domnului S.l. dr. ing. Sebastian Fuicu. 
 Le mulțumesc, de asemenea, tuturor cadrelor didactice de pe parcursul 
perioadei de licență și masterat de la Facultatea de Automatică și Calculatoare din 
cadrul Universității Politehnica Timișoara și în mod special domnului prof. dr. ing. 
Mircea Popa pentru coordonarea lucrărilor de licență și masterat. Le mulțumesc 

tuturor profesorilor care m-au format pe parcursul întregului meu parcurs școlar, de 
la Liceul Grigore Moisil din Timișoara și de la Şcoala Generală nr. 4 din orașul Moldova-

Nouă, parcurs care a construit, cărămidă cu cărămidă, pentru a putea duce la bun 
sfârșit acest demers. Le mulțumesc în mod deosebit doamnei învățătoare Natalia 
Guran, doamnei profesoare Elena Bojici, care nu mai este, din păcate, printre noi și 
doamnei profesoare Adriana Simulescu. 

 Le mulțumesc tuturor celor 80 de voluntari care au răspuns pozitiv rugăminții 
de a furniza date în scopul prezentei cercetări, pentru timpul dedicat completării 
formularului conceput în acest sens. 
 Le mulțumesc în mod deosebit părinților pentru formarea oferită, pentru 
încurajarea constantă și pentru tot sprijinul dăruit cu sacrificii, de cele mai multe ori. 
Îi mulțumesc în mod deosebit și prietenei mele, Claudia, care m-a înțeles, m-a sprijinit 
și mi-a oferit timpul și liniștea necesare lucrului la teză.  

 Le mulțumesc colegilor care mi-au împărtășit din experiența lor de studenți 
doctoranzi: Norbert Kazamer, Alexandru Topârceanu, Iulia Ştirb, Alexandru Filipovici, 
Ovidiu Sicoe, Sergiu Nimara, Renata Boar. Îi mulțumesc Krisztinei Verneș pentru 
ajutorul dat pentru revizuire. De asemenea aș vrea să mulțumesc tuturor care au fost 
alături de mine în toți acești ani și pe care nu i-am menționat anterior. 

 Sunt recunoscător lui Dumnezeu pentru răbdarea, puterea și sănătatea care 
m-au dus la finalizarea cu succes a tezei de doctorat. 

   
Timişoara, februarie 2021                       Augustin-Cătălin Iapă 
 
 
 

BUPT



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iapă, Augustin-Cătălin 

Algoritmi și un set de date care folosesc dinamica tastării 
tastelor în cazul textului scris liber pentru autentificarea 

continuă în platforme educaționale care cuprind cursuri 
online deschise masive (MOOC) 

Teze de doctorat ale UPT, Seria X, Nr. YY, Editura Politehnica, 
2021, 169 pagini, 74 figuri, 26 tabele. 

Cuvinte cheie: dinamica apăsării tastelor, algoritm de 
autentificare, identificarea utilizatorului, modul de tastare, metrici 

pentru calculul distanțelor 

 
Rezumat:  
Prezenta lucrare se focusează pe autentificarea continuă a 
utilizatorului unui calculator pe baza modului de a tasta la 
tastatură. În cadrul cercetării s-a dezvoltat un algoritm de 
autentificare pe baza modului de tastare, s-a colectat un set de 

date referitoare la modul de tastare de la 80 de voluntari, s-au 
propus două metrici modificate pentru a se obține performanțe 
mai bune ale algoritmului de autentificare și s-a propus o 
structură de date pentru a stoca informațiile necesare ale 
utilizatorilor. 
Această metodă de autentificare își justifică atenția mai ales în 
cadrul platformelor educaționale online, platforme care au 

cunoscut o creștere foarte mare în anul 2020, datorită mutării 
majorității cursurilor în mediul online, restricție generată de criza 
COVID-19. 
 

Free-text keystroke dynamics data set and algorithms for 
continuous authentication in educational platforms with 

massive open online courses (MOOC) 

Keywords: keystroke dynamics, authentication algorithm, user 
identification, typing pattern, distance metrics, di-graphs 
 
Abstract:  
This paper focuses on the continuous authentication of a 
computer user based on keystroke dynamics, the way to type on 

the keyboard. During the research, an authentication algorithm 
based on keystroke dynamics was developed, a data set 
regarding the typing mode was collected from 80 volunteers, two 
modified metrics were proposed to obtain better performances of 
the authentication algorithm and a data structure was proposed 
to store the necessary information of the users. 

This method of authentication justifies its attention especially in 

online educational platforms, platforms that experienced a very 
large increase in 2020, due to the relocation of most courses in 
the online environment, a restriction generated by the COVID-19 

crisis. 
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1 INTRODUCTION 
  
 

1.1 Thesis context 
 

This thesis started from the need to develop additional ways to identify the 
identity of a user who uses a private account on a computer. This need is more 
pronounced in the case of courses or exams that take place online. The MOOC 
phenomenon (Massive Open Online Courses), courses attended by a large number of 

students from any corner of the world online, was born in 2008. This phenomenon 
reached a first maximum in 2012, and in 2020 there was an exponential increase in 
the number of students enrolled [IAP21b]. 

The year 2020 also led to radical changes in education systems as an outcome 
of the health crisis caused by the SARS-CoV-2 virus. This has resulted in an 
unprecedented push to online learning. Universities, primary schools or high schools 
have been pressed to adapt and move the entire classical education system from 

studying in the classroom, face to face, to distance platforms. In this context, it has 
become much more important to find methods to ensure that, for instance, during an 
exam, where both the teachers and students are in different locations, to ensure that 
the student, through easily accessible means, is the one who solves the subjects and 
receives a grade based on his knowledge and performance [IAP21b]. 

There are many ways and possibilities to identify and authenticate a user from 

an electronic account. The most common method is to retain a username and its 

password and based on these two, the user has access to the account. The use of 
physical cards, such as those used by banks, or fingerprints, retinal scanning or face 
recognition requires the existence of additional devices for retrieving data from users. 
For authentication during an exam, it is not enough to have an account and a 
password, in case the student wants to speculate by leaving someone else in his place 
to solve the subjects. In most cases, the camera and microphone must be turned on 

throughout the exam [IAP21b]. 
An effective method in solving the problem described above is continuous 

authentication using keystroke dynamics. Keystroke dynamics is the method by which 
a user can be identified or authenticated based on his or her particular way of typing 
text on the keyboard. This method does not require additional hardware, any 
computer or laptop that is equipped with a keyboard is accepted. Additionally, another 
advantage is represented by the fact that the identity verification can be done 

continuously, at any time when the user types on the keyboard. The password 
authentication cannot be done the same way presented before, being done usually 
only once when accessing the account, and along the way the user can change without 

the system to realize the change. 
Another advantage of using identification or authentication using keystroke 

dynamics is that the user does not have to take additional steps. The participants just 
have to type and the system monitors the way of their typing. In this case, after an 
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authentication in a system, if the user changes, the system will realize that someone 
else is at the computer and can signal this change. 

Thousands of students can participate in MOOC courses at the same time. In 
the case of an exam with thousands of students, it becomes impossible to supervise 
through the video camera and the microphone, this method being effective when the 
number of students is reduced. In the case of keystroke dynamics, any number of 
students can be continuously authenticated, there is no such limitation in this regard. 

The disadvantage of a system with authentication or identification of users 
through the keystroke dynamics method is the accuracy of the algorithm with which 

the user can be identified. Currently, systems that use this method do not reach error 
rates of 0%. They have performance that identifies the user with an error rate of less 
than 10%, or in some cases with even higher accuracy, instead improving algorithms 
based on keystroke dynamics is still a challenge in this area. Along these, another 

challenge for scientific research in this field is the fact that in order to test the 
efficiency of the algorithms proposed in various researches, databases are needed 
that capture the typing mode, thus better simulating the real conditions. 

Within the scientific research made about the keystroke dynamics they were 
identified two different branches. The first would be when a user types a default text 
on the keyboard, such as a user, a standard password or phrase. The second one 
would be the typing of a free text on the keyboard without certain conditions being 
imposed [UMP85][MES11]. The two methods are analyzed separately by different 
methods in the scientific literature on this subject. Both, however, involve a phase in 

which the system collects data about the user, the typing times, and the typing mode, 
thus, creating a profile of the user that he will use later in the continuous 
authentication phase. The first method has been more intensively explored and the 
results are more successful in this direction because it is the same text entered from 
the keyboard each time. The second method, when the user types a free text with 
the help of the keyboard, without conditions, has been researched especially in recent 
years, and the results are increasingly improved. 

Only in the last 5 years over 10,000 scientific papers have been published 

about keystroke dynamics. Also, survey papers have been published as keystroke 
dynamics biometrics has drawn intense research interest the past couple of decades 
[ZHO15]. In Table 1.1 is the number of scientific papers in the field of “keystroke 
dynamics” and also in the field of "free text keystroke dynamics". The graphic 
represented in Figure 1.1 illustrates the growing interest in the field of “keystroke 
dynamics” and also in the field of "free text keystroke dynamics" [IAP21b]. 

 
Table 1.1 Number of scientific publication in the field [IAP21b] 

Interval „keystroke dynamics” „free text keystroke dynamics” 

1981-1985 224 108 

1986-1990 643 277 

1991-1995 1.080 566 

1996-2000 1.630 863 

2001-2005 2.950 1500 

2006-2010 4.940 2520 

2011-2015 7.890 4020 

2016-2020 10.100 4880 

 
The number of scientific publications in this field was counted by searching 

for the two text sequences on scholar.google.com, filtered on 5-year intervals, on the 
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following time intervals: 1981-1985, 1986-1990, 1991-1995, 1996 -2000, 2001-
2005, 2006-2010, 2011-2015 and 2016-2020  [IAP21b].  

 
Figure 1.1 Evolution of publication about ”keystroke dynamics” and ”free text keystroke 

dynamics” from 1981 till 2020 

It is observed that in the last 5 years over 10,000 scientific papers have been 

published with the topic "keystroke dynamics", and scientific papers that have 
addressed the branch "free text keystroke dynamics" represent about half of these, 
reaching about 5,000 papers published in the last 5 years [IAP21b]. In the Figure 1.2 
is also a hierarchy chart with the volume of publication about ”keystroke dynamics” 

on the following time intervals: 1981-1985, 1986-1990, 1991-1995, 1996 -2000, 
2001-2005, 2006-2010, 2011-2015 and 2016-2020. 

 

 
Figure 1.2 Hyerarchy chart with the volume of publication about ”keystroke dynamics” 
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According to ACM Computing Classification System [ACM12], the Figure 1.3 
and the Table 1.2 list categories and concepts of the computing discipline used in this 

work. 

 
Figure 1.3 Categories and concepts of the computing discipline used in this work according 

ACM Computing Classification System [ACM12] 

 
Table 1.2 Categories and concepts of the computing discipline used in this work 

generated whit ACM tool [ACM12] 

Security and privacy ~ Security services ~ Authentication ~ Biometrics; 

Security and privacy ~ Security services ~ Access control; 

Security and privacy ~ Intrusion/anomaly detection and malware mitigation ~ 
Intrusion detection systems; 

Human-centered computing ~ Human computer interaction (HCI) ~ Interaction 

paradigms; 

Human-centered computing ~ Human computer interaction (HCI) ~ Interaction 
devices ~ Keyboards; 
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1.2 Thesis objectives 
 
In this research project, the author set the following four objectives: 
Objective 1, O1, The first objective of this thesis is to collect a database with 

the test pattern from at least 80 users, in order to test the authentication algorithm 
for this research, but also to make it available to other interested researchers.  

Objective 2, O2, The second objective of this thesis is to implement an 
algorithm for authenticating the users of a computer based on the keystroke 
dynamics, the keyboard typing mode.  

Objective 3, O3, The third objective of this thesis is to propose at least two 
new metrics for calculating the distances between two vectors that generate better 

performance compared to the Equal Error Rate (EER) performance indicator than the 
classical methods.  

Objective 4, O4, The fourth objective of this thesis is to propose a data 
structure as efficient as possible, which should contain the most relevant information 
about the typing of a user.  

 
 

1.3 Thesis structure  
 
The thesis is organized as follows: 
• Chapter 1 presents the thesis context, the thesis objectives and the thesis 

structure. Subchapter 1.1 Thesis context briefly presents the starting point of the 
research, the evolution of research in the field of keystroke dynamics and categories 

and concepts of the computing discipline used in this work. Subchapter 1.2 Thesis 
objectives presents the four objectives proposed in this paper and subchapter 1.3 
Thesis structure briefly presents each chapter of the thesis. 

• Chapter 2 presents the state-of-the-art of the field to which this work is 

addressed. The first part, subchapter 2.1 Evolution of educational systems, analyses 
the evolution of educational systems and the most important platforms worldwide 
with MOOC (Massive Open Online Courses) and their evolution from its inception until 

now (2020), the year in which online education has grown exponentially. This analysis 
shows the importance and dimension of the field of e-Learning has reached and 
justifies the scientific research of this paper. Subchapter 2.2.1, A biometric feature: 
keystroke dynamics, gives an overview of Biometrics and how a person can be 
identified based on it, thus, the purpose being the investigation of continuous 
authentication based on free-text keystroke dynamics. Keystroke dynamics is a 
biometric. After going through the evolution of e-Learning and Biometrics systems, in 

the subchapter 2.2 Keystroke dynamics – literature review, a detailed research is 
conducted on keystroke dynamics. It analyses the types of keystroke dynamics, in 
the subchapters 2.2.3 and 2.2.4: fixed text and free-text, also the methodologies 
applied are analyzed in other researches to collect data and to evaluate the collected 
data, in the subchapters 2.2.9, 2.2.10 and 2.2.11. It covers, in the subchapters 2.2.5, 
2.2.6, 2.2.7 and 2.2.8, the technical characteristics that are considered within the 

existing algorithms, but also, in the subchapter 2.2.13 Evaluating the performance of 
authentication algorithms based on keystroke dynamics, the characteristics that 

measure the performances of the algorithms in this field. 
• Chapter 3 presents the research methodology applied in this research 

project. The steps performed in the present scientific research are presented below: 
A. Development of the platform for the acquisition of input data, B. Acquisition and 
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initial processing of input data from 80 volunteers (how typing on their keyboard), C. 
Processing the input data so as to generate a user pattern for each user, D. 

Development of an algorithm in the C programming language for calculating distances 
used in keystroke dynamics authentication, E. Simulation of system authentication by 
genuine users or impostors to measure the performance of the developed algorithm. 
Each of these five steps are detailed in this chapter, in five subchapters 3.1, 3.2, 3.3, 
3.4 and 3.5.  

• Chapter 4 is about the data set collected for the present research. The first 
subchapter 4.1, Platform for collecting data about keyboard typing from 80 

volunteers, presents the platform for collecting data about keyboard typing and how 
data was collected from 80 users in order to later develop an algorithm. Moreover, 
after presenting the platform with the help of which data were collected from users, 
it will proceed to the analysis of these collected data and to the presentation of the 

particular characteristics, in subchapters 4.2 Analysis of time and key events collected 
from users, 4.3 Acquisition and initial processing of input data from 80 volunteers 
(how typing on the keyboard) and 4.4 Analysis of keys collected from users. It shows 

how they were processed using an algorithm written in the C programming language. 
The subchapter 4.5, Processing the input data so as to generate a user pattern for 
each user, presents the structures that store user typing data. The subchapter 4.6, 
Keys distribution analysis, presents the analysis of the collected keys. The subchapter 
4.7, Differences between users, graphically displays the typing pattern for different 
users. This chapter addresses the validation of O1 from the first chapter of this thesis. 

• Chapter 5 In this chapter it is presented the authentication algorithm based 
on free-text keystroke dynamics. First of all, the algorithm developed for processing 
the data obtained from the users is presented. The algorithm simulates user 
authentication based on keystroke dynamics and measures the obtained 
performances. In the chapter it is presented the architecture of the algorithm in the 
subchapter 5.1 The architecture of the authentication algorithm and the structure of 
the algorithm in the subchapter 5.2 The structure of the authentication algorithm. The 

development of this algorithm is established by O2 from the first chapter of this thesis. 

• Chapter 6 In this chapter it is presented a series of experiments performed 
to measure the performance of the written algorithm for the purpose of this research 
and to analyze the results obtained. Gradually, experiments with the keystroke time 
of a single key, in the subchapter 6.1, and experiments with di-graphs, in the 
subchapter 6.2, are presented. Both in the analysis of the characteristics with a single 
key and with a di-graph, the degree of Equal Error Rate (EER) is calculated in order 

to appreciate the performances of the algorithms. The results are presented in the 
case of experiments using Euclidean distance (in the subchapters 6.1.1 and 6.2.3), 
Manhattan distance (in the subchapters 6.1.2 and 6.2.4), R distance (in the 
subchapter 6.1.3) and A distance (in the subchapters 6.1.4 and 6.2.5).  The chapter 
also investigates, in the subchapter 6.1.5 The sample size, the differences in 
performance if the pattern is built for each user with various sample sizes, starting 

from 200 key events / pattern and up to 3000 key events / pattern.  At the end of 
the chapter, following all the experiments performed and presented, the author 
proposes, in the subchapter 6.4, Proposing new metrics for calculating distances 
between users, the modification of two metrics obtaining new metrics for calculating 
the distances between two vectors that have higher performances than the classical 

calculation methods. For the two new metrics, the performances obtained in terms of 
Equal Error Rate (EER) are presented. By proposing these metrics, O3 is validated. It 

also proposes, in the subchapter 6.5, Proposed user pattern, a structure for retaining 
a user's pattern, a structure that takes up small memory and requires little time to 
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perform all the necessary calculations in the algorithms. By proposing the user 
pattern, O4 is validated. In the end of the Chapter, in the subchapter 6.6 Comparison 

of the related works, the performances obtained in the present research are compared 
with those obtained by other authors in their researches. 

• Chapter 7 summarizes the conclusions drawn from the previous chapters 
and future research directions in this field, starting from the results presented in this 
paper. The author's own contributions to the field of keystroke dynamics are 
presented in the subchapter 7.1.1 The personal contribution: the proposal of two new 
metrics for calculating the distance between two vectors in order to allow the 

approximation of the degree of similarity between two patterns from two different 
users or from the same user. Also, the data collected from the 80 users about how to 
type on the keyboard is a contribution to the advantage of future researches because 
they will be available to all researchers interested in conducting investigation in the 

field. Another own contribution is the proposal of a pattern in order to retain the 
minimum necessary data about a user so to obtain performances in the continuous 
authentication. The last part of this chapter, the subchapter 7.2, Future works, 

presents the future research directions. The field still needs to be exploited, and future 
research directions may bring higher performance than those currently obtained. 
 In the present thesis are taken elements (conclusions, experiments, results, 
passages, formulas, images, graphics, phrases, etc.) from works written before the 
final writing of the thesis by the author. Papers are published, presented or submitted 
for publication. The list of papers of the author is at the end of the thesis, in the 

Chapter SCIENTIFIC ACTIVITY.
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2 STATE-OF-THE-ART  
 
 
The thesis context, its’ objectives and its’ structure were presented in the 

previous chapter, Chapter 1 Introduction.  
Subsequently, this Chapter presents the state-of-the-art of the field to which 

this work is addressed. The first part, subchapter 2.1 Evolution of educational 

systems, analyses the evolution of educational systems and the most important 
platforms worldwide with MOOC (Massive Open Online Courses) and their evolution 
from its inception until now (2020), the year in which online education has grown 
exponentially. This analysis shows the importance and dimension of the field of e-
Learning has reached and justifies the scientific research of this paper. Subchapter 
2.2.1, A biometric feature: keystroke dynamics, gives an overview of Biometrics and 

how a person can be identified based on it, thus, the purpose being the investigation 
of continuous authentication based on free-text keystroke dynamics. Keystroke 
dynamics is a biometric. After going through the evolution of e-Learning and 
Biometrics systems, in the subchapter 2.2 Keystroke dynamics – literature review, a 
detailed research is conducted on keystroke dynamics. It analyses the types of 
keystroke dynamics, in the subchapters 2.2.3 and 2.2.4: fixed text and free-text, also 
the methodologies applied are analyzed in other researches to collect data and to 

evaluate the collected data, in the subchapters 2.2.9, 2.2.10 and 2.2.11. It covers, in 
the subchapters 2.2.5, 2.2.6, 2.2.7 and 2.2.8, the technical characteristics that are 
considered within the existing algorithms, but also, in the subchapter 2.2.13 
Evaluating the performance of authentication algorithms based on keystroke 

dynamics, the characteristics that measure the performances of the algorithms in this 
field. 

 
 

2.1 Evolution of educational systems 
 
In this subchapter the author presents the evolution of MOOC (Massive Open 

Online Courses) platforms. In 2020, in the Coursera Platform are involved nearly 69 
million learners [VAN20]. The number of Massive Open Online Courses increased in 
the last years.  

Debates about future and evolution of eLearning and MOOC (Massive Open 
Online Courses) were in the last few years. In this chapter the author makes an 
introspection in evolution of Massive Open Online Courses with a comparison of the 
most important platforms of MOOC. Also, in the last years, researchers have paid 

attention to Learning Analytics field [IVA16]. We have more and more data from 
Learning Management Systems. There were noticeable additional challenges 
regarding the field of education in 2020. With the COVID-19 pandemic the authorities 

have not only introduced restrictions on the movement of citizens, but have also 
tightened the preventive measures implementing new regulations with reference to 
education. A decisive number of universities have had to adapt to the unfamiliar 
circumstances, moving all their activities to the online environment. These limitations 
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have led to an unprecedented leap in online education. Suddenly, both teachers and 
students or pupils, were forced by the newly implemented conditions to move their 

entire activity to online educational platforms and thus continue their courses in this 
manner. This process has led to a development of the e-learning section, helping the 
growth of companies that are being active in this field and has forced those who have 
not used these systems so far to learn them in a very quick way [IAP14a]. 

The educational system has continually evolved due to technological 
innovations. In [DAN12] the author made an enumeration of innovations: In 1841 the 
blackboard, in 1940 the motion picture, in 1957 the television. Programmed learning 

and computers were another invention which contributed on education evolution. 
Internet and communication technologies could develop the format of education 
[IAP14a].  

The MOOC evolution starts with the “Connectivism and Connective 

Knowledge” – CCK08 course in 2008 which had a large number of online participants. 
The course was facilitated by Downes and Siemens [DOW14] [IAP14a].  

The MOOC starts in the 2008 but the year 2012 was declared the MOOC year. 

The next years after 2012 was good years for MOOC, with millions of learners and 
hundreds of partners involved to develop courses [IAP14a]. 

A record number of users turned to online learning in 2020. Since March, 
there were more than 69 million enrollments only on Coursera. About 430% increase 
compared to the same period last year [VAN20] [IAP21b]. 
 

2.1.1 Platforms of MOOC 
 
The most important platforms with massive open online courses and with the 

largest number of users and partners are Coursera and edX. The number of MOOC 
platforms is increasing. In December 2020 Coursera platform had 69 million users 
and edX platform had 24 million learners. Coursera is a for profit platform. Coursera 

platform can be accessed online at www.coursera.org and it has started on April 2012 
[COU20]. EdX platform can be accessed at www.edX.org. EdX has started on 

December 2011 and is a non-profit platform [EDX20][MAT20][IAP21b].  
In the Figure 2.1 is represented the evolution of the number of courses on 

the Coursera and edX platforms in 2014 - 2020. Coursera had 622 courses in February 
2014, 761 courses in September 2014, 1557 courses in December 2015, 2000 courses 
in February 2017 and 3900 courses in December 2020. EdX had 151 courses in 

February 2014, 287 courses in September 2014, 814 courses in December 2015, 1283 
courses in February 2017 and 3000 in December 2020 [IAP14b][IAP21b]. 

 

 
Figure 2.1 Evolution of courses on Coursera and edX platforms [IAP21b] 
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In the Figure 2.2 is represented the evolution of the number of partners on 
the Coursera and edX platforms. Coursera had 108 partners in February 2014, 114 

partners in September 2014, 140 partners in December 2015, 149 partners in 
February 2017 and 227 partners in December 2020. EdX had 32 partners in February 
2014, 53 partners in September 2014, 90 partners in December 2015, 94 partners in 
February 2017 and 145 partners in December 2020 [IAP14a][IAP21b]. 

 

 
Figure 2.2 Evolution of the number of partners on Coursera and edX platforms [IAP21b] 

 

2.1.2 Coursera Platform 

 
Coursera is the largest MOOCs platform in the world to this day. At the end 

of 2020, Coursera reached over 3,900 courses and specialization. Users can choose 
from this varied offer of courses in different fields. More than 20 Degrees and 
MasterTrack Certificates and over 13 Professional Certificates. This information can 

be checked periodically on their own website. The Figure 2.3 shows these numbers 
that define the platform at the end of 2020. Coursera started offering courses to users 
in 2012. „Coursera was founded by Daphne Koller and Andrew Ng in 2012 with a 

vision of providing life-transforming learning experiences to learners around the 
world. Today, Coursera is a global online learning platform that offers anyone, 
anywhere, access to online courses and degrees from leading universities and 
companies.” [COU20] [IAP21b] 

 
Figure 2.3 Number of courses, specializations, degrees, MasterTrack and profesionals 

certificates on Coursera in 2020 [COU20] 
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On Coursera, the users can choose from 6 learning programs [COU20], 
detailed in Figure 2.4 : Guided project, Course, Specialization, Professional certificate, 

Mastertrack™ certificate, Degree [IAP21b]. 
 

 
Figure 2.4 What Coursera has to offer [COU20] 
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In 2020, most popular courses worldwide on Coursera Platform was [VAN20]: 
”1. The Science of Well-Being from the Yale University 

2. COVID-19 Contact Tracing from the Johns Hopkins University 
3. Programming for Everybody (Getting Started with Python) from the 

University of Michigan 
4. Machine Learning from the Stanford University 
5. Learning How to Learn: Powerful mental tools to help you master tough 

subjects from the McMaster University UC San Diego   
6. English for Career Development from the University of Pennsylvania 

7. Financial Markets from the Yale University 
8. First Step Korean from the Yonsei University 
9. Introduction to Psychology from the Yale University 
10. Write Professional Emails in English from the Georgia Institute of 

Technology” [IAP21b] 
 

2.1.3 edX Platform 

 
In 2012, Harvard and MIT came together with the idea to create edX, a 

nonprofit online learning platform to reimagine education as we knew it. In 2012, MIT 
offered its first massive open online course (MOOC), Circuits and Electronics. [IMP20] 

[IAP21b] 
EdX mission is focused on three pillars [IMP20] : 

”1. Expanding access to high quality education to everyone, everywhere 
2. Reimagining education both on-campus and online 
3. Improving teaching and learning outcomes through research” 
For the first time ever, in 2015, learners earned college credit for MOOCs on 

edX [IMP20]. In 2020, the edX platform has reached over 24 million unique users. 
edX had over 5700 instructors for more than 3000 courses from 145 partners. The 
number of countries from which the users came is 196. More than 1.6 million 

certificates have been issued [IMP20] [IAP21b]. The Figure 2.5 shows these numbers 

graphically. 

 
Figure 2.5 Numbers from edX platform 2020 [IMP20] 
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Some of the top Universities on edX platform are showed in the Figure 2.6  

 
Figure 2.6 Some of the top Universities on edX Platform [EDX20] 

 
 

2.2 Keystroke dynamics – literature review 
 
There were noticeable additional challenges regarding the field of education 

in 2020. With the COVID-19 pandemic the authorities have not only introduced 
restrictions on the movement of citizens, but have also tightened the preventive 
measures implementing new regulations with reference to education. A decisive 
number of universities have had to adapt to the unfamiliar circumstances, moving all 
their activities to the online environment [IAP21b]. 

These limitations have led to an unprecedented leap in online education. 
Suddenly, both teachers and students or pupils, were forced by the newly 

implemented conditions to move their entire activity to online educational platforms 

and thus continue their courses in this manner. This process has led to a development 
of the e-learning section, helping the growth of companies that are being active in 
this field and has forced those who have not used these systems so far to learn them 
in a very quick way [IAP21b]. 
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This unforeseen change brought a series of challenges such as: how to adapt 
the classic courses to the new context that imposes restrictions and teach them online, 

how long a course should be, how to pay attention to the students, how to interact 
with each of the participants in this structured system of organizational and didactic 
measures, how to evaluate them, what criteria will be used for grading, or how to 
supervise each one during an exam session, considering that each one is physically 
in a different place [IAP21b]. 

The challenges and advantages or disadvantages of conducting exams during 
the crisis was a major issue worthy of study. To be even more specific, on an issue 

that most teachers have lifted, namely the way you check whether a student is 
cheating or no during the exam, if he will write the exam and will not let anyone else 
to do it for him [IAP21b]. 

Most evaluation systems in this regard have been done through grid-type 

exams, with limited time, or through oral assessments through online platforms, or 
even through tests in which students are constrained to sit with the camera and 
microphone turned on so that the teacher can monitor them remotely [IAP21b]. 

To emphasize one prominent method that partially solves the problem of 
identifying the students that are attending the exams, the paper focused on the 
method of continuous authentication with the help of the unique way of pressing the 
keys while writing the subject of the exam (keystroke dynamics). Coursera, one of 
the biggest platforms of Massive Open Online Courses, used keystroke dynamics to 
verify online users from courses [MAA14] [IAP21b]. 

The method of continuous authentication using keystroke dynamics has been 
exhaustively researched lately. This practice has several fields in which it can be 
successfully applied, for example, as an additional security method when a user 
accesses his bank account on the internet or when making a payment in a similar way 
[BAN12] [IAP21a]. It can be applied for e-mail accounts, or any other online platform 
that requires a lot of typing. The authentication process can be categorized by the 
number of incorporated factors: something you know like a username and a password, 

something you have, like card, token or something you are, like biometrics. [BUR06] 

A combination of these processes is a strong authentication [BAN12] [IAP21a]. 
Two-factor authentication is a large scale used approach, in some systems 

even mandatory, for online services [KAN14]. The traditional password is the first 
factor and the second factor can be a SMS access code or a PIN generated randomly 
at the time of authentication [DAS16]. The keystroke dynamics can also be the second 
factor authentication [IAP21a]. 

Up to 28 muscles are used during a keystroke [KOC19]. The keystroke 
dynamics technique consists in capturing and analyzing the typing mode of a user. 
More precisely, the pressing time on one key, but also the time between the pressing 
of two consecutive keys. The rhythm along the pressure of keys plays an important 
role when it comes to study the cases [TSA14]. These features are unique, as are 
other methods of identifying individuals such as fingerprint, facial recognition, account 

password, or the use of a physical card or other physical identification device 
[IAP21b]. 

Keystroke dynamics has been pointed out as a practical behavioral biometric 
feature that does not require any additional device for scale up user identification or 
authentication [PIL15]. In the next subchapter a short presentation about biometrics, 

classification and keystroke dynamics like a biometric are made [IAP21b]. 
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2.2.1 A biometric feature: keystroke dynamics 

 
With technology used in online educational settings, cheating is easier than in 

traditional settings [JAY19] [FAB97] [IAP21b]. 
The physiological features include fingerprints, face, eye – iris patterns or 

retina patterns, palm topology, hand geometry, wrist veins and thermal images. The 
behavioral features include handwritten signatures, voiceprints and keystroke 
dynamics [POL00][BER02]. Keystroke dynamics, the behavioral biometric, is a 

method that can secure the cyberspace [HUA17][BAN12] [IAP21b]. 
Biometric features are unique to each user and they cannot be lost or stolen 

[JOY90]. The same physiological factors that give uniqueness to a signature made on 
a sheet are found in the case of keystroke dynamics [CAL19] [IAP21b].  

Hard biometric requires additional hardware that costs and decreases the 

availability of users to use it. This barrier does not exist in the case of keystroke 
dynamics. [CHA20] [IAP21b] 

To implement authentication systems, physiological characteristics are more 
successful than behavioral characteristics. Physiological characteristics do not vary 
over time, while behavioral characteristics can change quite a bit over time. Keyboard 
analysis can be done without the help of special tools, the classic computer keyboard 
is enough [BER02][IAP21a]. 

Behavioral biometrics measuring human actions. Behavioral traits such as 

handwriting, signatures, keystroke dynamics, and mouse dynamics can be used to 
identify users. They are less costly, less accurate than physiological characteristics, 
as they often change slightly depending on circumstances [ALI17][JAY19]. 

For institutions of higher education, “typing signature” is the most cost-
effective  and reasonable approach to improve online assessment security 
[JAY19][FAB97][IAP21a]. 

 

2.2.2 The route of scientific research and branches of the field 
 

Keystroke dynamics is an research field with more and more importance in 
network access control and cyber security [ZHO12] [IAP21b]. For now, only a few 
studies are about free-text keystroke dynamics, the way that the users type what text 
the user wants. Most of them are analyzed only fixed text, static text 

[ZHO12][SAL10][ZAC10]. Fixed content and fixed length data are usernames or 
passwords [MON02]. Free text requires two phases: the user enrollment phase in the 
system and the user verification phase [MON02].  

First, the use for users identification was researched in the 1970`s [ZHO12]. 
Spillane wrote his conclusions about the first investigation in 1975 [FOR77] and 
Forsen, Nelson and Staron in 1977 [SPI75]. ‘Fist of the Sender’ was a methodology 

in World War II that was used to identify, by using the rhythm, the sender of the 
telegraph. [BAN12] [VAC07] [DUN08][IAP21a]. 

Keystroke dynamics have been studied mostly in connection to 
authentication, but some studies, such as [MES11], have also studied the detection 
of emotional states of the user who uses the keyboard. Other studies focus on predict 
users age and gender from unintentional traces, that left behind by use of keyboard 
and mouse [AVA17].  In [SAL18], the authors explored the relevance of individual 

and general keyboard and mouse interaction patterns and they had modeled user`s 
keystroke dynamics and mouse movements with data mining techniques to detect the 
emotion of users in real-world learning scenarios [IAP21a].  
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In [LIM14], the authors indicates that automatic analysis of human stress 
from mouse input and keyboard input is potentially useful for providing adaptation in 

e-learning systems [IAP21a]. 
Typing behavior for continuous authentication is a biometric modality 

proposed in [ROT14]. The authors collected a video database from 63 users with static 
text and free text typing and developed computer vision algorithms to extract hand 
movement from the video stream. 

If most studies use only data retrieved from the keyboard, there are studies 
that use a mixed method of user identification, based on data retrieved from the 

keyboard, but also on data retrieved from the mouse [LOZ17]. Additional features, 
like pressure, are used in addition to time-based features, but to capture this data 
you need touch screens or other special devices [TEH13]. The stages that a research 
in this field goes through are: extracting the keyboard features, creating user profiles 

and updating them and identifying the efficiency criteria [KOC19][IAP21a]. 
Most studies analyze data collected in English. There are studies that research 

the field for texts in other languages, such as French [BOU17], Italian [SOL11], 

Japanese [SAM09], Russian [KOC19], Arabic [ALS16], Korean [JUN20] or others. 
Commercial keystroke dynamic products exist. In 2003, the paper [ILO03] 

presents the company BioNet Systems which patented the BioPassword 
authentication system [ZIL98]. In Romania, Typing DNA is a company, a start-up, 
that received funds of 6.2 million euros in 2020 to create a typing identity for security 
[STE20]. 

Other studies, like [ARW17], incorporates the use of nonconventional typing 
features using free text typing dynamics. Semi-timing features along with the editing 
features were extracted from the users' typing flow and decision trees were used to 
classify each of the user data. 

Algorithms of dynamic authentication can be divided into three major groups: 
estimation of metric distances, statistical methods and machine learning. Methods of 
keyboard recognition used in the literature are: distance, neural networks, statistical, 

probabilistic, machine learning, clustering, decision tree, evolutionary computing, 

fuzzy logic or other [KOC19] [IAP21a]. 
Some limitations of keystroke dynamics previous research were: it took a long 

time to train the model, data were manual preprocessed by human or large database 
was required [YUE04]. The authors from [YUE04] conclude that use of keystroke 
dynamics can make a more secure system. 

The following sections of this chapter present technical aspects from the 

literature in the field of keystroke dynamics. 
 
 

2.2.3 Fixed text keystroke dynamics 
 

Fixed text keystroke dynamics is applied to the exactly same text typing, both 
in the user data retrieval phase and in the user identification or verification phase. 
Being the same text, with the same sequences it is much easier to analyze how it is 
typed. For example, when a user enters their username and password it is always the 
same text sequence. In this case you can analyze the similarities or the differences 
with greater accuracy, remaining at the same typing mode. Difference occurs if every 

time there can be another text typed from the keyboard, as is the case with free text 

keystroke dynamics [IAP21a]. 
Coursera, one of the biggest platforms of Massive Open Online Courses, used 

keystroke dynamics to verify online users from courses [MAA14]. 
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2.2.4 Free text keystroke dynamics 

 
„While static text keystroke dynamics biometrics are often used during the 

logon process to provide a onetime authentication, free text keystroke biometric 
systems enable continuously authentication of a user during the entire session for 
increased security.” [ZHO15] [IAP21a] 

  

 

2.2.5 Di-graph 
 
A di-graph is a sequence of two consecutive keys. The time for which each 

keystroke was pressed is named as key hold time or dwell time. [BAN12] The dwell 
time is the Down-Up time for one single key. In the Figure 2.7, the graph shows the 

distribution of dwell times (DU) for one of the users from data set. [IAP21a] 
 

 
Figure 2.7 Distribution of dwell times (DU) for one of the users from data set [IAP21a] 

 
The Release - Press time or Up-Down time between two consecutive keys was 

called Flight Time [STE10] [IAP21a]. 
A di-graph is a sequence of two consecutive keys pressed by the user. When 

pressing two consecutive keys we will take 4 time periods, noted on the image with 
t1, t2, t3 and t4. These time periods are captured when the K key (t1) is pressed, 
when the K key (t2) is raised, when the D key (t3) is pressed and when the D key 
(t4) is raised [IAP21a]. The time the K key is pressed is dwell time and is calculated 
as the difference between t2 and t1: 

DU (K) = t2 – t1                                                 (2.1) 
 

Flight Time represents the time period between the 2 keys, or more precisely 
the time from which the first key is left until the second key is pressed [IAP21a]. It is 
calculated as the difference between t3 and t2 in the image: 

 
UD (K-D) = t3-t2                                                 (2.2) 
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In the same way as the calculation method for (4.1) Dwell Time is calculated 
for the second key (in our example, the D key) [IAP21a]. The time the second key 

was pressed is calculated as the difference between t4 and t3: 
 

DU (D) = t4-t3                                                   (2.3) 
 
In the Figure 2.8 the graph shows the distribution of flight times (UD) for one 

of the users from data set. 

 
Figure 2.8 Distribution of flight times (UD) for one of the users from data set [IAP21a] 

 
Other time periods that can be calculated and used in algorithms are 

[IAP21a]: 
• the time period between pressing the two DD (K-D) keys that we calculate, 

according to the notations in the figure as the difference between t3 and t1: 
 

DD (K-D) = t3-t1                                                (2.4) 
 
the time between raising the first key and raising the second key, in our 

drawing it is about the difference between times t4 and t2: 
 

UU (K-D) = t4-t2                                                (2.5) 
 
the total time required to press the 2 keys, in our example, is calculated as 

the difference between t4 and t1: 
 

D1U2 (K-D) = t4-t1                                              (2.6) 

 
Furthermore, to dwell and flight times, additional ways allow the user to 

extract data from keystrokes dynamics [JAY19] [FLI10] [RYB08]: 
• Typing speed  
• Overlap of specific keys combinations  
• Number or percentage of errors  

• Method of error correction  

• Persistent use of navigation-specific keys  
• Seek time (time required to press a subsequent key in a common 

digraph base)  
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• Characteristic errors  
Another feature to evaluate extracted from key press and key release events 

is also typing speed. [SHU13][LIM14] 
Figure 2.9 shows an event required to retrieve the data for a di-graph, a 

sequence of two consecutive keys pressed by the user. 

 
Figure 2.9 Key events and time intervals for a di-graph [IAP21a] 

 

 
 

2.2.6 N-graph 
 
Two keys typed one after the other with their typing time are called a di-

graph. Similarly, three consecutively typed keys with their typing time are called a 

tri-graph. And in general, N keys typed one after the other with their typing time are 

called a n-graph. 
In their survey, in [TEH13], the authors noticed that 80% used di-graphs, 7% 

tri-graphs and only 4% used n-graphs. The n-graphs can be used with success in the 
experiments that have a big amount of input text. 
 

 

2.2.7 Metric distances 
 
Given that typing times result in time vectors, and these must be compared 

to see the similarities between them to identify or validate the user, the convenient 
method that is also used frequently is to calculate the distance of two vectors. In this 

way we can say that whether some vectors are similar or not similar. To calculate the 
distance, several types of distances between two vectors are used in the literature. 
Each distance can be effective in given cases, in certain circumstances [IAP21a]. 

Given two typing samples of the same letters is necessary to approximate 
their similarity or their difference. Is necessary to choose a measure of the distance 
of the two samples. [BER02] [IAP21a] 
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2.2.7.1 Euclidian Distance 

 
Euclidian distance is the most used distance between two points. For points 

given by Cartesian coordinates in n-dimensional Euclidean space, the distance is 
[TAB14]: 

d(x, y) = √(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 + ⋯ + (xn − yn)2  (2.7) 

    

d(x, y) = √∑(xi − yi)
2

n

i=1

 

                                         (2.8) 
In [ZHO15], the authors conclude that ”despite its intuitiveness and 

simplicity, Euclidean distance has two limitations: 
• It is highly sensitive to scale variations in the feature variables 
• It has no means to deal with the correlation between feature 

variables.” [IAP21a] 

 

2.2.7.2 Manhattan Distance 
 
For points given by Cartesian coordinates in n-dimensional space, the 

Manhattan distance is: 

d(x, y) = ∑ |xi − yi|

n

i=1

 

                                          (2.9) 
The Manhattan distance has the advantages of easy de-composition into 

contributions made by each variable and simple computation [ZHO15] [IAP21a]. 

 

2.2.7.3 R Distance 
 
The R distance was introduced in [BER02] in 2002. The authors described and 

tested a new biometric measure of the typing characteristics of individuals. In the 

case of fixed text R distance provided good results [IAP21a]. 
An example of calculating the distance R is given by the authors in [GUN05]. 

Figure 2.10 and formula show the method of calculating this distance. 
 

X  y 

ic 150 d=2 th 150 

he 220 d=0 he 190 

th 230 d=2 ca 200 

ti 265 d=3 ic 220 

ca 280 d=1 ti 320 
Figure 2.10 Computation R distance of two typing samples [GUN05] 

d(x, y) =  
2 + 0 + 2 + 3 + 1

12
=

8

12
= 0.66 

             [GUN05] (2.10) 
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2.2.7.4 A Distance 

 
A measure only considers the absolute value of the typing speed of each pair 

of identical n-graphs in the two samples under comparison. [BER02] 
An example of calculating the distance A is given by the authors in [GUN05]. 

Figure 2.11 and formula show the method of calculating this distance, at t=1.25. 
 

x  Y   

280 Ca 200 280/200=1.4  

220 He 190 220/190=1.157 (similar pair) (1) 

150 Ic 220 220/150=1.466  

230 Th 150 230/150=1.533  

265 Ti 320 320/265=1.207 (similar pair) (2) 
Figure 2.11 Computation A distance of two typing samples [GUN05] 

d(x, y) = 1 −
2

5
= 1 − 0.4 = 0.6 

       [GUN05] (2.11) 
 

2.2.7.5 Bhattacharyya Distance 
 
The Bhattacharyya distance between two vectors is defined as [IAP21a]: 

                
d(x, y) = −ln (BC(x, y)) 

                                              (2.12) 
where       

BC(x, y) = ∑ √xiyi

n

i=1

 

                                                (2.13) 
where n is the dimensions of the vectors x and y. 
 

2.2.7.6 Mahalanobis Distance 

 
Mahalanobis Distance has been popularly used to match keystroke features 

because it handles the correlated data well [ZHO15]. The squared Mahalanobis 
distance is defined as: 

      (x − y)2 = (x − y)T S−1 (x − y)                                 (2.14) 

 
where S is the covariance matrix of the data. [IAP21a] 
”Mahalanobis distance is related to the logarithmic likelihood under the 

assumption that the data follows a multivariate Gaussian distribution, which is a 
reasonable approximation for most practical data.” [ZHO15] 

 

2.2.7.7 Distance Metric Fusion 

 
The results of the same researches show that with regards of this field it is 

often proposed to combine (merge) two or more metric mutes in order to obtain better 

BUPT



 Keystroke dynamics – literature review          31 

performance. For example, in [AYO19] compare the performances of 3 distance 
calculation methods, but combine two by two and then combine all 3. 

 
 

2.2.8 Keystroke dymanics authentication algorithms from the 

literature 
 

This subchapter lists the methods used in various continuous authentication 
algorithms using keystroke dynamics presented in another scientific research in this 
field [IAP21b]. 

Leggett’s zone of acceptance algorithm ”assumes that the latencies for all  
situations in which it occurs of a digraph in the reference profile follow a normal 

distribution. If the average latency for a digraph in the test sample is between the 
acceptance area, the digraph is then considered accepted, otherwise, rejected.” 

[LEG88] [IAP21b] 
Gunetti and Picardi’s algorithm is based on both the A measure and R measure 

for measuring similarity [GUN05]. In free text keystroke dynamics field, the Gunetti 
and Picardi’s algorithm is considered the state-of the-art [AHM14] [IAP21b]. 

In [MON00] [JOY90] [BLE91], [AHM14], [ROB98] and [COL99], was applied 
a statistical classifier, using techniques like k-means or Bayes. In [ARA03] and 

[RUE97], was applied fuzzy logic using a user’s categorization as output. In [LIN97], 
[OBA97] and [WON01], was applied neural networks, but in [MON00], it was 
concluded that these algorithms are time consuming. In [HAI00], a neural network, 
a fuzzy classifier and a statistical were combined [ARA04]. 
 

2.2.9 Normalization tehniques 

   

2.2.9.1 Min-max normalization 
 

The simplest normalization technique is the Min–max normalization. Min–max 

normalization is best technique for the case where the maximum and minimum are 
known. The minimum and maximum scores can easily shift to 0 and 1, or to -1 and 

1. [JAI05]  
The formula for min-max normalization is (2.15). The x value is the  x’ is the 

normalized value: 

x` =
xi − xmin

xmax − xmin

(newmax − newmin) + newmin 

          (2.15) 
 
If the new range is between 0 and 1, then the formula is simplified as follows: 

 

x′ =
xi − xmin

x max− xmin
 

                                                 (2.16) 
 

2.2.9.2 Z-score normalization 

 
The z-score normalization technique uses the mean and standard deviation 

for each feature from a set of data [PAT15]. The z-score is the most commonly used 
normalization technique. It is optimal for Gaussian data.  
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The normalized scores are given by: 
 

x′ =
(xi − μi)

σi
 

                                                  (2.17) 
where µ is the arithmetic mean and σ is the standard deviation of the given 

data: 
 

μi =
1

n
⋅ ∑ xi

n

i=1

 

                                        (2.18)        

σi = √
1

(n − 1)
∑(xi − μi)

n

i=1

 

                                      (2.19) 
”Z-score normalization does not guarantee a common numerical range for the 

normalized scores of the different matchers. If the input scores are not Gaussian 
distributed, z-score normalization does not retain the input distribution at the output. 
This is due to the fact that mean andstandarddeviation are the optimal location 
andscale parameters only for a Gaussian distribution.” [JAI05] 

 
 

2.2.9.3 Decimal scaling  

  
Decimal scaling is the reduction of the value of some variables by dividing by 

10𝑛. In this way the number can become subunit. 

 

x′ =
xi

10n
 

                                              (2.20) 
where 

n = log10max (xi) 
                            (2.21) 

 
 

2.2.9.4 Median and median absolute deviation (MAD) 
 

The median absolute deviation – MAD - normalization is insensitive to outliers 
and does not guarantee the common numerical range [NAN05]. The normalization 
formula is [LAT11]:  

x` =
x − median

const(median|x − median|)
 

   (2.22) 
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2.2.9.5 Double sigmoid 

 
Double sigmoid normalization provides a linear and non-linear transformation 

of the scores. For the scores in the region of overlap is linear and for the scores outside 
the region are non-linearl [NAN05]. The normalization formula is [LAT11]: 

x` =
1

1 + exp (−2
x − t

r1
)

, if x < t 

   [LAT11](2.23) 

x` =
1

1 + exp (−2
x − t

r2 )
, if x ≥ t 

   [LAT11](2.24) 
 

t = point of reference  
r1 = left edge of the region in which the function is linear 
r2 = right edge of the region in which the function is linear 
 

2.2.9.6 tanh-estimator 
 
Tanh-estimator is one of the most efficient and powerful normalization 

techniques. It is introduced by Hample [BHA18]. The normalization formula is: 
 

x` = 0.5 (tanh (
0.01(x − µ)

δ
+ 1)) 

   [LAT11](2.25)  
 
µ = mean value 

δ = standard deviation  

 
In [JAI05] the author made a summary of normalization techniques based on 

robustness and efficiency presented in the Table 2.1: 
 

Table 2.1 Summary of normalization techniques [JAI05] 

Normalization techniques Robustness Efficiency 

Min–max No N/A 

z-score No High 

Decimal scaling No N/A 

Median and MAD Yes Moderate 

Double sigmoid Yes High 

tanh-estimators Yes High 

Biweight estimators Yes High 

 
 

2.2.9.7 Gaussian mixture model 

 
The Gaussian mixture model was used in statistical modeling tasks. It is a 

parametric model (it is parameterized by mean vectors and covariance matrixes of 
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the Gaussian distributions and weights of all of the Gaussian components). The real 
distribution of the data can be unknown [DEN13]. A Gaussian Mixture Model is a 

weighed sum of 𝑀 multivariate Gaussian functions [JAI99]. 

 
 

2.2.10 Length of input 
 
The length of the text that is analyzed when verifying the user's identity is 

very relevant to the performance of the algorithm. The longer the analyzed text, the 

better the accuracy by which the identity is verified. At text with shorter lengths the 
performance of the algorithms decreases. In [AYO19] the authors show that with a 
small number of di-graphs, like 100 di-graphs, the EER is 35,3%. At 200 di-graphs 
the ERR drops to 15,3%. With more di-graphs, the performance continues to improve. 

At one analysis with 1000 di-graphs the authors obtain an ERR of 3,6%. The authors 
from [KAI11] needs minimal 700 keys typed on the keyboard for their algorithm 

because they need a minimum number of common di-graphs for the authentication 
or validation process [IAP21b].  

 
 

2.2.11 Improvement of initial data 
 

In [HUA16] the authors improved the quality of data by eliminating text 
considered as being noises. They concluded that the data set obtained from a user 
must first be filtered. By filtering, they ended up eliminating up to 23.3% of the initial 
text. The atypical behavior of a user has been eliminated and the performance has 
improved in relation to false rejection rate.  

The type of gibberish proposed in [HUA16] are: 
• ”Repetition: Repeating the same characters at least 3 times 

• Gaming: gaming patterns, any combinations of the four keys used for 
movement in games (‘a’,’s’,’d’,’w’) and space 

• Distinct: Strings with too few distinct characters (moving window of 
15 characters with no more than 5 distinct characters). Parameters 
are chosen manually. Exemple: reeewereeweerewe 

• Length: Long strings (greater than 20) of alphabetical letters. 

Exemple: idhuduisidjcdcvdscvois 
• The unstable keystrokes may generate from such activities as when 

the user is playing a computer game. Addition of gibberish keystrokes 
has no impact on false accept rate but increases false reject rate 
significantly. Filtering implies that a larger test sample is needed 
before an authentication can be attempted.” [HUA16] 

Prescreening the data is essential to maximize the performance of the 

classifiers from the data being analyzed. The performance of the algorithm is 
maximized by prescreening and removing non-essential elements. [JAY19] [FAW06] 

In the [MON06] was proposed the time interval equalization, a non-linear 
mapping of time intervals for improve the performance of algorithm. 

 
 

2.2.12 Updating dynamic datasets 

 
Biometric systems commonly provide good performances but the recognition 

solutions tend to be affected over time due to aging of biometric data [ANI16] and 

BUPT



 Keystroke dynamics – literature review          35 

changing conditions [FAB08]. Adaptive systems, which adapt the reference over time, 
have been proposed to deal with such intra-class variability. The authors from 

[PAU19] provides discussion on adaptive biometrics systems, including formalization, 
terminology, sources or variations that motivates the use of adaptation, adaptation 
strategies, evaluation methodology and open challenges and concludes that an 
important advance in the field would be the standardization of the evaluation protocol 
of adaptive biometric systems. 

The authors from [MON99] used an adaptation mechanism. Every time a 
successful authentication is performed, the algorithm creates a new updated pattern, 

saving the new sample and deleting the oldest one [ARA04]. 
 
 

2.2.13 Evaluating the performance of authentication algorithms 

based on keystroke dynamics 

 

2.2.13.1 Confusion matrix 
 
The confusion matrix has four categories: True positives (TP), False positives 

(FP), True negatives (TN) and False negatives (FN). The confusion matrix can be used 
to build points in ROC space [JES06] [IAP21b]. In Table 2.2 is shown a confusion 

matrix. 
 

Table 2.2 The confusion matrix [JES06] 

 Actual positive Actual negative 

Predicted 
positive 

True positives  
(TP) 

False positives  
(FP) 

Predicted 
negative 

False negatives 
(FN) 

True negatives  
(TN) 

 

 

2.2.13.2 False Rejection Rate (FRR) 
 
False Rejection Rate (FRR) is ”the probability that a system incorrectly 

classifies a genuine user as an imposter. FRR is the precent of genuine users that are 

rejected as imposters.” [ZHO15] [IAP21b] 
 

FRR= number of genuine user incorrectly classifies as an imposter / total 
number of genuine match attempts     

 (2.26) 
 

FRR =  
FP

FP + TP
 

     (2.27) 

 

2.2.13.3 False Acceptance Rate (FAR) 
 
False Acceptance Rate (FAR) is ”the probability that a system incorrectly 

classifies an imposter as a genuine user. FAR is the percent of imposters that are 
incorrectly accepted as genuine users, how often an intruder is granted access” 

[ZHO15] [IAP21b]. 
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The formula by which FAR is calculated is given below: 
FAR = number of imposters that are incorrectly accepted / total number of 

impostor match attempts     (2.28) 
 

FAR =
FN

FN + TN
 

     (2.29) 
 

 In the Figure 2.12 are graphically represented the FAR (False 
Acceptance Rate) and FRR (False Rejection Rate). 

 

 
Figure 2.12 A graph with FAR and FRR  [IAP21b] 

 

2.2.13.4 Equal Error Rate (ERR) 
 
The equal error rate (EER) is used as a performance metric and it is the point 

where the FAR equals FRR. The system with the lowest EER is the most accurate. 
[ZHO15] [IAP21b] 

ERR =  FAR =  FRR     (2.30) 

 

The low accuracy is the main issue of keystroke dynamics [HAB17]. But an 
EER of 5% is suitable for educational systems that do not require high security 
[BAR06] [IAP21b]. 

 
 

2.2.13.5 Zero Miss False Acceptance Rate (ZMFAR) 

 
Authentication accuracy is assessed with Equal Error Rate (EER), the 

percentage at which False Acceptance Rate (FAR) and False Rejection Rate (FRR) have 

equal value. Another indicator of algorithm performance, in addition to EER, is, 
according to [ZHO12] [KIL09] Zero Miss False Acceptance Rate (ZMFAR). ZMFAR is 
represented by the minimum percentage of FRR (False Rejection Rate) when FAR 

(False Alarm Rate) has the value equal to 0. In Figure 2.13 are graphically represented 
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the two performance indicators of a user authentication algorithm in the system 
[IAP21b]. 

 

 
Figure 2.13 Graphical reprezentation of Equal Error Rate (EER) and ZMFAR (Zero Miss False 

Acceptance Rate) [IAP21b] 

 
 

2.2.13.6 Receiver operating characteristic (ROC) curve 
 
Receiver Operating Characteristic (ROC) curves describe an entire range of 

achievable performance characteristics relative to FAR and FRR’s. [BAR06] In machine 
learning, Receiver Operating Characteristic (ROC) curves are used to present results 
for binary decision problems. ROC curves have many properties when the class 

distribution is close to being uniform. The confusion matrix can be used to build points 
in ROC space [JES06] [IAP21b]. In the Figure 2.14 are represented a Receiver 
operating characteristic (ROC) curve. 

 

 
Figure 2.14 Receiver operating characteristic (ROC) curve [IAP21b] 
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2.3 Conclusions 
 

In this chapter, the current state-of-the-art in the field of doctoral thesis was 
presented. The scientific papers cited in this chapter, as well as the presentations of 
concepts, methods, metrics, algorithms, are starting points for present research. 

The first part of the chapter, at subchapter 2.1 Evolution of educational 
systems, describes the evolution of online education systems, an evolution that has 

met significant increases in recent years and especially in 2020, in the context of 
moving the classical education system to the online space due to certain constraints 
such as maintaining the physical distance between people because of the health crisis 
caused by the SARS-CoV-2 virus. The keystroke dynamics authentication method can 
be successfully applied as a second mandatory authentication method in case of 

authentication within online education platforms and especially during exams, when 
the user's identity must be confirmed throughout the session, not only once at the 

beginning. This additional verification would be required for two more reasons: 1.the 
educational systems with Massive Open Online Courses (MOOC) have seen a great 
growth from its appearance until today, reaching tens of millions of users, there are 
exams that are given on these platforms with thousands of students at the same time 
and 2.the medical crisis generated by the SARS-CoV-2 virus in 2020 provoked 
unprecedented travel restrictions around the globe, and the educational system was 

moved to an online one. 
The second part of this chapter, subchapter 2.2 Keystroke dynamics - 

literature review, makes a generic presentation of the research stage in the field of 
keystroke dynamics, presents, in the subchapter 2.2.1, its classification as human 
biometrics that helps to identify the individual, as well as other biometrics: fingerprint, 
iris, facial recognition, how to shake hands, etc. It also presents, from the subchapter 
2.2.2, the route of scientific research and branches of the field. The categories of 

keystroke dynamics analysis researched are: Fixed text keystroke dynamics, 
presented in subchapter 2.2.3, and Free text keystroke dynamics, presented in 
subchapter 2.2.4. The methods to group characters typed on a keyboard for further 

analysis in an algorithm are the following: analysis of consecutive key pairs (di-
graphs), presented in subchapter 2.2.5, or groups of n consecutive keys (n-graphs), 
presented in subchapter 2.2.6. The authentication algorithm based on keystroke 
dynamics takes over, for each key pressed, key code, the time when it was pressed 

and the time at which it was picked up. In this way, for each user there will be a long 
series of keys and times. By processing this input data, the user can be identified. 
With the help of the pressing times, respectively of leaving the key, it can easily 
calculate the total time when a certain key has been pressed or the total time elapsed 
between two consecutive keys. Regardless of the analysis of the user's typing mode 
(one key, di-graph, tri-graph or n-graph analysis) the input data for the authentication 

algorithm are time vectors (intervals when a key has been pressed, or how many took 
until the press of the next key). The algorithm will process this input data to decide if 
the user who is now at the computer is the one who claims to be and can log in to the 
system. Time vectors are vectors of real numbers. In order to analyze the vectors of 
real numbers (time vectors) and to decide their similarity, different methods can be 
approached: (1) distance based classifier, (2) statistical classifier -generic, (3) 
probability classifier, (4) clustering, (5) machine learning methods - generic, (6) 

neural networks, (7) fuzzy logic, (8) decision tree, (9) evolutional computing, (10) 
SVM - support vector machines etc. In the subchapter 2.2.7, Metric distances, the 
main metrics for calculating the distances between two vectors were presented. In 
the subchapter 2.2.8 was presented the Keystroke dynamics authentication 
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algorithms from the literature. It analyses the conception and functioning of the 
algorithms submitted in scientific research in this field in order to be a starting point 

for achieving the objective. 
In the subchapter 2.2.9 was presented Normalization techniques, that helps 

to format the initial data which are input data for an authentication algorithm based 
on keystroke dynamics in order to obtain similar data from all users, for better 
performances. The techniques presented to standardize are used in algorithms that 
are presented in scientific papers in the field. The last three subchapters, 2.2.10 
Length of input, 2.2.11 Improvement of initial data and 2.2.12 Updating dynamic 

datasets analyzes particular cases in the development of authentication algorithms 
using keystroke dynamics. 

The following chapter, Chapter 3, will present the research methodology 
applied by the author to the present scientific research.
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3 RESEARCH METHODOLOGY 
 
 
 
 

 The previous chapter presented state-of-the-art in the field of keystroke 

dynamics, throughout which the evolution of the domain, the development steps of 
an algorithm were analyzed and presents the evolution of educational systems, the 
field in which authentication based on keystroke dynamics can be applied, especially 
in the context in which education on online platforms experienced a major increase in 
2020.  

In the following, this chapter will present the research methodology applied 

in this research project. The steps performed in the present scientific research are 
described below: 

A. Development of the platform for the acquisition of input data 
B. Acquisition and initial processing of input data from 80 volunteers (how 

typing on their keyboard) 
C. Processing the input data so as to generate a user pattern for each user 
D. Development of an algorithm in the C programming language for 

calculating distances used in keystroke dynamics authentication 
E. Simulation of system authentication by genuine users or impostors to 

measure the performance of the developed algorithm 
The first two steps of the research methodology, A. Development of the 

platform for the acquisition of input data and B. Acquisition and initial processing of 
input data from 80 volunteers (how typing on their keyboard), have the role of 

approaching O1, as described in the first chapter of the thesis: to collect a database 
with the test pattern from at least 80 users, in order to test the authentication 
algorithm for this research, but also to make it available to other interested 
researchers. 

The third step of the research methodology, C. Processing the input data so 
as to generate a user pattern for each user, and the last step of the research 
methodology, E. Simulation of system authentication by real users or imposters to 

measure the performance of the developed algorithm, have the role of approaching 
O4, as described in the first chapter of the thesis: to propose a data structure as 
efficient as possible, which should contain the most relevant information about the 
typing of a user.  

The third step of the research methodology, C. Processing the input data so 
as to generate a user pattern for each user, and the forth step of the research 
methodology, D. Development of an algorithm in the C programming language for 

calculating distances used in keystroke dynamics authentication, have the role of 
approaching O2, as described in the first chapter of the thesis: to implement an 

algorithm for authenticating the users of a computer based on the keystroke 
dynamics, the keyboard typing mode. 

The last step of the research methodology, E. Simulation of system 
authentication by genuine users or impostors to measure the performance of the 
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developed algorithm, has the role of approaching O3, as described in the first chapter 
of the thesis: to propose at least two new metrics for calculating the distances 

between two vectors that generate better performance compared to the Equal Error 
Rate (EER) performance indicator than the classical methods. 

Figure 3.1 shows the steps of research methodology, the steps performed in 
the present scientific research. 
 

 

Next, each step of the research methodology listed above will be described in 
detail, in a separate subchapter. 
 
 

3.1 A. Development of the platform for the acquisition of 

input data 
 

The first step in this research was to create a web platform for the acquisition 

of input data necessary for research. For this, the website from 
https://sites.google.com/view/cataliniapa was created, a form was created that would 

take over, besides the text typed by the users, the way of typing on the keyboard. A 
program in JavaScript language was written to take over the keystroke times. In order 

A. Development of the platform for the acquisition of 
input data 

Objective pursued: O1 

C. Processing the input data so as to generate a user 
pattern for each user 

Objective pursued: O2, O4 

E. Simulation of system authentication by genuine users 
or impostors to measure the performance of the 

developed algorithm 
Objective pursued: O3, O4 

 

B. Acquisition and initial processing of input data from 
80 volunteers (how typing on their keyboard) 

Objective pursued: O1 

D. Development of an algorithm in the C programming 
language for calculating distances used in keystroke 

dynamics authentication  

Objective pursued: O2 
 

Figure 3.1 Summary of the research methodology applied in the thesis 
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to be able to download the necessary information, a Google Sheet file was configured, 
and the information collected using the web form was transmitted using the platform 

https://api.apispreadsheets.com/. The platform for acquiring input data has been 
completed and functional by integrating the script written in JavaScript with the data 
transfer application in the Google Sheet file. The steps described can be followed in 
the graph in Figure 3.2. 
 

 
This step of the research methodology has the role of approaching O1, as 

described in the first chapter of the thesis: to collect a database with the test pattern 
from at least 80 users, in order to test the authentication algorithm for this research, 

but also to make it available to other interested researchers. This step is detailed in 
the next chapter, Chapter 4, at subchapter 4.1 Platform for collecting data about 
keyboard typing from 80 volunteers. 
 
 

3.2 B. Acquisition and initial processing of input data 
 

The acquisition and initial processing of the input data went through the 
following steps: Data were collected from 80 users using a web program written in 

JavaScript. It was collected from the 80 volunteers, through a form, the keys typed 
on the keyboard but also the times at which they were typed. The collected data was 
initially stored in a Google Sheet file via the https://api.apispreadsheets.com/ 

platform. With a program written in the C programming language, the data collected 

Creating website 
https://sites.google.com/

view/cataliniapa 

Configure Google Sheet to 
retrieve user typing data 

Configure the platform for 

transferring data from the 
form on the website in 

Google Sheet 
https://api.apispreadsheets

.com/ 

Creating a form for data 
acquisition 

Creating the program in 
Javascript for the 

acquisition of typing 
times 

Integration 

Input data acquisition 
platform 

Figure 3.2 Steps taken to create the platform for retrieving data on how users type 
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in the Google Sheet file was processed and transformed into key events in the 
following form: 

68 0 123444 
68 1 123555 
59 0 123720 
71 0 123800 
59 1 123830 
71 1 123992 
... 

where on the first column is the key code of the pressed key, on the second 
column is 0 or 1, 0 represents the pressed key, and 1 represents the raised key, and 
the third column represents the timestamps at which the key event occurred. The file 
with the form presented above is the input file for the continuous authentication 

algorithm developed in this thesis using the keystroke dynamics method. The steps 
described above are summarized in the graph in Figure 3.3. 

 

 
This step of the research methodology has the role of approaching O1, as 

described in the first chapter of the thesis: to collect a database with the test pattern 

from at least 80 users, in order to test the authentication algorithm for this research, 
but also to make it available to other interested researchers. This step is detailed in 
the next chapter, Chapter 4, at subchapter 4.3 Acquisition and initial processing of 
input data from 80 volunteers (how typing on the keyboard). 
 

 

 

Completing the form with the 80 users in the platform for 

taking over the users' typing times 

Automatic transmission of typed keys and typing times in 

the Google Sheet file 

Transfer data retrieved from Google Sheet to text file 

Initial data processing in a program in the C language 

Generating the text file with the keys and typing times of the 

80 users who filled in the form on the platform 

Figure 3.3 Steps taken for the acquisition and initial processing of key data and typing times of 
the 80 volunteers 
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3.3 C. Processing the input data so as to generate a user 

pattern for each user 
 

In order to accomplish this step described in the research methodology, it was 
necessary to define the data structures for one key, di-graph, user pattern as well as 

to collect the input data from the text file in order to popularize the data structures 
within the program. The steps described in this subchapter are shown in the graph in 
Figure 3.4. 

This step of the research methodology has the role of approaching O4, as 
described in the first chapter of the thesis: to propose a data structure as efficient as 

possible, which should contain the most relevant information about the typing of a 
user and O2, as described in the first chapter of the thesis: to implement an algorithm 
for authenticating the users of a computer based on the keystroke dynamics, the 
keyboard typing mode. This step is detailed in the next chapter, Chapter 4, at 
subchapter 4.5 Processing the input data so as to generate a user pattern for each 
user. 
 

 

3.4 D. Development of an algorithm in the C 
programming language for calculating distances 

used in keystroke dynamics authentication  
 

Figure 3.5 shows the steps performed to calculate the distances between each 
two generated vectors, so as to approximate the similarity between two users. For 
this, the functions were written to calculate the distances between two vectors and 

were applied to the vectors resulting from the data present in each user pattern. 
 

Defining data structures for 
one key, di-graph, user 

pattern 

Collect input data from 

the text file 

Populating data structures 
with data from the text file 

Figure 3.4 Generate user pattern for each user 

Defining functions that 
calculate distance between 

user patterns 

Collect data from the 

user patterns 

Calculating the distances 

between each pair of user 
patterns in the database 

Figure 3.5 Calculating the distance between each pair of user patterns 
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This step of the research methodology has the role of approaching O2, as 

described in the first chapter of the thesis: to implement an algorithm for 
authenticating the users of a computer based on the keystroke dynamics, the 
keyboard typing mode. This step is detailed in the Chapter 5 - Algorithm development 
for keystroke dynamics authentication.  

 
 

3.5 E. Simulation of system authentication by genuine 
users or impostors to measure the performance of 

the developed algorithm 
 

In the previous step, the distances between user-generated time vectors were 
calculated to approximate the similarity between users. Based on them, the 
authentication was simulated and False Rejection Rate (FRR), False Acceptance Rate 

(FAR), True Acceptance Rate (TAR) and True Rejection Rate (TRR) were generated. 
Based on FRR and FAR, Equal Error Rate (EER) was calculated and the FAR-FRR graph 
was generated. Based on FAR and TAR, ROC curves were generated. These indicate 
the performance of the authentication algorithm. The steps described can be found in 
the graph in Figure 3.6. 

 

This step of the research methodology has the role of approaching O3, as 
described in the first chapter of the thesis: to propose at least two new metrics for 

calculating the distances between two vectors that generate better performance 
compared to the Equal Error Rate (EER) performance indicator than the classical 
methods. This step is detailed in the Chapter 6 – Experiments and results - Simulation 
of system authentication by genuine users or impostors. 

 
 

3.6 Conclusions 
 

This chapter described the research methodology. The five steps of the 
research methodology that have been presented in this chapter are: A. Development 

Simulation of authentication based on 
distances calculated between users 

Generate False 
Rejection Rate 

(FRR) 

Generate False 
Acceptance 

Rate (FAR) 

Generate True 
Acceptance Rate 

(TAR) 

Generate True 
Rejection Rate 

(TRR) 

Calculate the 
Equal Error 

Rate (EER) 

Generate the  
FAR-FRR 

chart 

Generate 
the  

ROC curve 

Figure 3.6 Simulation of authentication and calculation of algorithm performance 
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of the platform for the acquisition of input data, B. Acquisition and initial processing 
of input data from 80 volunteers (how typing on their keyboard), C. Processing the 

input data so as to generate a user pattern for each user, D. Development of an 
algorithm in the C programming language for calculating distances used in keystroke 
dynamics authentication and E. Simulation of system authentication by genuine users 
or impostors to measure the performance of the developed algorithm. 

The first step of the research methodology, A. Development of the platform 
for the acquisition of input data, has the role of approaching O1, as described in the 
first chapter of the thesis: to collect a database with the test pattern from at least 80 

users, in order to test the authentication algorithm for this research, but also to make 
it available to other interested researchers. This step will be detailed in the next 
chapter, Chapter 4, at subchapter 4.1 Platform for collecting data about keyboard 
typing from 80 volunteers. 

The second step of the research methodology, B. Acquisition and initial 
processing of input data from 80 volunteers (how typing on their keyboard), has the 
role of approaching O1, as described in the first chapter of the thesis: to collect a 

database with the test pattern from at least 80 users, in order to test the 
authentication algorithm for this research, but also to make it available to other 
interested researchers. This step will be detailed in the next chapter, Chapter 4, at 
subchapter 4.3 Acquisition and initial processing of input data from 80 volunteers 
(how typing on the keyboard). 

The third step of the research methodology, C. Processing the input data so as 

to generate a user pattern for each user has the role of approaching O4, as described 
in the first chapter of the thesis: to propose a data structure as efficient as possible, 
which should contain the most relevant information about the typing of a user and 
the role of approaching O2, as described in the first chapter of the thesis: to 
implement an algorithm for authenticating the users of a computer based on the 
keystroke dynamics, the keyboard typing mode. This step will be detailed in the next 
chapter, Chapter 4, at subchapter 4.5 Processing the input data so as to generate a 

user pattern for each user. 

The fourth step of the research methodology, D. Development of an algorithm 
in the C programming language for calculating distances used in keystroke dynamics 
authentication, has the role of approaching O2, as described in the first chapter of the 
thesis: to implement an algorithm for authenticating the users of a computer based 
on the keystroke dynamics, the keyboard typing mode. This step will be detailed in 
the Chapter 5 - Algorithm development for keystroke dynamics authentication.  

The fifth step of the research methodology, E. Simulation of system 
authentication by genuine users or impostors to measure the performance of the 
developed algorithm, has the role of approaching O3, as described in the first chapter 
of the thesis: to propose at least two new metrics for calculating the distances 
between two vectors that generate better performance compared to the Equal Error 
Rate (EER) performance indicator than the classical methods. This step will be detailed 

in the Chapter 6 – Experiments and results - Simulation of system authentication by 
genuine users or impostors. 

Based on the methodology presented in this chapter, the following chapters will 
present the data set collected in this research, the algorithm developed to identify 
users using keystroke dynamics as well as improvements to increase its performance 

and the experiments and results. The next chapter presents the platform with which 
the data were collected, the way of collecting data from 80 users and also an analysis 

of the data. 
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4 FREE-TEXT KEYSTROKE DYNAMICS DATA SET 
FOR CONTINUOUS AUTHENTICATION 

 
 
 

 
 

In the previous chapter was presented the research methodology. The 

research methodology assumes, first of all, the existence of data from users.  
This chapter is about the data set collected for the present research. The first 

subchapter 4.1, Platform for collecting data about keyboard typing from 80 
volunteers, presents the platform for collecting data about keyboard typing and how 
data was collected from 80 users in order to later develop an algorithm. Moreover, 
after presenting the platform with the help of which data were collected from users, 

it will proceed to the analysis of these collected data and to the presentation of the 
particular characteristics, in subchapthers 4.2 Analysis of time and key events 
collected from users, 4.3 Acquisition and initial processing of input data from 80 
volunteers (how typing on the keyboard) and 4.4 Analysis of keys collected from 
users. It shows how they were processed using an algorithm written in the C 
programming language. The subchapter 4.5, Processing the input data so as to 
generate a user pattern for each user, presents the structures that store user typing 

data. The subchapter 4.6, Keys distribution analysis, presents the analysis of the 
collected keys. The subchapter 4.7, Differences between users, graphically displays 

the typing pattern for different users. This chapter addresses the validation of O1 
from the first chapter of this thesis. 

 
 

4.1 Platform for collecting data about keyboard typing 

from 80 volunteers 

  
To research in the field of keystroke dynamics biometrics the researchers need 

input data obtained from computer users in different real situations. The necessary 
data are represented by the keys typed on the keyboard but also by the times at 
which they are pressed. The time when a certain key is pressed, respectively the time 
when a certain key is raised. The difference between these times is the keystroke 
time. Another important piece of information is the time between two keys. The 
difference between the time a key was released and the time a next key was pressed 
[IAP21a]. 

 This information can only be obtained in a restrained or controlled 
environment, with the consent of those participating to this experiment. The 

agreement of the participants is necessary because it exists a possibility to form the 
initial text that the user typed on the keyboard with access to this data, and if, for 
example, a user is monitored while sending e-mails or doing other activities, the 
information may be confidential. 
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 In the literature there are several sets of data that are accessible for research 
purposes. In the first phase, the author used these data sets. Most are represented 

by texts in English, obtained from the educational environment, by researchers from 
their university colleagues or from students.  

Some data sets are retrieved by a specific program, in a special environment 
made for this purpose. Others are made to monitor everything that is typed on a 
computer, regardless of the program used at one time by the user. It monitors 
everything typed on the keyboard and typing times whether the user is writing e-
mails, writing in a Word, Excel document or programming on a computer in a certain 

programming environment. 
 On the other hand, for the purpose of the research the author developed their 
own environment to obtain data from volunteers. The author has created a web 
environment for taking over keys and typing times in JavaScript. A form is created 

that takes over the keys and typing times while completing a form on a web page 
[IAP21a]. The website was created on the sites.google.com platform. The web 
platform can be accessed at https://sites.google.com/view/cataliniapa. 

  To capture the keys and typing times the author created a web form through 
which users were invited to answer several generic questions. The text entered from 
the keyboard by each user should be written freely by each user, without the need to 
reproduce a specific predefined text. At each text box, a series of generic questions 
were formulated to guide the user to a certain topic in the text he completed. The 
questions asked were about the weather, the ideal day or the educational system. To 

form the database for research is not relevant the topic of the text, but the way it is 
written. 

The text written by users is in Romanian. Most datasets in the literature are 
texts captured from users who have written in English [IAP21a]. 

Figure 4.1 shows the online form that each user filled in during the 
experiment. 

 

 
Figure 4.1 The form that the users filled in 

 

After completing all the fields in the form, in order to send the captured data, 

the consent regarding the takeover for the purpose of scientific research of the 
participants was obtained. Two questions answered by users from the form are in 
Figure 4.2. First one is about weather and second one about the ideal day. 
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Figure 4.2 Two questions answered by users from the form 

 
Each user was instructed to pursue the following rules when filling out the 

form: 
1. To write a free text about the subject managed by guidance questions; 
2. Write a text of about 500 characters for each question (this means that 

all the lines in a text window should be filled); 
3. Do not copy the answer from other sources; 
4. Write the answer to the questions on the spot, without consulting external 

sources; 

5. Write ideas fluently, as they come to mind; 
6. Do not do other activities while completing the answer to the questions. 

The request is to allocate about 15 minutes to complete the form; 
7. The written text must be in Romanian; 
8. The written text should be as generic as possible, not personal; 
9. The text should be written from a physical keyboard, computer or laptop, 

not a touchscreen device (not a phone or tablet). 
10. Please take about 15 minutes to complete the form to answer all questions 

without being interrupted by other activities. 
In one of the questions on the form, users were asked to describe the scene 

in the Figure 4.3, in as much detail as possible. 
 

 
Figure 4.3 Each user has described the scene of the picture at one of the questions 
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To send the data the user pressed the send button so by pressing this button 
the data captured during the completion of the form were uploaded in a google sheet 

file as shown in Figure 4.4. The file is organized in 3 columns, as follows: the first 
column contains the key codes of the captured keys separated by commas, the second 
column shows the time each key was pressed, and the third column captures the time 
between two consecutive keys. Times are separated by commas, as is the key codes. 
 

 
Figure 4.4 Google sheet with the key codes, timestamps and key events from users 

 

 To retrieve the data about keys and typing times the author wrote a script in 

JavaScript. The script is at Code 4.1. To transfer the data from the form to Google 
Sheet is used the api from apispreadsheets.com. 
 
Code 4.1 The script used to get the keys and typing times from the users 
<script> 
var letters = []; 

var timestamp = []; 
var event = []; 
var name = []; 
var age = []; 
var tel = []; 
var mail = []; 
var gender = []; 

var gen = []; 
var device = []; 
var dev = []; 

var clk0 = $.now(); 
var start = null; 
var end = null; 
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$('#in1').keydown(function (f) {         
            start = $.now()-clk0; 

         letters.push(f.keyCode); 
 timestamp.push(start); 
 event.push(0);  
    }).keyup(function (f) { 
 end = $.now()-clk0;  
          letters.push(f.keyCode); 
 timestamp.push(end); 

 event.push(1); 
});   
$("#submit").click(function(){ 
 name = document.querySelector('#in').value; 

 age = document.querySelector('#age').value; 
 tel = document.querySelector('#tel').value; 
 mail = document.querySelector('#mail').value; 

 gender = document.getElementsByName('gender'); 
 if(gender[0].checked) gen=0; 
 if(gender[ZHO12].checked) gen=1; 
 if(gender[KIL09].checked) gen=2; 
 device = document.getElementsByName('device'); 
 if(device[0].checked) dev=0; 

 if(device[ZHO12].checked) dev=1; 
  $.ajax({ 
   url:'https://api.apispreadsheets.com/data/5917/', 
   type:'post', 
   data: { 
    "name" : name, 
    "age" : age, 

    "tel" : tel, 

    "mail" : mail, 
    "gender" : gen, 
    "device" : dev, 
    "letters" : letters.join(), 
    "timestamp" : timestamp.join(), 
    "downOrUp" : event.join() 

    },  
   success: function(){ 
     alert("Form Data Submitted") 
   }, 
   error: function(){ 
     alert("There was an error") 

   } 
  }) 
 }); 
</script> 
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4.2 Analysis of time and key events collected from 

users 

 
The form created to purchase data sets for research purposes was completed 

by a number of 80 users. They handed over data for 410,633 key-events [IAP21a]. 

The comprise time used by all 80 users to complete the form was 23 hours, 28 minutes 
and 19 seconds. For each user, the overall completion time for the form was calculated 
from pressing the first collected key to pressing the last collected key with the 
following formula: 

TotalTime = UpEventLastKey – DownEventFirstKey   (4.1) 
 
 The maximum time to complete the form was spent by user 55, setting aside 

approximately one hour and 20 minutes to provide 5088 key events. The minimum 
time was allocated by user 50 and user 24, approximately 4 minutes, but providing 
even fewer key events, 1237 key events of user 50 and 1121 key events of user 24. 
 The average time spent by users on the data collection platform is 17 minutes 
and 36 seconds. Table 4.1 shows the completion times of the form for each user, as 
well as the average and the total time spent by users to complete. In this regard, the 
time is expressed not only in milliseconds revealed in the second column of the table, 

but also in minutes show in the third column of the table. 
 

Table 4.1 Time spent by users to complete the form 
User Time 

(ms) 
Time 
(min) 

Total  84501613 1408.36 

Average 1056270 17.60 

user0001 1095546 18.26 

user0002 1177215 19.62 

user0003 591972 9.87 

user0004 1294786 21.58 

user0005 504168 8.40 

user0006 443926 7.40 

user0007 1076423 17.94 

user0008 931092 15.52 

user0009 958237 15.97 

user0010 869952 14.50 

user0011 814627 13.58 

user0012 649341 10.82 

user0013 570906 9.52 

user0014 640486 10.67 

user0015 614859 10.25 

user0016 923821 15.40 

user0017 608300 10.14 

user0018 1038345 17.31 

user0019 921804 15.36 

user0020 570299 9.50 

user0021 801803 13.36 

user0022 512004 8.53 

user0023 1270468 21.17 

user0024 278405 4.64 

user0025 1324293 22.07 

user0026 548089 9.13 

user0027 1199995 20.00 

user0028 683331 11.39 

user0029 538419 8.97 

user0030 960423 16.01 

user0031 846177 14.10 

user0032 684500 11.41 

user0033 1044991 17.42 

user0034 1504600 25.08 

user0035 1298690 21.64 

user0036 639693 10.66 

user0037 1021443 17.02 

user0038 779141 12.99 

user0039 728718 12.15 

user0040 915012 15.25 

user0041 1601844 26.70 

user0042 1248721 20.81 

user0043 1248392 20.81 

user0044 537593 8.96 
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user0045 1034266 17.24 

user0046 822826 13.71 

user0047 2338553 38.98 

user0048 1787919 29.80 

user0049 987686 16.46 

user0050 249185 4.15 

user0051 562723 9.38 

user0052 735564 12.26 

user0053 829821 13.83 

user0054 1488714 24.81 

user0055 4846025 80.77 

user0056 553485 9.22 

user0057 668374 11.14 

user0058 1076782 17.95 

user0059 858249 14.30 

user0060 733605 12.23 

user0061 1218402 20.31 

user0062 544233 9.07 

user0063 996290 16.60 

user0064 1732492 28.87 

user0065 1012393 16.87 

user0066 1418069 23.63 

user0067 1208593 20.14 

user0068 630424 10.51 

user0069 854492 14.24 

user0070 888229 14.80 

user0071 2803408 46.72 

user0072 987762 16.46 

user0073 784983 13.08 

user0074 1601963 26.70 

user0075 2720502 45.34 

user0076 3455548 57.59 

user0077 965783 16.10 

user0078 791552 13.19 

user0079 786153 13.10 

user0080 1013715 16.90 

 The time to complete the form by each user is graphically represented by 
Figure 4.5. Each user is on the OX axis. On the left side of the chart is placed the user 
with the shortest completion time of the form, user 50, with a total completion time 
of 4 minutes and 9 seconds. On the right side of the chart is user 55, who completed 
the form in one hour, 20 minutes and 45 seconds (80 minutes and 45 seconds). The 

average time to complete the form is 17 minutes and 36 seconds and it is submitted 
separately on the graph. 

 

 
Figure 4.5 Graphical representation of the time spent by each user to complete the form, in 

ascending order 
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Table 4.2 shows the total number of key events collected from each of the 80 

users who filled out the form. The total number of key events collected from all users 
is 410,633. The average number per user is 5132 key events. Each key event contains 
Key Code, Down Event or Up Event and the Time Stamp. 
 The largest number of key events, a number of 6829, is collected from the 
65th user in 16 minutes and 52 seconds. On the second place is user 66, with a 
number of 6781 key events, collected in a time interval of 23 minutes and 37 seconds. 
 The fewest key events collected were provided by the users with the shortest 

time spent on the collection platform, user 24 and user 50, with 1121 key events, 
respectively 1237 key events. User 36 has also used only 3123 key events, collected 
in 10 minutes and 39 seconds. 
 

Table 4.2 Number of key events collected from users 

User TotalKeyEvent
s 

TotalKeyEvent
s 

410633 

Average 5132 

  

user0001 3905 

user0002 5715 

user0003 5671 

user0004 5992 

user0005 4938 

user0006 3815 

user0007 4422 

user0008 5303 

user0009 4889 

user0010 4021 

user0011 6057 

user0012 5181 

user0013 4696 

user0014 5872 

user0015 5153 

user0016 5312 

user0017 4273 

user0018 5311 

user0019 5379 

user0020 4521 

user0021 6153 

user0022 4612 

user0023 3231 

user0024 1121 

user0025 5083 

user0026 5618 

user0027 6229 

user0028 4550 

user0029 3710 

user0030 4999 

user0031 4871 

user0032 5335 

user0033 5959 

user0034 4977 

user0035 5682 

user0036 3123 

user0037 4942 

user0038 5648 

user0039 5010 

user0040 5759 

user0041 5604 

user0042 5655 

user0043 5766 

user0044 5157 

user0045 6043 

user0046 5762 

user0047 5039 

user0048 5557 

user0049 5112 

user0050 1237 

user0051 6111 

user0052 5587 

user0053 5451 

user0054 3309 

user0055 5088 

user0056 4757 

user0057 4520 

user0058 5336 

user0059 5565 

user0060 4282 

user0061 6606 

user0062 4406 

user0063 4725 

user0064 4896 
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user0065 6829 

user0066 6781 

user0067 6465 

user0068 5005 

user0069 6034 

user0070 5590 

user0071 5954 

user0072 5642 

user0073 5545 

user0074 6263 

user0075 5809 

user0076 3991 

user0077 5523 

user0078 5863 

user0079 5427 

user0080 5303 

Figure 4.6 graphically represents the number of key events collected from 

each user. Users are sorted in descending order by the total number of key events 
/user. The average number of key events (5132) collected is highlighted in the graph. 

The highest number of key events collected is 6829, being provided on the left side 
of the graph, and the lowest number of key events collected is 1121, being specified 
on the right side of the graph. 

 

 
Figure 4.6 Graphical representation of the number of key events collected from each user, in 

descending order 

 

4.3 Acquisition and initial processing of input data 
from 80 volunteers (how typing on the keyboard) 

 
 The information about the keys and the typing method is transferred in a 
Google Sheets file in the form of three integer vectors from the form filled in by the 
users. The first vector contains the code of the keys pressed, the second vector 
contains the time at which keystrokes occurred, and the third vector contains a vector 
with digits 0 and 1, which represent Key Down Event and Key Up Event. 

In order to correlate the data from the 3 vectors and to create the text file 

containing the information about key events, it is wrote below the code presented in 
Code 4.2. 

Code 4.2 Part of the code that creates key events files 
    int startTime=0, totalTime=0, sumTime=0, nTime=0; 
    int totalKeyEvents=0, sumTotalKeyEvents=0, nTotalKeyEvents=0; 
    do 
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    { 
      fscanf(f,"%s",user); 

      fscanf(g,"%s",user); 
      fscanf(h,"%s",user); 
      if(strcmp(user,"-1")==0) 
        break; 
      if(user[0]=='u' && user[1]=='s' && user[2]=='e' && user[3]=='r') 
      { 
        strcpy(fileUser,"UsersKeyEvents/"); 

        strcat(fileUser,user); 
        strcat(fileUser,".txt"); 
        m=fopen(fileUser,"w"); 
        fprintf(k,"%s\n",user); 

        fprintf(l,"%s",user); 
        fprintf(o,"%s",user); 
        fscanf(f,"%c%c",&c,&c); 

        fscanf(g,"%c%c",&c,&c); 
        fscanf(h,"%c%c",&c,&c); 
        n=0; 
        do 
          { 
            fscanf(f,"%c%d",&c,&keyEvents[n].letter); 

            fscanf(g,"%c%d",&c,&keyEvents[n].timestamp); 
            fscanf(h,"%c%d",&c,&keyEvents[n].event); 
            if(keyEvents[n].letter!=-1) 
            { 
              fprintf(k,"%d %d 
%d\n",keyEvents[n].letter,keyEvents[n].event,keyEvents[n].timestamp); 
              fprintf(m,"%d %d 

%d\n",keyEvents[n].letter,keyEvents[n].event,keyEvents[n].timestamp); 

            }  
            if(n==0) 
            { 
              startTime=keyEvents[n].timestamp; 
              totalKeyEvents=0; 
            } 

            totalKeyEvents++; 
            n++; 
          }while(keyEvents[n-1].letter!=-1); 
          n--; 
          totalTime=keyEvents[n-1].timestamp-startTime; 
          sumTime=sumTime+totalTime; 

          nTime++; 
          fprintf(l,"\t%d\t%.2f\n",totalTime,(float)totalTime/60000); 
          sumTotalKeyEvents=sumTotalKeyEvents+totalKeyEvents; 
          nTotalKeyEvents++; 
          fprintf(o,"\t%d\n",totalKeyEvents);  

          fprintf(k,"-1\n");  
          fclose(m);   

      }  
    }while(strcmp(user,"-1")!=0); 
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 In the algorithm written to analyze the data, for each key event it is used a 
structure to retain the three information collected. The three pieces of information are 
collected as integers. 
 The first information obtained about a key event is the key code. Each key is 
coded by an integer between 8 and 222. The second information collected about a 
key event is an integer representing the captured event. The captured event can be 

Key Down or Key Up. I coded the Key Down event with the number 0, and the Key 
Up event with the number 1. The third information collected about a key event is the 
time at which the Key Down or Key Up event occurred, taking the time of the computer 
system expressed in milliseconds. 
 The three information collected about a key event were retained in the code 
with the help of a structure that contains 3 integers. In Code 4.3 is presented the 

structure used in the program. 

 
Code 4.3 The structure used to store information about a key event 
typedef struct { 
    int letter;          //key code 
    int event;           //0 - key down, 1 - key up 
    int timestamp;       // time of event 
}keyEvent;  

 
Figure 4.7 shows how to store key events collected from users in a text file. 

The first line of the file contains the name of the first user, and the following lines 
contain information about each key event separately. On each line the 3 numbers are 
divided by the SPACE key. After I have been written all the information about a user 
to the file, I have added a line containing the number -1 in order to point out in this 

way my step forward to the information about the next user. This format is repeated 
for each user in the database. 

Figure 4.7 The text file that stores key events information 
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4.4 Analysis of keys collected from users 
 

In order to analyze the collected data, each key event was examined, thus, 
the text typed by each user was reconstructed. From the initial data containing the 
key events included each of them 3 types of data: key code, event (down or up) and 
timestamp, it is obtained information regarding to the total time as each key was 
pressed (DU), Key Down event time, Key Up event time, Key Code, Key, Previous 

Key, Next Key, the time between the previous key and the analyzed key, the time 
between the previously mentioned key and the next key. The order of reconstruction 
of the text typed by each user took into account the timestamps from each Key Down 
Event. The total time each key (DU) was pressed was calculated according to the 
following formula that I will present in the followings: 

 
 DU = TimeStampKeyUpEvent – TimeStampKeyDownEvent        (4.2) 

 
The time between two keys (UD) was calculated as the difference between 

Time of First Key Up Event and Time of Second Key Down Event as in the formula 
below: 

 
UD = TimeStampSecondKeyDownEvent – TimeStampFirstKeyUpEvent  (4.3) 

 
The keystroke time (DU) will always be a positive number, although the time 

between two keys (UD) can also be a negative one. A user can press the second key 
before picking up the first. This way FirstKeyUpEvent can come right after the 
SecondKeyDownEvent happened. 

 
 

4.5 Processing the input data so as to generate a user 
pattern for each user 

 

The structure that stores information about a key is presented below in the 
Code 4.4 section. 
 
Code 4.4 The structure used to store information about a key 
typedef struct { 
    int letter;      //Key Code 
    int DU, UDprev, UDnext;  //DU = keystroke time, UDprev - previous flight 

time, UDnext - next flight time 
    int U,D;    //U - Up timestamp, D - Down timestamp 
    int letterPrev, letterNext;  //Key Code of previous and next keys 
    char key[20],keyPrev[20],keyNext[20];  //Key, Previous Key and Next Key 
}onegraph; 
 
 Information about a key is extracted from the key events row via the 

constructOneGraphs function which is presented below in the Code 4.5 section. 
 If the time intervals (DU or UD) exceed 999 milliseconds, they end up capped 

at a higher value. If the time between 2 keys is negative and is less than -199, it will 
be also capped at such a minimum value. These limitations are chosen due to the fact 
that there are few cases in which these values are exceeded, for example when a user 
gets up from the keyboard helps to longer the time between 2 keys (UD), but it is 
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irrelevant for this study. Also, if, for example, the SHIFT key is pressed and held while 
other keys are pressed, the pressing time will exceed the 999 milliseconds interval, 

but this additional data is not of a relevance for the present study as it can vary 
greatly depending on the length of the word that is typed while the SHIFT key is 
pressed. 
 
Code 4.5 The function that extracts key information from key events 
int constructOneGraphs(int n, char user[]) 
{ 

  int letter,event,timestamp; 
  int i; 
  n=0; 
  do 

  { 
    fscanf(f,"%d",&letter); 
    if(letter==-1) 

     { 
       break; 
     } 
    fscanf(f,"%d%d",&event,&timestamp); 
    if(event==1) 
    { 

     if(n!=0) 
     {                          
      for(i=n-1;i>=0;i--) 
      { 
        if(oneGraphs[i].letter==letter) 
        { 
          oneGraphs[i].U=timestamp; 

          while(oneGraphs[i].letter==oneGraphs[i-1].letter && oneGraphs[i-1].U==0) 

          { 
            deleteOneGraph(i-1,n); 
            i--; 
            n--; 
          } 
          break; 

        } 
      } 
     } 
    } 
    if(event==0) 
    { 

      oneGraphs[n].letter=letter; 
      keycodeToKey(oneGraphs[n].key,letter); 
      oneGraphs[n].D=timestamp; 
      oneGraphs[n].U=0; 
      n++; 

    } 
  }while(letter!=-1);  

 n--; 
  for(i=0;i<n;i++) //construct oneGraphs 
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  { 
   oneGraphs[i].DU= oneGraphs[i].U - oneGraphs[i].D;      

   if(oneGraphs[i].DU>999) 
     oneGraphs[i].DU=999; 
   if(oneGraphs[i].DU<0) 
   { 
      deleteOneGraph(i,n); 
      n--; 
   } 

   if(i==0) 
   { 
     oneGraphs[i].UDprev=0; 
     oneGraphs[i].letterPrev=0; 

     strcpy(oneGraphs[i].keyPrev,""); 
     oneGraphs[i].UDnext=oneGraphs[i+1].D-oneGraphs[i].U;              
     oneGraphs[i].letterNext=oneGraphs[i+1].letter; 

     strcpy(oneGraphs[i].keyNext,oneGraphs[i+1].key); 
    } 
    else 
    { 
     if(i==n-1) 
     { 

       oneGraphs[i].UDprev=oneGraphs[i].D-oneGraphs[i-1].U; 
       oneGraphs[i].letterPrev=oneGraphs[i-1].letter; 
       strcpy(oneGraphs[i].keyPrev,oneGraphs[i-1].key); 
       oneGraphs[i].UDnext=0; 
       oneGraphs[i].letterNext=0; 
       strcpy(oneGraphs[i].keyNext,""); 
      } 

      else 

      { 
        oneGraphs[i].UDprev=oneGraphs[i].D-oneGraphs[i-1].U; 
        oneGraphs[i].letterPrev=oneGraphs[i-1].letter; 
        strcpy(oneGraphs[i].keyPrev,oneGraphs[i-1].key); 
        oneGraphs[i].UDnext=oneGraphs[i+1].D-oneGraphs[i].U; 
        oneGraphs[i].letterNext=oneGraphs[i+1].letter; 

        strcpy(oneGraphs[i].keyNext,oneGraphs[i+1].key); 
      } 
     } 
     if(oneGraphs[i].UDnext<-199) 
       oneGraphs[i].UDnext=-199; 
     if(oneGraphs[i].UDnext>999) 

       oneGraphs[i].UDnext=999; 
     if(oneGraphs[i].UDprev<-199) 
       oneGraphs[i].UDprev=-199; 
     if(oneGraphs[i].UDprev>999) 
       oneGraphs[i].UDprev=999; 

  } 
  for(i=0;i<n;i++) 

  { 
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    fprintf(g, "%s\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%s\t%d\t%s\n", 
oneGraphs[i].key, oneGraphs[i].letter, oneGraphs[i].D, oneGraphs[i].U, 

oneGraphs[i].DU, oneGraphs[i].UDprev, oneGraphs[i].UDnext, 
oneGraphs[i].letterPrev, oneGraphs[i].keyPrev, oneGraphs[i].letterNext, 
oneGraphs[i].keyNext); 
  } 
  return n; 
} 
 

After running the function presented above, it is created the text file that 
contains data about each key pressed but also about the relationship with the 
neighboring keys. The outline of the text file is shown in Figure 4.8. On the first line 
of the file is the username, while on the following lines are the information about a 

key separated by the TAB key as follows: 
Key, KeyCode, TimeStampKeyDownEvent, TimeStampKeyUpEvent, DUtime, 

UDtimePreviousKey, UDtimeNextKey, PreviousKeyCode, PreviousKey, NextKeyCode, 

NextKey. 
 

 
Figure 4.8 The file used to store information about a key 
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4.6 Keys distribution analysis 
 

Using information obtained from the 410.633 of key events the author rebuilt 
the characters typed by each user at the keyboard. A total of 200,299 keys were 
typed on the keyboard [IAP21a]. The number of key events is more than double the 
keys because a certain key that has been held down for a long time, such as SHIFT 
or BACKSPACE generates more than 2 key events. In this case, several Down Key 

Events and only one Up Key Event will be generated, instead it is a single keystroke. 
A total of 100 different keys were monitored. The frequency with which the 

keys appeared in the text is shown in Figure 4.9 and Figure 4.10.  
 

 
Figure 4.9 The frequency with which the first 50 keys appeared in the text 

 

In the Figure 4.9 appear the first 50 keys, in ascending order of the Key Code, 
and in the Figure 4.10 appear the other 50 keys, with higher Key Code. 

 
Figure 4.10 The frequency with which the last 50 keys appeared in the text 

 

The key that was pressed most often by users in the experiment was the 
SPACE key. The SPACE key has been pressed 32,387 times in total. Of the total keys, 
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it represents the percentage of 16.17%. The next 3 frequently used keys are the 
vowels A, E and I. A was used 20,965 times and represents 10.47% of the total keys. 

E has been pressed 18,256 times and represents 9.11% of the total keys. The I key 
has been pressed 15,994 times and represents 7.99% of the total keys. The 
BACKSPACE key is also frequently pressed, which has been pressed 12,195 times. 

In Table 4.3 are all the keys pressed by users in the order of their frequency 
in the data set collected. 

 
Table 4.3 The keys typed by users, in descending order of frequency 

Key 
Key 
Code 

Total 
number 

Perc
ent. 

TOTAL  200299  
Space

bar 32 32387 16,17 

A 65 20965 10,47 

E 69 18256 9,11 

I 73 15994 7,99 

Backsp

ace 8 12195 6,09 

T 84 10292 5,14 

R 82 10030 5,01 

N 78 8750 4,37 

U 85 8370 4,18 

S 83 8210 4,1 

C 67 7982 3,99 

L 76 6087 3,04 

O 79 5780 2,89 

M 77 5556 2,77 

P 80 5083 2,54 

D 68 4982 2,49 

, 188 2159 1,08 

F 70 2108 1,05 

Shift 16 2054 1,03 

. 190 1848 0,92 

V 86 1811 0,9 

B 66 1449 0,72 

Z 90 1328 0,66 

G 71 1124 0,56 

CapsLo
ck 20 988 0,49 

[ 219 540 0,27 

- 189 422 0,21 

H 72 363 0,18 

J 74 351 0,18 

; 186 260 0,13 

ArrowL

eft 37 230 0,11 

0 48 220 0,11 

X 88 212 0,11 

' 222 200 0,1 

Arrow

Right 39 188 0,09 

] 221 162 0,08 

1 49 156 0,08 

\ 220 98 0,05 

Ctrl 17 94 0,05 

Enter 13 88 0,04 

Alt 18 74 0,04 

2 50 74 0,04 

K 75 69 0,03 

9 57 67 0,03 

Y 89 60 0,03 

/ 191 53 0,03 

= 187 52 0,03 

3 51 46 0,02 

W 87 42 0,02 

Delete 46 38 0,02 

Arrow

Down 40 37 0,02 

8 56 36 0,02 

5 53 34 0,02 

Arrow
Up 38 28 0,01 
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7 55 28 0,01 

(NumP
ad)- 109 28 0,01 

6 54 27 0,01 

-
Firefox 173 20 0,01 

' 192 19 0,01 

NumLo
ck 144 15 0,01 

4 52 14 0,01 

Tab 9 10 0,005 

; 
Firefox 59 10 0,005 

Q 81 7 0,003 

(NumP
ad)8 104 7 0,003 

(NumP
ad)1 97 6 0,003 

= 

Firefox 61 4 0,002 

(NumP
ad)7 103 4 0,002 

(NumP
ad)/ 111 4 0,002 

End 35 3 0,001 

(NumP
ad)0 96 3 0,001 

PageD

own 34 2 0,001 

(NumP

ad)3 99 2 0,001 

Home 36 1 

0,000

5 

(NumP
ad)5 101 1 

0,000
5 

(NumP
ad)6 102 1 

0,000
5 

(NumP
ad)9 105 1 

0,000
5 

 The most common 30 keys used by users are represented graphically in Figure 

4.11. The first 30 keys represent 98.73% of the keys used. 
 

 
Figure 4.11 Graphical representation of the most used keys 
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Out of 100 keys that were monitored were not used 23 keys. Table 4.4 shows 
the keys that were not used in the dataset. Next to each key is their specific key-

code. 
 

Table 4.4 The keys not used at all by users 

 Key KeyCode Total number Percentage 

1 Pause 19 0 0% 

2 Esc 27 0 0% 

3 PageUp 33 0 0% 

4 PrintScrn 44 0 0% 

5 Insert 45 0 0% 

6 (NumPad)2 98 0 0% 

7 (NumPad)4 100 0 0% 

8 (NumPad)* 106 0 0% 

9 (NumPad)+ 107 0 0% 

10 (NumPad). 110 0 0% 

11 F1 112 0 0% 

12 F2 113 0 0% 

13 F3 114 0 0% 

14 F4 115 0 0% 

15 F5 116 0 0% 

16 F6 117 0 0% 

17 F7 118 0 0% 

18 F8 119 0 0% 

19 F9 120 0 0% 

20 F10 121 0 0% 

21 F1 122 0 0% 

22 F12 123 0 0% 

23 ScrollLock 145 0 0% 

 
 Analyzing studies carried out regarding the use of characters in Romanian, 
the conclusion is that the database collects respect the general rules, this database 

accurately reproduces the general characteristic of the Romanian language. According 
to the study conducted in [LAI12], the most used consonants in Romanian are the 
consonants R and T, while the least used are X and J, except for the letters K, Q, W 
and Y, which are not specific to the language. The data set falls within these rules, 
the most used consonants being T and R, and the least used consonants being J, X, 

K, Q, W and Y. 

The distribution of letters of the English alphabet (a-z) in the dataset is shown 
in Table 4.5. 
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Table 4.5 The letters, in descending order of frequency 

 Key KeyCode 
Total 
number Percentage 

 TOTAL  145261 72,52% 

1 A 65 20965 14,43% 

5 E 69 18256 12,57% 

9 I 73 15994 11,01% 

20 T 84 10292 7,09% 

18 R 82 10030 6,9% 

14 N 78 8750 6,02% 

21 U 85 8370 5,76% 

19 S 83 8210 5,65% 

3 C 67 7982 5,49% 

12 L 76 6087 4,19% 

15 O 79 5780 3,98% 

13 M 77 5556 3,82% 

16 P 80 5083 3,5% 

4 D 68 4982 3,43% 

6 F 70 2108 1,45% 

22 V 86 1811 1,25% 

2 B 66 1449 1% 

26 Z 90 1328 0,91% 

7 G 71 1124 0,77% 

8 H 72 363 0,25% 

10 J 74 351 0,24% 

24 X 88 212 0,15% 

11 K 75 69 0,05% 

25 Y 89 60 0,04% 

23 W 87 42 0,03% 

17 Q 81 7 0,005% 

 
In Figure 4.12 is rendered graphically the distribution of letters used. It can 

be seen in the graph that the first five letters as frequency, represent more than 50% 
of the total letters. The letters A, E, I, T and R are the most frequently used in the 
text by users. These are three vowels and two consonants. They are followed by five 
consonants: S, C, N, L and M. The most common letters are the letters that a user 

finds faster on the keyboard and have the shortest keystroke times. 
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Figure 4.12 Graphical representation of letters frequency 

 
 

4.7 Differences between users 
 

Each user has his own unique way to type text on the keyboard. This pattern 
is specific and does not change during a writing session or short term. The typing 
pattern may change over time or may differ if the same user uses different keyboards. 
The differences between different users, on the other hand, can be analyzed even 
visually, as for example in Figure 4.13. The graph shows the typing times for user0001 

and user0002 from the database. The graph shows how the differences between the 
typing times for user0001 are larger, both the average of the times and the standard 

deviation. Most of the time intervals for user0001 are between 50 and 150 
milliseconds. Instead, user0002 has a smaller difference between keystrokes. At 
user0002 most of the time intervals are in the range of 50-75 milliseconds [IAP21a]. 
 

 
Figure 4.13 Typing pattern from two different users [IAP21a] 
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 Figure 4.14 shows the first 1000 time intervals between two consecutive keys, 
flight time (UD time). This time interval can also have negative values, while the 

pressing time of a single key cannot have negative values. A negative value is taken 
when the second key in a di-graph is pressed before the first key is raised. The figure 
shows the times for three users: user0001, user0002 and user0003. We can see how 
user0001 has the most negative time values, while user0003 has the most time values 
close to 0. The time value can be close to 0 when the second key is pressed exactly 
when the first he gets up. User0002 has the fewest negative time intervals, even their 
average being the highest of the time averages of the 3 users analyzed. In the analysis 

of the typing pattern, both the times when the keys are pressed and the times 
between two consecutive keys are analyzed. 

 
Figure 4.14 Time interval for flight time for three different users 

 

 A user's profile in terms of testing can be achieved based on the most frequent 

time intervals. Figure 4.15 graphically represents the modes of distribution of typing 
time (DU time) for a number of 7 users: user0006, user0007, user0008, user0009, 
user0010, user0011 and user0012. The time distribution is a normal distribution, 
close to a Gaussian distribution or a Laplace distribution. In contrast, both the mean 
and the standard deviation differ from user to user.  

 
Figure 4.15 Key time distribution for seven different users 
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The distribution of time intervals between two consecutive keys is represented 

for a total of five different users in Figure 4.16. It is observed for two users, user0056 
and user0059, a maximum of number of key intervals at the value 0 on the graph. 
Also, user0056 has the most negative intervals. A distribution of time intervals totally 
different to the other four users has user0055. Times are distributed at higher values. 
This means that user0055 is typing at a slower pace.  
 

 
Figure 4.16 The distribution of time intervals between two consecutive keys 

 

The differences between users can be seen from the graphs presented in this 
chapter. These differences help us to form a pattern of each user and to be able to 
identify it according to these particular characteristics.   
 

 

4.8 Conclusions 
 

This chapter was about the data set collected for the present research. The first 
subchapter 4.1, Platform for collecting data about keyboard typing from 80 
volunteers, presented the platform for collecting data about keyboard typing and how 
data was collected from 80 users. After presenting the platform with the help of which 

data were collected from users, it proceeded to the analysis of these collected data 
and presented the particular characteristics, in subchapters 4.2 Analysis of time and 
key events collected from users, 4.3 Acquisition and initial processing of input data 
from 80 volunteers (how typing on the keyboard) and 4.4 Analysis of keys collected 
from users. It showed how they were processed using an algorithm written in the C 
programming language. The subchapter 4.5, Processing the input data so as to 

generate a user pattern for each user, presented the structures that store user typing 

data. The subchapter 4.6, Keys distribution analysis, presented the analysis of the 
collected keys and the subchapter 4.7, Differences between users, graphically 
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displayed the typing pattern for different users. This chapter addressed the validation 
of O1 from the first chapter of this thesis. 

The next chapter presents the free-text continuous authentication algorithm 
based on keystroke dynamics developed for processing the data obtained from the 
users and presented in this chapter. 
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5 ALGORITHM DEVELOPMENT FOR KEYSTROKE 
DYNAMICS AUTHENTICATION 

 
 

 
 

The previous chapter was about the data set collected for the present 

research. It presented the platform for collecting data about keyboard typing, how 
data was collected from 80 users and the data analysis. 

In this chapter is presented the authentication algorithm based on keystroke 
dynamics. First of all, the algorithm developed for processing the data obtained from 
the users is presented. The algorithm simulates user authentication based on 
keystroke dynamics and measures the obtained performances. In the chapter it is 

presented the architecture of the algorithm in the subchapter 5.1 The architecture of 
the authentication algorithm and the structure of the algorithm in the subchapter 5.2 
The structure of the authentication algorithm. The development of this algorithm is 
established by O2. 

 
 

5.1 The architecture of the authentication algorithm 
 

The architecture of the keystroke dynamic authentication system has two 
important parts. The first is the system training phase part, part in which users enroll 
in the system providing data on how to type. In this phase a pattern is created for 
each user and is stored in the database to be used in the continuous authentication 

phase. The second part is the continuous authentication phase. In this phase the 
system continuously verifies the users connected with a valid username and 
password. Throughout the time a user is logged in to the account, the system takes 
data from it on the typing mode and continuously compares the resulting pattern with 
the pattern in the database. As long as there is acceptable similarity between the two 
patterns the user remains logged in to the system. When the system finds that the 
two patterns are no longer similar, the one taken from the user logged in to the 

account and the one from the database, the system generates an alarm signal and 
the user is removed from the account. He can re-enter the account by re-entering the 
username and password [IAP21a]. The architecture of the keystroke dynamic 
authentication system described in this phrase is visually represented in Figure 5.1, 
the scheme adapted by the author starting from the figure made in the paper [PIL15].
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Figure 5.1 The architecture of the keystroke dynamics authentication system [IAP21a] 

 
 

5.2 The structure of the authentication algorithm 
 
The developed algorithm is presented in Appendix 1 to this thesis. The 

collection and initial processing of input data are the first steps taken in order to obtain 
key events of each user. This data represents the input data for the continuous 

authentication algorithm based on keystroke dynamics. Once the sample size is set, 
the next step is to divide the user data into key event sequences. The algorithm 

transforms key events into information about keys and information about diagrams, 
and then forms the time vectors needed to calculate distances. After the steps 
described above have been completed, the distances between the vectors are 
calculated, in order to establish the similarity between two users. Four types of 
distances are used: Euclidean distance, Manhattan distance, R distance and A 

distance. With these distances calculated for each user in the database, we proceed 
to simulate the authentication in the system, in turn by each user in the database. 
Following the simulation of the authentication in the system, four performance 
indicators of the algorithm are generated: False Acceptance Rate (FAR), False 
Rejection Rate (FRR), True Acceptance Rate (TAR) and True Rejection Rate (TRR). 
Based on these, the Equal Error Rate (EER) can be calculated, the main indicator of 

the performance of the algorithms used in this thesis. Also, to view the performances, 
two graphs are generated: FAR and FRR chart and ROC curve. 

In the Figure 5.2 are presented the structure of the authentication algorithm 
based on keystroke dynamics. 
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Figure 5.2 The structure of the authentication algorithm based on keystroke dynamics 
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5.3 Conclusions 
 

In this chapter was presented the authentication algorithm based on 
keystroke dynamics. First of all, the algorithm developed for processing the data 
obtained from the users was presented. The algorithm simulates user authentication 
based on keystroke dynamics and measures the obtained performances. In this 

chapter was presented the architecture of the algorithm, in the subchapter 5.1 The 
architecture of the authentication algorithm, and the structure of the algorithm, in the 
subchapter 5.2 The structure of the authentication algorithm. The development of this 
algorithm was established by O2. 

The next chapter, Chapter 6 - Experiments and results, will presents the 

simulation with the algorithm presented in this chapter various possibilities of 
accessing accounts by users who provided the data for research purposes. The next 

chapter will present a series of experiments that are performed that aim to obtain 
better results in terms of the degree of success with which authentication based on 
keystroke dynamics is done. 
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6 EXPERIMENTS AND RESULTS - SIMULATION 
OF SYSTEM AUTHENTICATION BY GENUINE 

USERS OR IMPOSTORS 
 

 
 

In the previous chapter was presented the authentication algorithm based on 
keystroke dynamics, its architecture and its structure. If in the previous chapters was 
presented the path validation O1 and O2, in this chapter it is followed the validation 

of the other two objectives of the present thesis: O3 and O4. 
In this chapter it is presented a series of experiments performed to measure 

the performance of the written algorithm for the purpose of this research and to 
analyze the results obtained. Gradually, experiments with the keystroke time of a 
single key, in the subchapter 6.1, and experiments with di-graphs, in the subchapter 
6.2, are presented. Both in the analysis of the characteristics with a single key and 
with a di-graph, the degree of Equal Error Rate (EER) is calculated in order to 

appreciate the performances of the algorithms. The results are presented in the case 
of experiments using Euclidean distance (in the subchapters 6.1.1 and 6.2.3), 
Manhattan distance (in the subchapters 6.1.2 and 6.2.4), R distance (in the 
subchapter 6.1.3) and A distance (in the subchapters 6.1.4 and 6.2.5).  The chapter 
also investigates, in the subchapter 6.1.5 The sample size, the differences in 

performance if the pattern is built for each user with various sample sizes, starting 

from 200 key events / pattern and up to 3000 key events / pattern.  At the end of 
the chapter, following all the experiments performed and presented, the author 
proposes, in the subchapter 6.4, Proposing new metrics for calculating distances 
between users, the modification of two metrics obtaining new metrics for calculating 
the distances between two vectors that have higher performances than the classical 
calculation methods. For the two new metrics, the performances obtained in terms of 
Equal Error Rate (EER) are presented. By proposing these metrics, O3 is validated. It 

also proposes, in the subchapter 6.5, Proposed user pattern, a structure for retaining 
a user's pattern, a structure that takes up small memory and requires little time to 
perform all the necessary calculations in the algorithms. By proposing the user 
pattern, O4 is validated. In the end of the Chapter, in the subchapter 6.6 Comparison 
of the related works, the performances obtained in the present research are compared 
with those obtained by other authors in their researches. 
  

 

6.1 Experiments with the keystroke time of a single key 
 

Within the scientific research for this thesis, the author has created a database 
with a number of 410,633 key events from 80 users. 
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In the first experiment it was divided the data obtained from 80 users into 
sets of 1000 key events, obtaining 370 data sequences. From each set it was made a 
pattern that indicates the calculations of the average keystroke times, made for each 
key separately. It was taking into account only the keys that contain a letter (a-z), 
thus obtained for each user a vector of 27 real numbers, each number representing 
the average of the pressing times of that letter [IAP21a]. 

 
 

6.1.1 Experiments with Euclidian distance 
 

To calculate the similarities between two vectors (two distinct users or two 
vectors obtained from the text of the same user) it was applied the calculation of the 

Euclidean distance. In this way it was acquired values between 0 (for the same vector, 
as expected) and 642.36, the largest distance calculated between the vectors. Under 
these conditions, it was simulated a number of 136,161 attempts to access the 370 
accounts by the other 369 users. 
 Under these circumstances, it was considered that the user has successfully 
accessed the account if the Euclidean distance (calculated between the vector 
resulting from the user's key events and the vector resulting from the key events of 

the account to be accessed) was less than a certain threshold. In case it was higher 
than the certain threshold, it was considered that he failed to access the account. 
Code 6.1 shows the function that calculate Euclidian distance.  
 
Code 6.1 calculateEuclidianDistance() function 
int calculateEuclidianDistances() 

{ 
  int i,j,k; 
  float dist; 
  for(i=0;i<nPatterns;i++) 

  { 
    for(j=i;j<nPatterns;j++) 
    { 

      dist=0; 
      for(k=65;k<=90;k++) 
        if(patterns[i].distributions[k].mean!=0 && 
patterns[j].distributions[k].mean!=0) 
          { 
            dist=dist+pow(patterns[i].distributions[k].mean-
patterns[j].distributions[k].mean, 2); 

          } 
      dist=sqrt(dist); 
      patterns[i].distance[j]=dist; 
      patterns[j].distance[i]=dist; 
    } 
  } 

  return 1; 
} 

 
In the end of the first experiment, it was calculated the performance indicators 

established in the literature: False Acceptance Rate (FAR), False Rejection Rate (FRR), 
TAR (True Acceptance Rate), TRR (True Rejection Rate), ERR (Equal Error Rate). So 
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as to calculate these indicators, the value of the threshold below which the account 
cannot be accessed went from 0 to 643. The results are shown in Figure 6.1 and 

Figure 6.2. 
The ERR (Equal Error Rate) value calculated for this experiment is 17.5%, at 

a limit imposed at a maximum distance of 76. The ERR value is at the intersection, 
on the graph of FAR and FRR. 
 

 
Figure 6.1 FAR and FRR for Euclidian distance 

 
To calculate FAR and FRR values was used function calculateFARandFRR() 

from Code 6.2. 
 

Code 6.2 calculateFARandFRR() function 

int calculateFARandFRR() 
{ 
  int i,j,k, sw=0, iERR=0; 

  float ERR=0, FAR=0, FRR=0, TAR=0, TRR=0, TA=0, TR=0, FA=0, FR=0; 
  for(i=1;i<1000;i++) 
  { 
    TA=0, TR=0, FA=0, FR=0; 
    for(j=0;j<nPatterns;j++) 
    { 
      for(k=j+1;k<nPatterns;k++) 

      { 
        if(patterns[j].user[4]==patterns[k].user[4] && 
patterns[j].user[5]==patterns[k].user[5] && 
patterns[j].user[6]==patterns[k].user[6] && 
patterns[j].user[7]==patterns[k].user[7]) 
        { 
          if(patterns[j].distance[k]<i) 

            TA++; 
          else 
            FR++; 
        } 
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        else 
        { 
          if(patterns[j].distance[k]<i) 
            FA++; 
          else 
            TR++; 

        } 
      } 
    } 
    FAR=FA/(FA+TR)*100; 
    FRR=FR/(FR+TA)*100; 
    TAR=TA/(TA+FR)*100; 

    TRR=TR/(TR+FA)*100; 

 
    if(FAR>FRR && sw==0) 
    { 
      ERR=FAR; 
      iERR=i; 
      sw=1; 
    } 

    printf("%d\t%.2f\t%.2f\t%.2f\t%.2f\n",i,FAR,FRR,TAR,TRR); 
  } 
  printf("ERR= %.2f in %d",ERR, iERR); 
  return 1; 
} 

In the Figure 6.2 is the ROC curve resulted for Euclidian distance algorithm. 

It shows the relation between True Acceptance Rate (TAR) and False Acceptance Rate 
(FAR). 

 

 
Figure 6.2 ROC Curve for Euclidian distance 
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6.1.2 Experiments with Manhattan distance 

 
In this section, to calculate the similarities between two vectors (two distinct 

users or two vectors obtained from the text of the same user) it was applied the 
calculation of the Manhattan distance. In this way it was acquired values between 0 
(for the same vector, as expected) and the largest distance calculated between the 
vectors. Under these conditions, it was simulated a number of 136,161 attempts to 

access the 370 accounts by the other 369 users. 
 Under these circumstances, it was considered that the user has successfully 
accessed the account if the Manhattan distance (calculated between the vector 
resulting from the user's key events and the vector resulting from the key events of 
the account to be accessed) was less than a certain threshold. In case it was higher 

than the certain threshold, it was considered that he failed to access the account. 
Code 6.3 shows the function that calculate Manhattan distance.  

 
Code 6.3 The function that calculates the Manhattan distances 
float calculateManhattanDistances() 
{ 
  int i,j,k; 
  float dist,max=0; 

  for(i=0;i<nPatterns;i++) 
  { 
    for(j=i;j<nPatterns;j++) 
    { 
      dist=0; 
      for(k=65;k<=90;k++) 
        if(patterns[i].distributions[k].mean!=0 && 

patterns[j].distributions[k].mean!=0) 
          { 

            dist=dist+fabs(patterns[i].distributions[k].mean-
patterns[j].distributions[k].mean); 
          } 
      patterns[i].distance[j]=dist; 
      patterns[j].distance[i]=dist; 

      if(max<dist) 
              max=dist; 
    } 
  } 
  return max; 
} 

It was calculated the performance indicators established in the literature: 
False Acceptance Rate (FAR), False Rejection Rate (FRR), TAR (True Acceptance 
Rate), TRR (True Rejection Rate), ERR (Equal Error Rate). So as to calculate these 
indicators, the value of the threshold below which the account cannot be accessed 
went from 0 to 643. The results are shown in Figure 6.3 and Figure 6.4. 
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Figure 6.3 FAR and FRR for Manhattan distance 

 
In the Figure 6.4 is the ROC curve resulted for Euclidian distance algorithm. 

It shows the relation between True Acceptance Rate (TAR) and False Acceptance Rate 
(FAR). 
 

 
Figure 6.4 ROC curve Manhattan distance 
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The ERR (Equal Error Rate) value calculated for this experiment was 13.78%, 
at a limit imposed at a maximum Manhattan distance of 246. The ERR value was at 

the intersection, on the graph, of FAR and FRR. 
In the Figure 6.5 are the ROC curves for Euclidian (green) and Manhattan 

(blue) distances 
 

 
Figure 6.5 ROC curves for Euclidian (green) and Manhattan (blue) distances 

 

 

6.1.3 Experiments with R distance 
 

In this section, to calculate the similarities between two vectors (two distinct 
users or two vectors obtained from the text of the same user) it was applied the 
calculation of the R distance. In this way it was acquired values between 0 (for the 

same vector, as expected) and the largest distance calculated between the vectors. 
Under these conditions, it was simulated a number of 136,161 attempts to access the 
370 accounts by the other 369 users. 
 Under these circumstances, it was considered that the user has successfully 
accessed the account if the R distance (calculated between the vector resulting from 
the user's key events and the vector resulting from the key events of the account to 
be accessed) was less than a certain threshold. In case it was higher than the certain 

threshold, it was considered that he failed to access the account. Code 6.4 shows the 
function that calculate R distance.  
 
Code 6.4 The function that calculates the R distances 
float calculateRdistances() 
{ 

  int i,j,k,k2,sw; 

  float dist,max=0; 
  distribution aux; 
 
  for(i=0;i<nPatterns;i++) 
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  { 
    for(k=0;k<223;k++) 
    { 
      patterns[i].distributions[k].keyCode=k; 
    } 
    patternsR[i]=patterns[i]; 

    sw=0; 
    while(sw==0) 
    { 
      sw=1; 
      for(j=65;j<=90;j++) 
      { 

        if(patternsR[i].distributions[j].mean < patternsR[i].distributions[j+1].mean) 

        { 
          aux=patternsR[i].distributions[j]; 
          patternsR[i].distributions[j]=patternsR[i].distributions[j+1]; 
          patternsR[i].distributions[j+1]=aux; 
          sw=0; 
        } 
      } 

    } 
  } 
 
  for(i=0;i<nPatterns;i++) 
  { 
    for(j=i;j<nPatterns;j++) 

    { 
      dist=0; 
      for(k=65;k<=90;k++) 

        for(k2=65;k2<=90;k2++) 
          
if(patternsR[i].distributions[k].keyCode==patternsR[j].distributions[k2].keyCode) 
          { 

            if(patternsR[i].distributions[k].mean!=0 && 
patterns[j].distributions[k2].mean!=0) 
            { 
              dist=dist+abs(k2-k); 
            } 
            break; 
          } 

      patternsR[i].distance[j]=dist; 
      patternsR[j].distance[i]=dist; 
      if(max<dist) 
        max=dist; 
    } 
  } 

  return max; 

} 
It was calculated the performance indicators established in the literature: 

False Acceptance Rate (FAR), False Rejection Rate (FRR), TAR (True Acceptance 
Rate), TRR (True Rejection Rate), ERR (Equal Error Rate). So as to calculate these 
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indicators, the value of the threshold below which the account cannot be accessed 
went from 0 to 643. The results are shown in Figure 6.6 and Figure 6.7. 

 
Figure 6.6 FAR and FRR for R distance 

 
 

 
Figure 6.7 ROC curve for R distnace 

 

The ERR (Equal Error Rate) value calculated for this experiment is 30.32%, 
at a limit imposed at the maximum R distance of 83. The ERR value is at the 

intersection, on the graph, of FAR and FRR. 
In the Figure 6.8 are the ROC curves for Euclidian (green), Manhattan (blue) 

and R (red) distances. 
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Figure 6.8 ROC curves for Euclidian (green), Manhattan (blue) and R (red) distances 

 

 

6.1.4 Experiments with A distance 
 

In this section, to calculate the similarities between two vectors (two distinct 
users or two vectors obtained from the text of the same user) it was applied the 
calculation of the A distance. In this way it was acquired values between 0 (for the 

same vector, as expected) and the largest distance calculated between the vectors. 
Under these conditions, it was simulated a number of 136,161 attempts to access the 
370 accounts by the other 369 users. 
 Under these circumstances, it was considered that the user has successfully 

accessed the account if the A distance (calculated between the vector resulting from 
the user's key events and the vector resulting from the key events of the account to 
be accessed) was less than a certain threshold. In case it was higher than the certain 

threshold, it was considered that he failed to access the account. Code 6.5 shows the 
function that calculate A distance.  
 
Code 6.5 The function that calculates the A distances 
float calculateADistances() 
{ 

  int i,j,k; 
  float dist,max=0, t=1.25; 
  for(i=0;i<nPatterns;i++) 
  { 
    for(j=i;j<nPatterns;j++) 
    { 
      dist=0; 

      for(k=65;k<=90;k++) 
        if(patterns[i].distributions[k].mean!=0 && 

patterns[j].distributions[k].mean!=0) 
          { 
            if(patterns[i].distributions[k].mean > patterns[j].distributions[k].mean) 
              { 
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                if(patterns[i].distributions[k].mean/patterns[j].distributions[k].mean < t) 
                  dist++; 

              } 
            else 
            { 
              if(patterns[j].distributions[k].mean/patterns[i].distributions[k].mean < t) 
                  dist++; 
            } 
          } 

      dist=1-dist/27; 
      patterns[i].distance[j]=dist; 
      patterns[j].distance[i]=dist; 
      if(max<dist) 

              max=dist; 
    } 
  } 

  return max; 
} 
 

It was calculated the performance indicators established in the literature: 
False Acceptance Rate (FAR), False Rejection Rate (FRR), TAR (True Acceptance 
Rate), TRR (True Rejection Rate), ERR (Equal Error Rate). So as to calculate these 

indicators, the value of the threshold below which the account cannot be accessed 
went from 0 to 643. The results are shown in Figure 6.9 and Figure 6.10. 

 

 
Figure 6.9 FAR and FRR for A distance 
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Figure 6.10 ROC curve for A distance 

 
The ERR (Equal Error Rate) value calculated for this experiment is 13.90%, 

at a limit imposed at the maximum A distance of 0,41. The ERR value is at the 
intersection, on the graph, of FAR and FRR. 

In the Figure 6.11 are the ROC curves for Euclidian (green), Manhattan (blue) 

and R (red) and A (yellow) distances. 
 

 

 
Figure 6.11 ROC curves for Euclidian (green), Manhattan (blue), R (red) and A (yellow) 

distances 

 

It depends on what value we choose for the constant t. The authors of [KIL09] 
concluded that the best value for t is 1.25. We performed the first test with t = 1.25 
according to the conclusions of the study that proposes A distance. After gradually 
changing the coefficient t, on the interval 1-3, with a step of 0.01, a more efficient 
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value for t was identified in point 1.13. At this value of t, the calculated value of EER 
is minimal, of 11.85%. In Table 6.1 are the values of the EER at each increment of 

the coefficient t. Above 1.5, the higher the coefficient t, the higher the EER rate. 
 

Table 6.1 EER (Equal Error Rate) value at different value of t coefficient 

t 
coefficient EER  

1,01 29,73 

1,02 21,93 

1,03 18,31 

1,04 15,86 

1,05 14,07 

1,06 20,03 

1,07 17,73 

1,08 15,74 

1,09 13,86 

1,1 12,25 

1,11 15,66 

1,12 13,68 

1,13 11,83 

1,14 14,57 

1,15 12,65 

1,16 15,12 

1,17 12,79 

1,18 15,16 

1,19 12,64 

1,2 14,84 

1,21 16,9 

1,22 13,8 

1,23 15,7 

1,24 17,64 

1,25 13,9 

1,26 15,71 

1,27 17,56 

1,28 19,35 

1,29 21,18 

1,3 16,23 

1,31 17,81 

1,32 19,47 

1,33 21,07 

1,34 22,69 

1,35 24,33 

1,36 25,95 

1,37 27,55 

1,38 29,1 

1,39 21,39 

1,4 22,74 

1,41 24,08 

1,42 25,36 

1,43 26,72 

1,44 28,17 

1,45 29,48 

1,46 30,87 

1,47 32,16 

1,48 33,5 

1,49 34,74 

 
 In Figure 6.12 is a graph that contain the EER (Equal Error Rate) value at 

different value of t coefficient. 

 
Figure 6.12 EER (Equal Error Rate) value at differrent value of t coefficient 
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In the Figure 5.13 is ROC curve for A distance with the best t coefficient, 
t=1.13. 
 

 
Figure 6.13 ROC curve for the best t coefficient 

 

In the Figure 6.14 are the ROC curves for Euclidian (green), Manhattan (blue) 
and R (red), A with t=1.25 (yellow), and A with t=1.13 (black) distances. 

 

 
Figure 6.14 ROC curves for Euclidian (green), Manhattan (blue), R (red), A (t=1.25) (yellow) 

and A (t=1.13) (black) distances 
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6.1.5 The sample size 

 
With the algorithm presented in Code 6.6, the data obtained from the 80 uses 

could be divided into samples of different sizes in order to test the performances of 
the algorithms at various sample sizes. 

 
Code 6.6 The algorithm that make the sample 
int main(void)  

{ 
  int i,j; 
  char c,user[20], fileUser[20], line[30], localKeyEventsList[150000]; 
   
  f=fopen("keyEventsListAllUsers.txt","r"); 

  g=fopen("keyEventsListSegmentationAllUser.txt","w"); 
   

  do{ 
        fscanf(f,"%s",user); 
        if(strcmp(user,"-1")==0) 
            break; 
        fscanf(f,"%c",&c); 
        if(user[0]=='u' && user[1]=='s' && user[2]=='e' && user[3]=='r') 

        { 
          j=1; 
          do 
          { 
            strcpy(localKeyEventsList,""); 
            for(i=0;i<LENGTH;i++) 
            { 

              fgets(line,30,f); 
              if(strcmp(line,"-1\n")==0) 

                break; 
              strcat(localKeyEventsList,line); 
            } 
            if(i==LENGTH) 
            { 

              if(j<10) 
                { 
                  fprintf(g,"%s.0%d\n%s-1\n",user,j,localKeyEventsList); 
                  printf("%s.0%d\n",user,j); 
                } 
              else 

                { 
                  fprintf(g,"%s.%d\n%s-1\n",user,j,localKeyEventsList); 
                  printf("%s.%d\n",user,j); 
                } 
            } 
            else 

            { 

              break; 
            } 
            j++; 
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        }while(i==LENGTH); 
      }  
    }while(strcmp(user,"-1")!=0); 
    fprintf(g,"-1"); 
  return 0; 

} 
 The first tests performed and presented up to this paragraph were performed 
at a sample size length of 500 keys, ie at 1000 key events. Figure 6.15 shows the 
results obtained according to the Equal Error Rate (EER). It is observed that the 
performance of the algorithms increases with the increase of the sample size length 
from which results pattern for the user [IAP21b]. 

 

 
Figure 6.15 EER decreases as the sample size is larger [IAP21b] 

 
 In the case of all distances calculated in the experiment, a trend of increasing 
performance is seen in direct proportion to the increase of sample size. EER values 
are recorded in Table 5.2. These vary from 39.68%, in the case of R distance at 200 
key events (100 keys), to 5.83% in the case of A distance, t = 1.13 and 3000 key 
events (1500 keys). 

 

Table 6.2 EER values depending on the sample size and distance used 

Sample size 
(key 
events) 

200 500 1000 1600 2000 2600 3000 

Euclidian 
distance 

24,53 20,31 17,5 17,86 17,31 15,59 9,59 

Manhattan 
distance 

22,03 17,52 13,78 14,17 14,5 11,71 9,16 

R distance 39,68 36,01 30,32 29,89 25,37 29,48 36 

A distance 
(t=1,25) 

22,12 20,68 13,9 15,24 12,11 14,42 12,02 

A distance 
(t=1,13) 

24,31 15,2 11,83 12,06 9,07 7,28 5,83 
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Next, tests will be performed at a sample length of 2000 key events. That 

means a sample size of 1000 keys. 
Tests have been done to see if ERR improves with the modification of various 

variables. Instead of calculating the distances according to the average DU on each 
letter, the same distances were calculated but according to the average of standard 
deviations for each letter. The results were much poorer. Likewise, the results 
remained weaker when the sum of the 2 distances was made, the first based on the 
average of the DU times and the second based on the average of the standard 

deviations. 
Another set of tests were done using the UD times of numbers and letters. 

Previous tests used only the 27 letters of the English alphabet, omitting the other 
characters. The success rate of the tests in this case was lower than if only the letters 

of the alphabet were used. In contrast, the difference was not as large as if the 
standard deviation were used as a benchmark instead of the mean time. 

The results obtained were weaker even if the times recorded on all system 

keys were used, and not only on the letters of the English alphabet. 
It was noticed that different results are obtained depending on the number of 

characters analyzed when calculating the distances. In the following tests, the number 
of letters on which the analysis was performed was further limited. The 5 most used 
letters were selected first. The 5 most used letters are: A, E, I, T and R. In these 
cases, there have been improvements to the methods using Euclidian Distance and 

Manhattan Distance, instead of worsening the results for A Distance. 
The 10 most used letters were then selected, according to statistics. The 10 

most used letters are: A, E, I, T, R, N, U, S, C and L. In this case much better results 
are obtained for Euclidian Distance and Manhattan Distance. 

The most used 15 letters are: A, E, I, T, R, N, U, S, C, L, O, M, P, D and F. In 
this case much better results are obtained for Euclidian Distance if Manhattan 
Distance. Instead, for Manhattan Distance, the best EER rate was obtained at this 

sample size. Figure 6.16 shows the FAR and FRR graph. 

  

 
Figure 6.16 FAR and FRR for Manhattan distance for the first 15 letters 

 

BUPT



92       Experiments and results - Simulation of system authentication by 
genuine users or impostors 

It can be seen on the graph in Figure 6.16 that the EER has a value of 7.74%, 
the lowest obtained in this experiment at this sample size. And in the generated curve 
ROC graph it is observed that the algorithm is more efficient in this case. Figure 6.17 
generates the ROC curve graph for Manhattan Distance that takes into account the 
15 most used letters.  
 

 
Figure 6.17 ROC curve for Manhattan distance for the first 15 letters 

 
 Overlapping the ROC curve chart over the other ROC curves, it can be seen 
that it has the best performance in all points on the chart. Figure 6.18 shows the 

performance of these parameters. 
 

 
Figure 6.18 ROC curves with different distances 
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 Another approach was to analyze standard deviation on each key, for each 
user. The lower the standard deviation, the more it means that the user types the 

letter in the same way. In order to have an image on the entire database, standard 
deviation of all users was made. This time, the letters that fall into the lowest standard 
deviation have been selected. In Table 6.3 are the average values of the standard 
deviation on each letter. 
 

Table 6.3 Standard deviation for each letter 

Key Standard deviation 

I 1,03 

E 1,12 

A 1,15 

U 1,27 

T 1,3 

N 1,33 

O 1,42 

L 1,57 

M 1,75 

R 1,75 

S 1,86 

P 1,9 

C 2,24 

D 2,37 

G 3,23 

V 3,33 

F 3,45 

B 4,09 

Z 5,32 

H 5,68 

J 6,27 

X 7,57 

K 8,39 

Y 8,9 

Q 12,37 

W 12,53 

 
 By modifying the test parameters, the EER performances presented in Table 

6.4 were obtained. Analyzing the data from the two tables, it was concluded that the 
best results can be obtained either with the algorithm using A Distance, with t = 1.13, 

and comparing the times obtained for all keys collected, or the algorithm using 
Manhattan Distance or Euclidean with the most common 14 letters. 
 

Table 6.4 EER values in different conditions 

 All Keys Only Letters (a-z) 
Only Letters (a-z) 
and digits (0-9) 

Euclidian distance 25,82% 18,53% 17,31% 

Manhattan distance 17,33% 14,28% 14,50% 

A disctance (t=1,25) 11,67% 12,11% 13,85% 

A distance (t=1,13) 7,47% 9,07% 9,85% 

 
 Table 6.5 presents the test results for the 4 algorithms used, on the first line 
of the table, in various scenarios. This time the tests were done only on the keys 

which are letters (a-z), omitting the other keys (signs, spaces, numbers, etc.). 
Significant improvements are observed when only certain letters are selected. At the 
first test, all 27 letters were included in the test. 
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A first series of tests were made for the most used in keys by users. There is 
a major improvement in the EER indicator for Euclidean Distance and Manhattan 
Distance when only the first 14 letters are used (A, E, I, T, R, N, U, S, C, L, O, M, P 
and D ). The best performance was obtained at the EER value of 6.71%. 

The second series of tests were done for letters that have the smallest 
standard deviation. 

There is a major improvement in the EER indicator for Euclidean Distance and 
Manhattan Distance, as in the first test, when only the first 14 letters are used. The 
best performance was obtained at the EER value of 6.80%. 

 
Table 6.5 EER values in different conditions 

 

Euclidian 
distance 

Manhattan 
distance 

A disctance 
(t=1,25) 

A distance 
(t=1,13) 

All Letters (a-z) 18,53% 14,28% 12,11% 9,07% 

The most frequent keys  
(first 15 keys) 

8,1% 7,74% 13,26% 11,2% 

The most frequent 
keys(14) 

6,71% 7,13% 14,37% 8,57% 

The most frequent keys(13) 8,03% 7,78% 11,08% 10,93% 

The most frequent keys(12) 7,85% 7,67% 8,64% 7,70% 

The most frequent keys(11) 7,84% 8,18% 9,53% 9,10% 

The most frequent keys(10) 8,14% 8,2% 10,01% 10,86% 

The most frequent keys(9) 8,77% 8,64% 11,21% 13,73% 

The most frequent keys(8) 9,10% 9,30% 12,54% 9,40% 

The most frequent keys(5) 11,24% 9,92% 25,41% 23,85% 

     

The smallest standard 
deviation keys( first 15 
keys) 

8,9% 7,66% 12,54% 12,24% 

The smallest standard 
deviation keys (14) 

6,80% 7,20% 15,09% 9,90% 

The smallest standard 
deviation keys (13) 

8,15% 8,67% 8,43% 7,47% 

The smallest standard 
deviation keys (12) 

8,44% 8,66% 9,44% 9,70% 

The smallest standard 
deviation keys (10) 

10,07% 8,77% 12,18% 8,48% 

The smallest standard 
deviation keys (5) 

8,49% 9,03% 17,68% 10,03% 
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 Figure 6.19 shows graphically the values obtained from the tests, presented 
in the tables above. 

 

 
Figure 6.19 EER values in different conditions 

 
 

6.2 Experiments with di-graphs 
 
After the analysis performed on the individual characters of the data set and 

obtaining the presented results, the formation and analysis of di-graphs was 

continued. Di-graphs are pairs of two consecutive characters. The characteristics of a 

di-graph are: the total time of the di graph (DUtotal), the time of pressing the first 
key (DU1), the time of pressing the key 2 (DU2), the time between the two keys 
(UD), the time between the two down events (DD) and the time between the two up 
events (UU). The structure of a di-graph is presented in Code 6.7. 
 
Code 6.7 A di-graph struct 
typedef struct { 

    int letter1, letter2; 
    float DUtotal, DU1, DU2, DD, UU, UD; 
    char key1[20],key2[20]; 
    char word[50];     
}digraph; 
digraph diGraphs[MAX]; 
 

In order to transform the information held up to this point into information 
relevant to di-graph, the constructDiGraphs (n, user) function presented in Code 6.8 

was used. 
 

Code 6.8 The function that builds the di-graph 
int constructDiGraphs(int n, char user[]) 
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{ 
  int i; 
  for(i=0;i<n-1;i++) //construct diGraphs 
            { 
              diGraphs[i].letter1=oneGraphs[i].letter; 

              diGraphs[i].letter2=oneGraphs[i+1].letter; 
              strcpy(diGraphs[i].key1, oneGraphs[i].key); 
              strcpy(diGraphs[i].key2, oneGraphs[i+1].key); 
              diGraphs[i].DU1=oneGraphs[i].DU; 
              diGraphs[i].DU2=oneGraphs[i+1].DU; 
              diGraphs[i].UD=oneGraphs[i+1].UDprev; 

              diGraphs[i].DD=diGraphs[i].UD+diGraphs[i].DU1; 

              diGraphs[i].UU=diGraphs[i].UD+diGraphs[i].DU2; 
              diGraphs[i].DUtotal=diGraphs[i].DU1+diGraphs[i].UD+diGraphs[i].DU2; 
              constructWord(diGraphs[i].word,i,2);            
fprintf(h,"%s\t%s\t%d\t%d\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%s\n",diGraphs
[i].key1,diGraphs[i].key2,diGraphs[i].letter1,diGraphs[i].letter2,diGraphs[i].DU1,diG
raphs[i].DU2,diGraphs[i].UD,diGraphs[i].DD,diGraphs[i].UU,diGraphs[i].DUtotal,diGr
aphs[i].word); 

            } 
  return 1; 
} 
 

Di-graph analysis takes into account the order in which characters are typed 
by users. From the database collected from users, a total number of 200,227 di-

graphs could be created and analyzed. The total number of unique di-graphs is 1,530. 
This means that there are only 1,530 unique 2-character combinations. The most 
used di-graphs in the text are presented in Table 6.6 These are di-graphs that appear 

in texts taken from users more than 1000 times each. 
 

Table 6.6 The most used di-graphs 

No. 
Key 
Code 1 

Key 
Code 2 Key 1 Key 2 

No. of 
aparitions 

Average of 
DUtotal time 

1 8 8 Backspace Backspace 6938 3,39 

2 65 32 A Spacebar 6663 3,39 

3 69 32 E Spacebar 6630 3,27 

4 73 32 I Spacebar 4034 6,33 

5 32 83 Spacebar S 3866 8,69 

6 73 78 I N 3121 7,31 

7 32 67 Spacebar C 3104 11,09 

8 82 69 R E 3027 6,39 

9 32 80 Spacebar P 2911 12,97 

10 32 68 Spacebar D 2846 11,58 

11 32 65 Spacebar A 2654 12,4 
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12 65 82 A R 2606 9,38 

13 84 69 T E 2453 8,19 

14 68 69 D E 2343 8,45 

15 67 65 C A 2289 8,93 

16 32 73 Spacebar I 2170 16,85 

17 65 84 A T 2160 11,51 

18 85 32 U Spacebar 2034 11,61 

19 188 32 , Spacebar 2012 12,51 

20 32 77 Spacebar M 1846 18,05 

21 84 65 T A 1812 12,01 

22 78 32 N Spacebar 1769 12,09 

23 83 84 S T 1752 13,84 

24 84 73 T I 1631 13,38 

25 82 65 R A 1540 15,28 

26 83 73 S I 1526 12,71 

27 69 65 E A 1514 17,45 

28 78 84 N T 1508 16 

29 83 65 S A 1498 13,93 

30 82 73 R I 1468 14,03 

31 84 32 T Spacebar 1457 16,65 

32 69 83 E S 1452 18,25 

33 67 69 C E 1435 14,54 

34 77 65 M A 1380 14,44 

35 69 82 E R 1373 16,97 

36 32 8 Spacebar Backspace 1372 46,92 

37 85 78 U N 1325 17,41 

38 190 32 , Spacebar 1311 28,81 

39 32 70 Spacebar F 1287 27,34 

40 76 65 L A 1272 15,25 

41 85 76 U L 1258 21,55 

42 32 16 Spacebar Shift 1210 52,88 

43 80 69 P E 1189 16,93 

44 84 82 T R 1170 17,07 

45 67 85 C U 1167 16,37 

46 76 32 L Spacebar 1154 21,6 

47 32 69 Spacebar E 1153 30,22 
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48 76 69 L E 1117 16,62 

49 32 76 Spacebar L 1106 32,08 

50 65 67 A C 1103 22,21 

51 80 82 P R 1071 21,22 

52 69 78 E N 1063 20,61 

53 65 78 A N 1046 21,16 

54 65 76 A L 1043 21,54 

55 32 79 Spacebar O 1035 37,73 

56 79 82 O R 1021 22,86 
  

From the table it can extract the most common combination of 2 keys is di-

graph Backspace-Backspace with a number of 6,938 occurrences. This key 
combination is pressed even the fastest by a user, on average in 3.39 milliseconds. 
The next 4 frequency key combinations are letter combinations and the SPACE key. 
Di-graphs: A-Space, E-Space, I-Space and Space-S. The first two-letter combination 
that appears most frequently is the I-N di-graph with a number of 3121 occurrences. 
A total of 56 di-graphs appear in the text more than 1000 times. It is observed in 
Figure 6.20 that the total typing time of a di-graph increases as the frequency of using 

the 2 keys decreases. The figure shows the total typing time of each di-graph. On the 
left are di-graphs the most common, while on the right the least common. The 
increasing trend of typing time is observed. 

 

 
Figure 6.20 Di-graph time increases with decreasing frequency of use 

 
 

6.2.1 Creating the user pattern 

 
For each unique combination of a di-graph, the mean and standard deviation 

were calculated for all 5 calculated times. The structure that retains the information 
about a unique di-graphs at the level of each user is presented in Code 6.9. 
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Code 6.9 The pattern struct 
typedef struct{ 

  int letter1,letter2; 
  double meanDUtotal, meanDU1, meanDU2, meanDD, meanUU, meanUD; 
  int nr; 
  double stdDevDUtotal, stdDevDU1, stdDevDU2, stdDevDD, stdDevUU, stdDevUD;  
  float minDUtotal, maxDUtotal; 
 }userDiPattern; 
 

typedef struct{ 
   char user[20]; 
   userDiPattern pattern[10000];  
   int nPattern; 

   int sampleSize; 
   float distance[5000]; //distance from other users 
 }diPattern; 

 diPattern diPatterns[5000]; 
 int nDiPatterns=0; 
 

Using the constructDiPattern (user, n) function, the required data about each 
unique graph for each user was calculated. For each combination of 2 keys, the 
averages of the 5 time intervals specific to a di-graph were calculated. In addition to 

the average, the minimum and maximum values of the times were retained and the 
standard deviation for each of the 6 time intervals specific to a di-graph was 
calculated. With the help of these data, it was possible to calculate the similarity 
between users for each unique graph. 

In the vector distance[5000] within diPatterns[] the distance calculated in 
various ways between the resulting vectors for each two users will be retained. The 
shorter the calculated distance, the more likely it is to be accessed by the right user.  

The function that builds the patterns is in Code 6.10. 

 
Code 6.10 The function that build the patterns 
int constructDiPattern(char user[], int n) 
{ 
  int i,j; 
  strcpy(diPatterns[nDiPatterns].user,user); 

  diPatterns[nDiPatterns].sampleSize=n-1; 
  for(i=0;i<n-1;i++) 
  { 
    for(j=0;j<diPatterns[nDiPatterns].nPattern;j++) 
    { 
      if(diGraphs[i].letter1 == diPatterns[nDiPatterns].pattern[j].letter1 && 

diGraphs[i].letter2 == diPatterns[nDiPatterns].pattern[j].letter2) 
        break; 
    } 
        diPatterns[nDiPatterns].pattern[j].letter1=diGraphs[i].letter1; 
        diPatterns[nDiPatterns].pattern[j].letter2=diGraphs[i].letter2; 

        diPatterns[nDiPatterns].pattern[j].nr++; 
        diPatterns[nDiPatterns].pattern[j].meanDUtotal+=diGraphs[i].DUtotal; 

        diPatterns[nDiPatterns].pattern[j].meanDU1+=diGraphs[i].DU1; 
        diPatterns[nDiPatterns].pattern[j].meanDU2+=diGraphs[i].DU2; 
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        diPatterns[nDiPatterns].pattern[j].meanDD+=diGraphs[i].DD; 
        diPatterns[nDiPatterns].pattern[j].meanUU+=diGraphs[i].UU; 
        diPatterns[nDiPatterns].pattern[j].meanUD+=diGraphs[i].UD; 
        if(diPatterns[nDiPatterns].pattern[j].minDUtotal>diGraphs[i].DUtotal || 
j==diPatterns[nDiPatterns].nPattern) 

          diPatterns[nDiPatterns].pattern[j].minDUtotal=diGraphs[i].DUtotal; 
        if(diPatterns[nDiPatterns].pattern[j].maxDUtotal<diGraphs[i].DUtotal || 
j==diPatterns[nDiPatterns].nPattern) 
          diPatterns[nDiPatterns].pattern[j].maxDUtotal=diGraphs[i].DUtotal; 
        if(j==diPatterns[nDiPatterns].nPattern) 
          diPatterns[nDiPatterns].nPattern++; 

  } 

  for(j=0;j<diPatterns[nDiPatterns].nPattern;j++) 
  {    
diPatterns[nDiPatterns].pattern[j].meanDUtotal/=diPatterns[nDiPatterns].pattern[j].
nr;    
diPatterns[nDiPatterns].pattern[j].meanDU1/=diPatterns[nDiPatterns].pattern[j].nr;    
diPatterns[nDiPatterns].pattern[j].meanDU2/=diPatterns[nDiPatterns].pattern[j].nr;    
diPatterns[nDiPatterns].pattern[j].meanDD/=diPatterns[nDiPatterns].pattern[j].nr;    

diPatterns[nDiPatterns].pattern[j].meanUU/=diPatterns[nDiPatterns].pattern[j].nr;    
diPatterns[nDiPatterns].pattern[j].meanUD/=diPatterns[nDiPatterns].pattern[j].nr; 
  } 
  for(j=0;j<diPatterns[nDiPatterns].nPattern;j++) 
  { 
    for(i=0;i<n;i++) 

    { 
      if(diGraphs[i].letter1 == diPatterns[nDiPatterns].pattern[j].letter1 && 
diGraphs[i].letter2 == diPatterns[nDiPatterns].pattern[j].letter2) 

      {        
diPatterns[nDiPatterns].pattern[j].stdDevDUtotal+=pow(diPatterns[nDiPatterns].pat
tern[j].stdDevDUtotal+diGraphs[i].DUtotal,2);        
diPatterns[nDiPatterns].pattern[j].stdDevDU1+=pow(diPatterns[nDiPatterns].patter

n[j].stdDevDU1+diGraphs[i].DU1,2);        
diPatterns[nDiPatterns].pattern[j].stdDevDU2+=pow(diPatterns[nDiPatterns].patter
n[j].stdDevDU2+diGraphs[i].DU2,2);        
diPatterns[nDiPatterns].pattern[j].stdDevDD+=pow(diPatterns[nDiPatterns].pattern
[j].stdDevDD+diGraphs[i].DD,2);        
diPatterns[nDiPatterns].pattern[j].stdDevUU+=pow(diPatterns[nDiPatterns].pattern
[j].stdDevUU+diGraphs[i].UU,2);        

diPatterns[nDiPatterns].pattern[j].stdDevUD+=pow(diPatterns[nDiPatterns].pattern
[j].stdDevUD+diGraphs[i].UD,2); 
      } 
    } 
  } 
  for(j=0;j<diPatterns[nDiPatterns].nPattern;j++) 

  {    

diPatterns[nDiPatterns].pattern[j].stdDevDUtotal=sqrt(diPatterns[nDiPatterns].patte
rn[j].stdDevDUtotal/diPatterns[nDiPatterns].pattern[j].nr);    
diPatterns[nDiPatterns].pattern[j].stdDevDU1=sqrt(diPatterns[nDiPatterns].pattern[
j].stdDevDU1/diPatterns[nDiPatterns].pattern[j].nr);    
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diPatterns[nDiPatterns].pattern[j].stdDevDU2=sqrt(diPatterns[nDiPatterns].pattern[
j].stdDevDU2/diPatterns[nDiPatterns].pattern[j].nr);    

diPatterns[nDiPatterns].pattern[j].stdDevDD=sqrt(diPatterns[nDiPatterns].pattern[j]
.stdDevDD/diPatterns[nDiPatterns].pattern[j].nr);    
diPatterns[nDiPatterns].pattern[j].stdDevUU=sqrt(diPatterns[nDiPatterns].pattern[j]
.stdDevUU/diPatterns[nDiPatterns].pattern[j].nr);    
diPatterns[nDiPatterns].pattern[j].stdDevUD=sqrt(diPatterns[nDiPatterns].pattern[j]
.stdDevUD/diPatterns[nDiPatterns].pattern[j].nr); 
  } 

  nDiPatterns++; 
  return 1; 
} 
 

 

6.2.2 Authentication accuracy 

 
Authentication accuracy is assessed with Equal Error Rate (EER), the 

percentage at which False Acceptance Rate (FAR) and False Rejection Rate (FRR) have 
equal value. Another indicator of algorithm performance, in addition to EER, is, 
according to [ZHO12] [KIL09] Zero Miss False Acceptance Rate (ZMFAR). ZMFAR is 
represented by the minimum percentage of FRR (False Rejection Rate) when FAR 

(False Alarm Rate) has the value equal to 0. In Figure 20 are graphically represented 
the two performance indicators of a user authentication algorithm in the system. 

 

 
Figure 6.21 Graphical reprezentation of Equal Error Rate (EER) and ZMFAR (Zero Miss False 

Acceptance Rate) 

 

 For clearer information, the Zero Miss False Acceptance Rate (ZMFAR) for the 
algorithm was further calculated. The best performances obtained according to the 
two error rates in [ZHO12] and [KIL09] are presented in the Table 6.7. 
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Table 6.7 Performance for two algorithms from other studies in terms of EER and 
ZMFAR 

Paper Algorithm EER (%) ZMFAR (%) 

[ZHO12] Zhong, 

Deng and Jain 
Nearest Neighbor 8.4 40.5 

[KIL09] Killourhy 
and Maxion 

Manhattan 
(scaled) 

9.4 46.8 

    
 Access tests were further performed for a sample size of 1000 keys (2000 key 

events). The first results obtained for di-graphs are presented in Table 6.8. The table 
contains the EER values. It is surprising that from the first tests very good results 
were obtained for the EER value in the case of the algorithm that uses A distance. 

 
Table 6.8 EER values in different conditions 

EER 

keys 
distance 

All Keys Only letters 
Only letters and 

digits 

Euclidian distance 23,13 23,93 23,86 

Manhattan distance 19,66 18,5 18,5 

A distance (t=1,25) 6,55 9,48 9,46 

A distance (t=1,13) 6,62 8,21 8,21 

    

 In Table 6.9 are the values obtained for Zero Miss False Acceptance Rate 
(ZMFAR) in the case of tests performed whose EER is presented in Table 9. As in the 
case of EER, the lowest values of ZMFAR were obtained for the algorithm using A 
distance. The lowest value obtained for ZMFAR is 49.71% in the case of the A distance 
algorithm, when only di-graphs containing only letters (a-z) were monitored, the 

other characters being eliminated from the algorithm. 
 

Table 6.9 ZMFAR values in different conditions 

ZMFAR 

keys 

distance All Keys Only letters 

Only letters 

and digits 

Euclid distance 53,76 53,76 53,76 

Manhattan distance 52,6 53,18 53,18 

A distance (t=1,25) 52,6 53,18 53,18 

A distance (t=1,13) 52,02 49,71 49,71 

    

Considering the first results obtained for values of di-graphs, it was concluded 
that if only the letters of the English alphabet (a-z) are analyzed or if the letters of 
the English alphabet (a-z) are analyzed and the numbers (0-9) the results obtained 

are similar. For this reason, two types of tests were performed. The first type of tests 
in which only di-graphs containing only letters were analyzed, and the second type of 
di-graphs tests consisting of all the keys taken, whether they are letters, numbers, 
punctuation marks, spaces or other special characters. 
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6.2.3 Experiments with Euclidian distance at di-graphs 

 
In this section, to calculate the similarities between two vectors (two distinct 

users or two vectors obtained from the text of the same user) it was applied the 
calculation of the Euclidean distance at di-graphs. It was considered that the user has 
successfully accessed the account if the Euclidean distance (calculated between the 
vector resulting from the user's key events and the vector resulting from the key 
events of the account to be accessed) was less than a certain threshold. In case it 

was higher than the certain threshold, it was considered that he failed to access the 
account. Code 6.11 shows the function that calculate Euclidian distance at di-graphs.  
 
Code 6.11 The function that calculates Euclidian distance 
float EuclidianDistanceDiGraph(int first) 

{ 
  int user1,user2,i,j,nr=0; 

  float max=0; 
 
   for(user1=0;user1<nDiPatterns;user1++) 
  { 
    for(user2=0;user2<nDiPatterns;user2++) 
    { 

      diPatterns[user1].distance[user2]=0; 
    } 
  } 
  for(user1=0;user1<nDiPatterns;user1++) 
  { 
    for(user2=0;user2<nDiPatterns;user2++) 
    { 

      nr=0; 
      for(i=0;i<diPatterns[user1].nPattern;i++) 

        { 
          for(j=0;j<diPatterns[user2].nPattern;j++) 
          { 
            if(diPatterns[user1].pattern[i].letter1 == 
diPatterns[user2].pattern[j].letter1 && diPatterns[user1].pattern[i].letter2 == 

diPatterns[user2].pattern[j].letter2) 
            { 
               break;                 
            } 
          } 
          if(j!=diPatterns[user2].nPattern) 

          {            
diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanDUtotal-
diPatterns[user2].pattern[j].meanDUtotal,2);            
diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanDU1-
diPatterns[user2].pattern[j].meanDU1,2);            
diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanDU2-

diPatterns[user2].pattern[j].meanDU2,2);            

diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanDD-
diPatterns[user2].pattern[j].meanDD,2);            
diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanUU-
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diPatterns[user2].pattern[j].meanUU,2);            
diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanUD-
diPatterns[user2].pattern[j].meanUD,2); 
            nr+=6; 
          }            
        } 

        diPatterns[user1].distance[user2]=sqrt(diPatterns[user1].distance[user2]); 
        if(max<diPatterns[user1].distance[user2]) 
        { 
          max=diPatterns[user1].distance[user2]; 
        } 
    } 

  } 

  return max; 
} 
 

In order to be able to compare the performances of the different types of 
tests, tests were performed to work only with the most used di-graphs. For the 
algorithm that uses Euclidian distance, accesses of the accounts were simulated and 
took into account one by one, first the most used di-graph, ie the one consisting of 

the letters IN, then the first two (IN and RE), then the first 3, 4 etc. The performances 
obtained for the first 50 tests are found in Table 6.10 and represented graphically in 
Figure 6.22. The best result obtained in this series of tests is in the case of EER for 
the analysis of the first 10 di-graphs as well as the frequency of use. The EER value 
is 16.81%.  

Table 6.10 EER values with first # di-graphs 

 

First # di-
graphs 

EER (%) 

1 38,01 

2 27,15 

3 28,72 

4 21,97 

5 19,68 

6 18,55 

7 17,72 

8 19,02 

9 17,89 

10 16,81 

11 23,04 

12 19,04 

13 19,85 

14 22,54 

15 19,82 

16 19,89 

17 23,04 

18 22,66 

19 20,4 

20 20,74 

21 21,45 

22 21,77 

23 22,64 

24 20,9 

25 21,6 

26 22,35 

27 21,75 

28 22,95 

29 22,02 
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Figure 6.22 EER values with first # di-graphs 

 
 

6.2.4 Experiments with Manhattan distance at di-graphs 

 
In this section, to calculate the similarities between two vectors (two distinct 

users or two vectors obtained from the text of the same user) it was applied the 
calculation of the Manhattan distance at di-graphs. It was considered that the user 
has successfully accessed the account if the Manhattan distance (calculated between 
the vector resulting from the user's key events and the vector resulting from the key 
events of the account to be accessed) was less than a certain threshold. In case it 

was higher than the certain threshold, it was considered that he failed to access the 
account. Code 6.12 shows the function that calculate Manhattan distance at di-graphs.  
 
Code 6.12 The function that calulates Manhattan distance for di-graph 
float ManhattanDistanceDiGraph(int first) 
{ 
  int user1,user2,i,j,nr=0; 

  float max=0; 
 
   for(user1=0;user1<nDiPatterns;user1++) 
  { 
    for(user2=0;user2<nDiPatterns;user2++) 
    { 
      diPatterns[user1].distance[user2]=0; 

    } 
  } 
  for(user1=0;user1<nDiPatterns;user1++) 

  { 
    for(user2=0;user2<nDiPatterns;user2++) 
    { 

      nr=0; 
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      for(i=0;i<diPatterns[user1].nPattern;i++) 
        { 
          for(j=0;j<diPatterns[user2].nPattern;j++) 
          { 
            if(diPatterns[user1].pattern[i].letter1 == 
diPatterns[user2].pattern[j].letter1 && diPatterns[user1].pattern[i].letter2 == 

diPatterns[user2].pattern[j].letter2) 
            { 
              
if(firstDiPatterns(first,diPatterns[user1].pattern[i].letter1,diPatterns[user1].pattern[i
].letter2)) 
              { 

                break; 

              } 
            } 
          } 
          if(j!=diPatterns[user2].nPattern) 
          {            
diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanDUtotal-
diPatterns[user2].pattern[j].meanDUtotal;            

diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanDU1-
diPatterns[user2].pattern[j].meanDU1);            
diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanDU2-
diPatterns[user2].pattern[j].meanDU2);            
diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanDD-
diPatterns[user2].pattern[j].meanDD);            

diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanUU-
diPatterns[user2].pattern[j].meanUU);            
diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanUD-

diPatterns[user2].pattern[j].meanUD); 
            nr+=1; 
          }            
        } 

        if(max<diPatterns[user1].distance[user2]) 
        { 
          max=diPatterns[user1].distance[user2]; 
        } 
    } 
  } 
  return max; 

} 
 
In order to be able to compare the performances of the different types of 

tests, tests were performed to work only with the most used di-graphs. For the 
algorithm that uses Manhattan distance, accesses of the accounts were simulated and 
took into account one by one, first the most used di-graph, ie the one consisting of 

the letters IN, then the first two (IN and RE), then the first 3, 4 etc. The performances 

obtained for the first 50 tests are found in Table 6.11 and represented graphically in 
Figure 6.23. The best result obtained in this series of tests is in the case of EER for 
the analysis of the first 12 di-graphs as well as the frequency of use. The EER value 
is 13.89% [IAP21a].  
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Table 6.11 EER values for Manhattan distance at different numbers of di-graphs

First # di-graphs EER(%) 

1 38,01 

2 29,7 

3 22,7 

4 19,67 

5 16,34 

6 15,99 

7 15,54 

8 15,8 

9 16,02 

10 16,11 

11 15,42 

12 13,89 

13 14,31 

14 16,3 

15 15,78 

16 15,51 

17 15,55 

18 15,26 

19 15,25 

20 16,29 

21 16,91 

22 17,75 

23 17,56 

24 17,57 

25 16,73 

26 16,48 

27 16,23 

28 16,6 

29 17,39 

 
From the analysis of the graph in Figure 6.23 it is observed that better values 

for EER are obtained when analyzing a small number of di-graphs but with high 
frequency in the text in the database. This also helps in the analysis, being faster to 
analyze a smaller number of elements [IAP21a]. 

 

 
Figure 6.23 EER values for Manhattan distance at different numbers of di-graphs [IAP21a] 
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6.2.5 Experiments with A distance at di-graphs 
 

In this section, to calculate the similarities between two vectors (two distinct 
users or two vectors obtained from the text of the same user) it was applied the 
calculation of the A distance at di-graphs. It was considered that the user has 

successfully accessed the account if the A distance (calculated between the vector 
resulting from the user's key events and the vector resulting from the key events of 
the account to be accessed) was less than a certain threshold. In case it was higher 
than the certain threshold, it was considered that he failed to access the account. 
Code 6.13 shows the function that calculate A distance at di-graphs.  

 
Code 6.13  The function that calulates A distance for di-graph 

float ADistanceDiGraph(float t, float first) 
{ 

  int user1,user2,i,j,nr=0; 
  float max=0; 
   for(user1=0;user1<nDiPatterns;user1++) 
  { 
    for(user2=0;user2<nDiPatterns;user2++) 
    { 

      diPatterns[user1].distance[user2]=0; 
    } 
  } 
  for(user1=0;user1<nDiPatterns;user1++) 
  { 
    for(user2=0;user2<nDiPatterns;user2++) 
    { 

      nr=0; 
      for(i=0;i<diPatterns[user1].nPattern;i++) 

        { 
          for(j=0;j<diPatterns[user2].nPattern;j++) 
          { 
            if(diPatterns[user1].pattern[i].letter1 == 
diPatterns[user2].pattern[j].letter1 && diPatterns[user1].pattern[i].letter2 == 

diPatterns[user2].pattern[j].letter2) 
            {  
                nr++; 
                break; 
            } 
          } 

          if(j!=diPatterns[user2].nPattern) 
          { 
            if(diPatterns[user1].pattern[i].meanDUtotal > 
diPatterns[user2].pattern[j].meanDUtotal) 
            { 
              if(diPatterns[user1].pattern[i].meanDUtotal / 

diPatterns[user2].pattern[j].meanDUtotal < t) 

                  diPatterns[user1].distance[user2]++; 
            } 
            else 
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            { 
              if(diPatterns[user2].pattern[j].meanDUtotal / 

diPatterns[user1].pattern[i].meanDUtotal < t) 
                diPatterns[user1].distance[user2]++; 
            } 
          } 
        }  
      diPatterns[user1].distance[user2]=1-diPatterns[user1].distance[user2]/nr; 
 

      if(max<diPatterns[user1].distance[user2]) 
      { 
        max=diPatterns[user1].distance[user2]; 
      } 

    } 
  } 
  return max; 

} 
 

The same analysis as for Euclidean distance and Manhattan distance was 
applied to A distance. Figure 6.24 shows graphically the values obtained for EER when 
analyzing a different number of di-graphs. In this case, the analysis shows other 
conclusions than in Euclidean and Manhattan. It turns out that the best performance 

is not obtained by analyzing a few di-graphs, but by analyzing a large number of di-
graphs. The same result is if t takes different values. In this context, in the case of A 
distance it is more efficient if all the letters are analyzed. 

 

 
Figure 6.24 EER values for A distance (t=1,25) at different numbers of di-graphs analized 

 
For the algorithm using A distance it was analyzed which values are the most 

advantageous to set for the constant t. The algorithm was applied for values from 1 

to 2 with a step of 0.01 and it was concluded that the best values of EER are obtained 
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in the interval t = 1.07 - 1.28. The best performance was obtained at t = 1.22. The 
EER had a value of 5.52%. In these tests all the typed characters were taken into 

account, not only the letters (a-z). The values obtained for EER are presented in Table 
6.12 for values of t between 1 and 1.3. 

 
Table 6.12 EER values with A distance, for different values for t 

t value EER 

1,01 18,56 

1,02 12,6 

1,03 10,11 

1,04 8,51 

1,05 7,47 

1,06 7,67 

1,07 5,83 

1,08 6,42 

1,09 6,26 

1,1 5,85 

1,11 5,94 

1,12 5,86 

1,13 6,62 

1,14 5,85 

1,15 5,73 

1,16 5,78 

1,17 5,78 

1,18 6,02 

1,19 5,61 

1,2 6,22 

1,21 6,11 

1,22 5,52 

1,23 5,81 

1,24 5,91 

1,25 6,62 

1,26 6,38 

1,27 6,38 

1,28 6,95 

1,29 7,67 

 
The graph in Figure 6.25 shows the EER values over the entire examined 

range (1.00 - 1.99). The graph shows that at lower values of t the best performances 
are obtained. 

 

 
Figure 6.25 EER values with A distance, for different values for t 
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6.2.6 The results of experiments with di-graphs 

 
The analyzes made up to this point on di-graphs take into account a single 

time interval of the di-graph, the total time of the di-graphs, DUtotal. The interval 
between key 1 down event and key 2 up event. The interim conclusions are: 

• The Manhattan distance algorithm performs better when analyzing a limited 
number of di-graphs, those with the highest frequency 

• The Euclidean distance algorithm obtains better performances when 

analyzing a limited number of di-graphs, the ones with the highest frequency 
• Manhattan distance algorithm performs better when analyzing di-graphs 

that contain only letters (a-z) 
• The Euclidean distance algorithm performs better when analyzing di-graphs 

that contain only letters (a-z) 

• Under similar conditions, the Manhattan distance algorithm performs better 
than the Euclidean distance algorithm. Figure 6.26 shows graphically the results of 

the two algorithms for different numbers of di-graphs used in the calculation of the 
distance 

Given the above conclusions, further, between the two algorithms, only the 
Manhattan distance algorithm for di-graphs was analyzed. 

 

 
Figure 6.26 Euclidean distance performance compared to Manhattan distance performance 

 
In connection with A distance, the intermediate conclusions are: 
• The A distance algorithm performs better when analyzing all keys, not just 

letters (a-z) 
• The A distance algorithm obtains better performances when t is in the range 

1.07 - 1.28 
• The A distance algorithm performs better when analyzing all key 

combinations, not just the most common ones 

Analyzing the intermediate conclusions, it can be said that the A distance 
algorithm needs more resources to function, both memory space and time. From 
these perspectives, the most efficient to use, among the analyzed algorithms, 
according to the obtained results, is the Manhattan distance algorithm. 
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6.2.7 Choosing the time components of a di-graph 
 

 Next, experiments were performed with different combinations of the times 
generated by a di-graph, not only with the total time of the di-graph. Table 6.13 

shows the performances obtained. The 6 times that a di-graph generates are: the 
pressing time of the first key (DU1), the pressing time of the second key (DU2), the 
total time of the di-graph (DUtotal), the time between the two keys (UD), the interval 
between pressing the first and pressing the second key (DD) and the interval between 
raising the first key and raising the second key (UU). 

 
Table 6.13 The most efficient combinations of times for calculating the distance 

[IAP21a] 

  Components EER (%) 

1 Dutotal, DU1, DU2 5,23 

2 DU1, DU2, UD 5,42 

3 DU1, DU2 5,69 

4 Dutotal, DU1, DU2, UD 6,47 

5 All without UU 6,52 

6 DU1, DU2, UU, DD 6,61 

7 DU1, DU2, UU, DD, UD 7,11 

8 All 6 intervals 7,53 

9 All without DD 7,58 

10 All without UD 7,68 

11 DU1 8,46 

12 All without DU2 8,7 

13 All without DU1 8,75 

14 Dutotal + UD 10,06 

15 UU, DD, UD 11,15 

16 DU2 11,23 

17 UD 11,46 

18 UU 12,32 

19 Dutotal  13,89 

20 DD 15,18 

The best performances were obtained when using only 3 of the 6 times 

generated by the di-graph: the pressing time of the first key (DU1), the pressing time 
of the second key (DU2) and the total time of di-graph (DUtotal). For these 
components EER = 5.23% was obtained when calculating the distance with Manhattan 
distance and using the times only from the most frequent 12 di-graphs. 
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In Figure 6.27 are represented graphically FAR and FRR for the case where 
the best performance was obtained, calculating the distance using the 3 time intervals 

of the 6: DU1, DU2 and DUtotal. The EER value obtained in this case is 5.32%. The 
simulation was performed using only the first 12 di-graphs, the most common 
[IAP21a]. 
 

 
Figure 6.27 FAR and FRR for Manhattan Distance DU1, DU2,UD , first 12 di-graphs, only letters 

[IAP21a] 

 
The graph in Figure 6.28 shows the ROC curves for the best performing case 

in this experiment. EER value = 5.32% [IAP21a]. 

 
Figure 6.28 ROC curve. Manhattan Distance DU1, DU2,UD , first 12 di-graphs, only letters 

[IAP21a] 
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6.3 The Distances between users  
 

The distance calculated between two user patterns is shown in Figure 6.29 for 
the first 18 users out of a total of 160. The sample size used is 1000 keys (2000 key 
events). Thus, from the characters taken from the 80 users, 160 patterns resulted in 

the following way: from those who typed less than 2000 keys, only the first 1000 
were valued, and the rest were ignored. Those who typed under 3000 keys generated 
2 samples, each of 1000 keys, and those who typed over 3000 keys generated 3 
samples each. For each sample, distances were calculated between the pattern 
generated by it and the other 159 samples. In the figures it can be seen that the 
smallest distances were calculated between samples from the same user. The sample 

name consists of: UserNumber.SampleNumber. 

 

 
Figure 6.29 Distances between first 18 users from all 160. Green is a small distance and red is 

a big distance 

 

Figure 6.30 shows the entire database, with all 160 samples, the green color 

representing the short distance and the red color representing the large distance. The 
green color shows the small distance between samples from the same users or the 
red color if the distances are the largest. The figure above shows the upper left part 
with more details. 

 

 
Figure 6.30 Distances between 160 users. Green is a small distance and red is a big distance 
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6.4 Proposing new metrics for calculating distances 

between users  
 

This subchapter addresses O3, formulated in the first chapter of this thesis. The 
performance improvement of two metrics is analyzed. The first metric starts from the 

distance of Manhattan and proposes a modification of it in case of calculating the 
distance with the help of the times from one key only. The second metric proposed in 
this subchapter also starts from the distance of Manhattan, but the times used in the 
distance calculation are times used in the di-graphs. 

 
 

6.4.1 New metric for calculating distances based on individual key 

time  
 
Following the experiments performed in this research and presented in detail 

in this chapter, research undertaken in other scientific research has concluded that 
changes in the metrics used to calculate distances can be generated to improve the 

performance of algorithms. 
In the case of calculating distances only from the information of each key, not 

a di-graph, if a Manhattan distance calculated between two components within two 
time vectors is very small, it can be ignored, or even lead to a decrease the entire 
distance, because the probability of coming from the same user is high. In this 
judgment it was proposed by this paper to adjust the difference between 𝑥𝑖 and 𝑦𝑖   
with a certain percentage of the standard deviation calculated for the first user. It was 

chosen not to subtract a fixed value, but a certain percentage of the standard 
deviation because this is a property of all times relative to a certain key, just like their 
average. In formula 6.1 is the formula that was applied following this reasoning. 

      

d(x, y) = ∑(|xi − yi| − C × σxi

14

i=1

) 

(6.1) 

Where d(x,y) is the distance between the two vectors x and y, C is the 
coefficient and 𝜎𝑥𝑖

 is the standard deviation from 𝑥𝑖. 

Applying the proposed new formula, different values were generated for the 
C coefficient and the performance obtained by the algorithm was monitored. In Table 
6.14 are the values obtained for the EER for each coefficient in the first column of the 
table. The green color represents a small value and the red color a higher value of 
the error. It can be seen in the table that the best performances were obtained in the 

range C = 0.12-0.38. The best performance was obtained when C = 0.31, respectively 
EER = 5.33%. 

 
Table 6.14 EER values with modified Manhattan metrics 

Coefficient 

(C) 

EER 

(%) 

0 7,13 

0,01 6,87 

0,02 6,87 

0,03 6,62 

0,04 6,53 

0,05 6,46 

0,06 6,59 

0,07 6,12 

0,08 6,07 

0,09 6,08 

0,1 5,81 

0,11 5,75 

0,12 5,47 
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0,13 5,41 

0,14 5,58 

0,15 5,54 

0,16 5,5 

0,17 5,49 

0,18 5,51 

0,19 5,52 

0,2 5,5 

0,21 5,5 

0,22 5,49 

0,23 5,51 

0,24 5,52 

0,25 5,5 

0,26 5,52 

0,27 5,51 

0,28 5,55 

0,29 5,38 

0,3 5,34 

0,31 5,33 

0,32 5,38 

0,33 5,47 

0,34 5,48 

0,35 5,51 

0,36 5,47 

0,37 5,48 

0,38 5,47 

0,39 5,86 

0,4 6,45 

0,41 6,98 

0,42 7,47 

0,43 8,06 

0,44 8,62 

0,45 9,32 

0,46 9,91 

0,47 10,58 

0,48 11,25 

0,49 12 

0,5 12,64 

0,51 13,37 

0,52 14,18 

0,53 15,01 

0,54 15,77 

0,55 16,45 

0,56 17,2 

0,57 18,1 

0,58 18,86 

0,59 19,65 

 

Figure 6.31 shows graphically the EER values obtained for different values of 
the C coefficient. The values represented in the graph are those in the table above. 
As well as the table, the graph shows that the best performances were obtained in 
the range C = 0.12-0.38. The best performance was obtained when C = 0.31, 
respectively EER = 5.33%. 

 

 
Figure 6.31 EER values with modified Manhatten metrics 

 
Following the experiment described above, the decision was made to propose 

a new metric, a metric that starts from the distance of Manhattan, but which adjusts 
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with . 31 × 𝜎𝑥𝑖
. The new metric proposed in this paper is presented in formula (6.2) 

below: 

d(x, y) = ∑(|xi − yi| − 0.31 × σxi

14

i=1

) 

 (6.2) 
Where d(x,y) is the distance between the two vectors x and y and 𝜎𝑥𝑖

 is the 

standard deviation from 𝑥𝑖. 

The proposed new distance metric improves performance coefficient EER of 
7.13% to the value of 5.33%. This means a 25.24% improvement in performance. 

 
 

6.4.2 New metric for calculating distances based on di-graphs 

times  
 

In this subchapter we propose a second metric, derived from the change in 
the calculation of the distances between two vectors, based on the times from the di-
graphs. 

In the experiments performed, the following conclusions were reached: 
1. The best performance is obtained using the Manhattan metric for 

calculating distances. 
2. The best performances are obtained when analyzing the times coming only 

from the most frequent 12 di-graphs 
3. The best performances are obtained if only 3 of the 6 times generated by 

a di-graph are used in the distance calculation, namely: the pressing time of the first 
key, the pressing time of the second key and the total time al di-graphs. 

The formula that summarizes the above is at (6.3): 
 

d(x, y) = ∑|xDU1i − yDU1i|

12

i=1

+ ∑|xDU2i − yDU2i|

12

i=1

+ ∑|xDUtotali − yDUtotali|

12

i=1

 

 (6.3) 
 

 Having this calculation formula as a starting point, changes were made to it 
in order to obtain better performance. It has been observed that minimizing the share 

of total time in distance calculation generates better performance. In this context, the 
scaling of the total distance weight was applied by dividing the Manhattan distance 
by the coefficient C, as in the formula presented in (6.4), while the weight of the 
pressing time of the first key and the weight of the pressing time of the second key 
they remained the same: 
 

d(x, y) = ∑|xDU1i − yDU1i|

12

i=1

+ ∑|xDU2i − yDU2i|

12

i=1

+ ∑ |
xDUtotali − yDUtotali

C
|

12

i=1

 

 (6.4) 
 For the coefficient C, values from 1 to 15 were assigned, but also higher 

values, the conclusion of the experiment being that the best performances are 
obtained in the range 2-7. The values obtained for EER are presented in Table 6.15. 
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Table 6.15 EER values with modified distance metrics 

Coefficient EER (%) 

1 5,33 

2 3,64 

3 3,27 

4 3,33 

5 3,64 

6 3,71 

7 3,86 

8 4,2 

9 4,31 

10 4,38 

11 4,34 

12 4,37 

13 4,35 

14 4,35 

15 4,32 

100 5,23 

1000 5,54 

 

 From the values presented in the table it results that the best performance is 
obtained at the value of C = 3. In this case, the EER value is 3.27%. This value is the 
best performance obtained in the present thesis. The performance improvement with 
the modified formula presented in (6.5) is done by 37.47%. From the initial value of 
performance, calculated with the classic Manhattan metric, by EER = 5.23%, the 
performance reached 3.27%. The 1.96 percentage point improvement represents a 
37.47% improvement in performance. 

d(x, y) = ∑|xDU1i − yDU1i|

12

i=1

+ ∑|xDU2i − yDU2i|

12

i=1

+ ∑ |
xDUtotali − yDUtotali

3
|

12

i=1

 

(6.5) 
Figure 6.32 graphically represents the values of False Acceptance Rate (FAR) 

and False Rejection Rate (FRR) for the best performance obtained in the present 

research. The intersection, on the graph, of FAR and FRR is at the point of 

EER=3.27%. 

 
Figure 6.32 FAR and FRR graph for the best performance of this research 

 

Figure 6.33 shows several ROC curves generated from the experiments 
performed for this paper and described in detail in this chapter. The best performance 
obtained during the research, with the proposed new metric is on the red graph. It 
can be seen that it is the best performance from the graph in the figure. 
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Figure 6.33 ROC curve for the best performance of this research - the red one 

 
 

6.5 Proposed user pattern 
 

This subchapter follows the O4 approach. 
Considering the results obtained during this chapter, an efficient pattern will 

be proposed both in terms of size and time required for the calculations to combine 
the two solutions at the end of this chapter. The pattern will contain information about 
the 14 most used letters (a-z) and the 12 most used di-graphs that contain only 

letters (a-z). For the 14 letters, the average and the standard deviation of the pressing 
times of the respective letter will be retained. For the 12 di-graphs, 3 averages will 
be retained: DU1 average, DU2 average and Dutotal average. The proposal 
formulated for the retention of the pattern is represented graphically in Table 6.16 : 

 
Table 6.16 Proposed user pattern 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Key 
    

A E I T R N U S C L O M P D 

Key DU 
mean 

              

Key DU  
std. deviation 

              

di-graph  
DU1 mean 

            

di-graph  
DU2 mean 

            

di-graph 
DUtotal mean 

            

 
di-graph 

IN RE AR TE DE CA AT TA ST TI RA SI 
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6.6 Comparison of the related works 
 

This subchapter compares the performance obtained with the proposals made 
in this thesis with the performances obtained in other researches presented in the 
literature. Table 6.17 presents the performances obtained in other researches, the 

results were being published and centralized in the paper [TSA19]. The last two lines 
of the table are the two results obtained by applying the new metrics proposed in this 
paper. 

The performances presented in the table vary from the best EER performance 
= 0.44% to EER performance = 77%. Of the 11 results presented in the table, the 
performance obtained in this thesis is among the top three. Analyzing the best 

performance, by the algorithm Kim et al. [KIM18], of EER = 0.44%, the large volume 

of training characters it uses is noticeable, while in this paper the analyzed volume is 
1000 key / sample. The larger the sample size, the better the performance. 

 
Table 6.17 Comparison of the related works [TSA19] 

Method Year 

# of 

training 
participants 

Experimental time 

(# of training 
characters) 

Classifier 
EER 
(%) 

Monrose & 
Rubin 
[MON97] 

1997 42 7 Weeks Statistics 77.0 

Gunetti & 
Picardi 
[GUN05] 

2005 40 1–2 Months Statistics 15.0 

Villani et al. 
[VIL06] 

2006 40 – Statistics 3.6 

Davoudi & 
Kabir [DAV09] 

2009 21 1–2 Months Statistics – 

Samura & 
Nishimura 

[SAM09] 

2009 112 – 
Euclidean 
distance 

5.3 

Park & Cho 
[PAR10] 

2010 35 – Statistics 8.9 

Messerman et 
al. [MES11] 

2011 55 12 Months Statistics 2.0 

Alsultan et al. 
[ALS16] 

2016 21 
– 

(7200 characters) 
SVM and 

decision tree 
– 

Alsultan et al. 
[ALS18] 

2017 25 
– 

(7200 characters) 
SVM and 

decision tree 
– 

Alsultan et al. 
[ALS17] 

2017 30 
– 

(1000 characters) 
SVM and 

decision tree 
– 

Kim et al. 
[KIM18] 

2018 150 

– 
(18,000 English 

and 7000 Korean 

characters) 

Five 
algorithms 

0.44 

Tsai & Shih 
(KD) [TSA19] 

2018 100 
2 Weeks 

(1000 characters) 
Statistics 20.0 
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Tsai & Shih 

(KD & KC-Map) 
[TSA19] 

2018 100 
2 Weeks 

(1000 characters) 
Statistics + 

KCMS 
15.7 

The approach 
proposed in 
this research 

2020 80 
1 Session 

(1000 
characters) 

Modified 
distance for 
individual 

keys 

5.33 

The approach 
proposed in 
this research 

2020 80 
1 Session 

(1000 
characters) 

Modified 
distance for 
di-graphs 

3.27 

 

Following the comparison of the performances with those from other 

researches, it can be stated that the proposals made within the present thesis bring 
improvements to the field, by improving the performances of the authentication 
algorithm based on keystroke dynamics. 

Commercial continuous authentication products based on keystroke dynamic 
exist. In Romania, Typing DNA is a company, a start-up, that received funds of 6.2 
million euros in 2020 to create a typing identity for security [STE20]. They describe 

their company as follows [TYP21]: ”At TypingDNA we are obsessed with passive 
authentication and typing biometrics. Our mission is to improve security without 
compromising user experience. We started research in 2014 and launched publicly in 
late 2016. Our technology really shines at being the most available online biometric 
technology - it works with any keyboard, on any device, works passively behind the 
scenes, and doesn’t need more than one previous sample to start working. We provide 

typing biometrics authentication as a service, an API that anyone can use for 2FA and 
fraud prevention use cases. We are present in New York, USA and Romania, EU.”  

Comparing the algorithm developed in this paper and the algorithm applied 
by Typing DNA, the same principle is used, the collection and analysis of the typing 
mode and are used in the analysis of both a keystroke time and flight time [TYP21]. 
However, there are also differences listed below [TYP21]: (1) this paper uses the 

times from the most common 14 typed letters, while the solution from Typing DNA 

uses the times from the most common 44 keys, (2) this paper uses the time collected 
from di-graphs, while the solution from Typing DNA does not use sequences of 2 or 
more keys and (3) this paper applies the distance calculation method, while the 
solution from Typing DNA uses methods based on machine learning. 

 
 

6.7 Conclusions 
 
This chapter presented the experiments performed using the algorithm 

developed and the data collected. The experiments performed in this chapter were 
divided into two branches. First of all, experiments were performed to calculate the 
similarity between users only with the help of the times for each key, in subchapter 

6.1 Experiments with the keystroke time of a single key. The results were calculated 
and presented using Euclidean distance (in subchapter 6.1.1), Manhattan distance (in 
subchapter 6.1.2), R distance (in subchapter 6.1.3) and A distance (in subchapter 
6.1.4). Second, experiments were performed to calculate the similarity between two 

users using the times generated by the di-graphs, in subchapter 6.2 Experiments with 
di-graphs. Experiments were performed based on Euclidean distance (in subchapter 

6.2.3), Manhattan Distance (in subchapter 6.2.4) and A distance (in subchapter 
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6.2.5). The subchapter 6.3 The distance between users presented the way to calculate 
the distance between the vectors generated for users. 

In subchapter 6.4, Proposing new metrics for calculating distances between 
users, the two proposals for modified metrics that generate better results, as well as 
the performance of the Equal Error Rate (EER) indicator, were presented. O3 was 
addressed in this subchapter. With the help of the two metrics, the performances of 

the authentication algorithm have been improved by 25.24%, respectively by 
37.47%. The best performance obtained with the modified metric was EER = 3.27%. 

In subchapter 6.5 Proposed user pattern, the pattern user proposal resulting 
from the experiments and the obtained performances was presented, so that the 
information that retains the characteristics of a user to occupy the optimal memory 
space and can contribute to a fast algorithm. A structure that retains the average and 

standard deviation, of the keystroke time, for the most frequently used 14 letters and 

the average of the keystroke times of the first key, of the second key and of the total 
time for the most frequently used 12 di-graphs was proposed. The structure thus 
obtained occupies 256 bytes in memory for each user. O4 was addressed in this 
subchapter. 

At the end of the chapter, in subchapter 6.6 Comparison of the related work, 
the performance obtained with the help of the proposed metrics and other results 
obtained in similar research in the literature were compared. 

The next chapter, Conclusions and Future Works, presents the general 
conclusions of this thesis as well as research that can be carried out in further research 
presented in this thesis. 
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7 CONCLUSIONS AND FUTURE WORKS  
 
 
 

 

The previous chapter, Experiments and results, covered the experiments 
performed during the present research, detailed the results obtained and parts of the 
algorithm used for continuous authentication in educational systems. 

This chapter summarizes the conclusions drawn from the previous chapters 
and future research directions in this field, starting from the results presented in this 
paper. The author's own contributions to the field of keystroke dynamics are 

presented in the subchapter 7.1.1 The personal contribution: the proposal of two new 
metrics for calculating the distance between two vectors in order to allow the 
approximation of the degree of similarity between two patterns from two different 
users or from the same user. Also, the data collected from the 80 users about how to 
type on the keyboard is a contribution to the advantage of future researches because 
they will be available to all researchers interested in conducting investigation in the 
field. Another own contribution is the proposal of a pattern in order to retain the 

minimum necessary data about a user so to obtain performances in the continuous 
authentication.  

The last part of this chapter, the subchapter 7.2, Future works, presents the 
future research directions. The field still needs to be exploited, and future research 

directions may bring higher performance than those currently obtained. 
 

 

7.1 Conclusions 
 
The present research aimed to approach the field of continuous authentication 

using free-text keystroke dynamics, especially for online education platforms. Also, 

at the beginning of the research, 4 objectives were formulated that were pursued 
throughout the research. 

Each of us has a rhythm, a certain speed, a typing pattern, formed in time 
and unique while typing on a keyboard. We can differentiate the users of a computer, 
can identify them or authenticate them in a system only by capturing these details. 
To analyze a user's typing pattern, we need to capture and process it using an 
algorithm. 

In order to be able to identify a certain user who would now be in front of a 
computer, using a keyboard, it is necessary, beforehand, to have his typing 
characteristics in a database. The database is needed in order to compare the typing 

mode captured live with the patterns of the users enrolled in the respective system, 
thus, helping to be identified. In other words, the mode of operation is similar to the 
username and password authentication. The computer users enter their username 
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and their password, and the system searches them in the database to compare what 
the user entered with what he has previously registered, in order to make a decision. 

The first objective, O1, of this thesis was to collect a database with the typing 
mode from at least 80 users, in order to test the algorithm from O2, but also to make 
it available to other interested researchers. The first objective was presented in 
Chapter 4. 

The second objective, O2, of this thesis was to implement an algorithm for 
authenticating the users of a computer based on the keystroke dynamics, the 
keyboard typing mode. The second objective was presented in Chapter 5 and in 

Appendix 1. 
The algorithm can process and analyze the text typed on the keyboard in two 

situations: 
1. when a user enters from the keyboard each time the same key combination 

- fixed text keystroke dynamics 
2. when the user types different text each time, based on his freewill - free 

text keystroke dynamics 

The present thesis addressed the second type of analysis - free text keystroke 
dynamics. This type was chosen because (1) the user can do any kind of computer 
work, and the algorithm works in the background, without the user having to take 
additional steps and (2) it is not explored yet so far, and the accuracy performance 
of user identification of current algorithms can be improved. 

The keystroke dynamics authentication algorithm takes over, for each key 

pressed, the key code, the time when it was pressed and the time at which it was 
picked up. In this way, for each user we will have a long series of keys and times. By 
processing this input data, it is possible to identify the user. With the help of the 
pressing times, respectively of leaving the key, we can easily calculate the total time 
when a certain key has been pressed or the total time elapsed between two 
consecutive keys. 

The data that can be analyzed within such an algorithm can be subjected to 

report to: 

1. analysis of the characteristics of one key at a time (individual key analysis) 
2. analysis of the characteristics of a pair of consecutive keys in one step (di-

graph analysis) 
3. analysis of the characteristics of a group of three consecutive keys at one 

step (tri-graph analysis) 
4. generic, analysis of the characteristics of a group of n consecutive keys at 

one step (n-graph analysis) 
The present thesis addressed the situation from points 1. one key analysis 

and 2. di-graph analysis from above. The reason why it was decided to approach these 
analyses is due to the fact that the analysis can be done on shorter text strings, 
without having to wait for a user to type a very long text in order to be analyzed. The 
analysis can be done on shorter strings because it is more likely that a single key or 

a pair of keys will be repeated several times in two texts to be compared shorter, the 
probability that a group of 3 consecutive keys, four or even more to appear in both 
texts. 

Regardless of the analysis type of the user's typing mode (one key, di-graph, 
tri-graph or n-graph analysis) the input data for the authentication algorithm are time 

vectors (intervals when a key has been pressed, or how long it took to press the next 
key). The algorithm will process this input data to decide if the user who is now at the 

computer is the one who claims to be and can log in to the system. Time vectors are 
vectors of real numbers. 
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In order to analyze the vectors of real numbers (time vectors) and to decide 
their similarity, different methods can be approached: (1) distance based classifier, 

(2) statistical classifier -generic, (3) probability classifier, (4) clustering, (5) machine 
learning methods - generic, (6) neural networks, (7) fuzzy logic, (8) decision tree, (9) 
evolutional computing, (10) SVM - support vector machines etc. 

The present thesis addressed the distance based classifier method because, 
although it is the first method used in this field, it is still the most used due to its best 
results. 

The algorithms developed so far in the field of authentication based on 

keystroke dynamics do not have a success rate of 100%. They cannot identify or 
authenticate without error, even in small proportions. The errors that it can produce 
when authenticating a user in the system can be False Acceptance or False Rejection, 
when it allows the access of an impostor user or if it does not allow the access of the 

real user in the system. Depending on the failure rate, two performance indicators of 
the algorithm are generated: False Acceptance Rate (FAR) and False Rejection Rate 
(FRR). Generating values of the two performance indicators, their intersection on the 

graph brings about a much more generic performance indicator: Equal Error Rate 
(EER). 

The third objective, O3, of this thesis was to propose at least two new metrics 
for calculating the distances between two vectors that generate better performance 
compared to the Equal Error Rate (EER) performance indicator than the classical 
methods. The third objective was presented at the end of Chapter 6, in subchapter 

6.4 Proposing new metrics for calculating distances between users. With the two 
metrics, the performances of the authentication algorithm are improved by 25.24%, 
respectively by 37.47%. The best performance obtained with the modified metric is 
EER = 3.27%. 

In order for the authentication algorithm based on keystroke dynamics to 
work efficiently and in real time, while a user types on the keyboard, it is necessary 
both the execution time to be as short as possible, but also the database about the 

pattern of enrolled users in the system to be as supple as possible. Regarding the 

structure of the information in the database, it needs to be the most relevant about 
the typing of a user, also easy to access. 

The fourth objective, O4, of this thesis was to propose a data structure as 
efficient as possible, which should contain the most relevant information about the 
typing mode of a user. The fourth objective was presented at the end of Chapter 6, 
in subchapter 6.5 Proposed user pattern. It is proposed a structure that retains the 

average and standard deviation, of the keystroke time, for the most frequently used 
14 letters and the average of the keystroke times of the first key, of the second key 
and of the total time for the most frequently used 12 di-graphs. The structure obtained 
occupy 256 bytes in memory for one user. 

Given that the authentication method using keystroke dynamics has a certain 
vulnerability, a certain error rate, as well as any other authentication system, a two-

step authentication is required, with two different methods, thus, the keystroke 
dynamics authentication method can be used successfully as the second mandatory 
authentication method. 

This authentication method can be successfully applied as a second 
mandatory method in the case of authentication within online education platforms and 

especially during exams, when the user's identity must be confirmed throughout the 
session, not only once at the beginning. This additional verification, in addition to the 

username and password, as the first method of authentication, for example, would be 
required for two more reasons: 
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1. The educational systems with Massive Open Online Courses (MOOC) have 
seen a great growth from its appearance until today, reaching tens of millions of users, 

there are exams on these platforms with thousands of students at the same time and 
2. The medical crisis generated by the SARS-CoV-2 virus in 2020 provoked 

unprecedented travel restrictions around the globe, and the educational system was 
contrived to turn into an online one. 

 
 

7.1.1 The personal contributions 

 
The personal contributions presented in this research are: 
1. A free-text keystroke dynamics algorithm for continuous authentication has 

been developed. The algorithm can be found in Appendix 1 - Free-text keystroke 

dynamics algorithm for continuous authentication and it was presented in Chapter 4. 
2. It was created a database with typing mode from 80 users, 410.000 key 

events, a total time of approximately 24 hours for the acquisition of the necessary 
data. Detailed in Chapter 5 

3. A modify Manhattan distance metric has been proposed, calculated on the 
most used 14 letters. The proposed new distance metric improves performance 
coefficient EER from 7.13% to the value of 5.33%. This means a 25.24% 
improvement in performance. Details about the proposed new metric are in the 

subchapter 6.5 Proposing new metrics for calculating distances between users, 6.4.1 
New metric for calculating distances based on individual key time. 

4. A modify distance metric has been proposed, calculated on the most used 
12 di-graphs. The proposed new distance metric improves performance coefficient 
EER from 5.23% to the value of 3.27%. This means a 37,47% improvement in 
performance. Details about the proposed new metric are in the subchapter 6.4 
Proposing new metrics for calculating distances between users, 6.4.2 New metric for 

calculating distances based on di-graphs times. 
5. A structure for user pattern with the efficiency of the space used but also 

with the premises to make the necessary calculations in a short time has been 
proposed. The total space occupied by such a pattern for a user is only 256 bytes (64 
floats). The proposal formulated for the retention of the pattern is represented in 
subchapter 6.5 Proposed user pattern. 

 

 

7.2 Future works 
 

This thesis has reached its established objectives, and the conclusions 
presented in the previous subchapter open new possibilities to continue research in 

new directions, such as: 
• Expanding the keystroke dynamics database by collecting data from a larger 

number of users; 
• Expanding the database by collecting data from the 80 users in new sessions 

in order to research the evolution of the typing pattern over time 
• Analysis of new algorithms, based on different techniques compared to 

calculating distances between time vectors 

• Applying the metrics proposed in this paper to other databases available from 
other scientific research 

• Analysis of the particularities of the special characters from the Romanian 
language, which are not found in English: Ă, Î, Â, Ş, Ț. 
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• Character analysis punctuation, SPACE, ENTER, TAB, BACKSPACE etc. 
• Changing data collection conditions: changing the keyboard, under stress, 

etc. 
• Analysis of the word in which the di-graph appears 
• Developing keystroke dynamics authentication algorithms based on tri-graphs 
• Developing keystroke dynamics authentication algorithms based on n-graphs 
• Developing keystroke dynamics authentication algorithms for mobile devices, 

not only for classic computers and laptops 
• Integration of the algorithm developed in existing and functional educational 

platforms. Testing it in a real educational environment, as well as improving the 
impact by applying the principles of Design-Based Research can pave the way for new 
research directions. A first platform in which the developed algorithm can be 
integrated is in the Moodle platform of the Politehnica University of Timisoara 
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APPENDIX 1 – THE ALGORITHM 
  

The keystroke dynamics authentication algorithm 
 

#include <stdio.h> 
#include<stdlib.h> 

#include <string.h> 

#include <math.h> 
 
#define MAX 500000 
FILE *f,*m, *g,*h,*k,*l, *o,*p,*q; 
double 

oneMeanDU=0,oneMeanUD=0,diMeanDUtotal=0,triMeanDUtotal=0,fourMeanDUtotal
=0,oneStdDevDU=0,oneStdDevUD=0,diStdDevDUtotal=0,triStdDevDUtotal=0,fourS
tdDevDUtotal=0; 
 
typedef struct{ 
  char key[20]; 
  int keyCode; 

}keyAndKeyCode; 
keyAndKeyCode keyAndKeyCodes[100]; 
 
typedef struct 
{ 

  int nr; 
  int keyCode; 

  float dist[100]; //distributia intervalelor de timp /10 0=0-9, 1=10-19, 2=20-29, 
..., 99=990-999  
  double mean; 
  double stdDev; 
}distribution; 
distribution distributions[230]; 

 
typedef struct 
{ 
  char user[20]; 
  float distance[5000]; //distanta la fiecare dintre utilizatorii din lista 
  distribution distributions[230];//pe fiecare litera 
}pattern; 

pattern patterns[5000]; 
int nPatterns=0; 

pattern patternsR[5000]; 
 
typedef struct{ 
  float DU;  
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  float UD;  
} akd; 

akd allKeysDistribution[120]; 
 
typedef struct { 
    int letter;         //key code 
    int event;          //0 - key down, 1 - key up 
    int timestamp;      // time of event 
}keyEvent;               

keyEvent keyEvents[MAX]; 
 
typedef struct { 
    int letter;   //Key Code 

    float DU, UDprev, UDnext; //DU = keystroke time, UDprev - previous flight time, 
UDnext - next flight time 
    int U,D; //U - Up timestamp, D - Down timestamp 

    int letterPrev, letterNext; //Key Code of previous and next keys 
    char key[20],keyPrev[20],keyNext[20]; //Keys 
}onegraph; 
onegraph oneGraphs[MAX]; 
onegraph allUsersOneGraphs[MAX]; 
 

typedef struct { 
    int letter1, letter2; 
    float DUtotal, DU1, DU2, DD, UU, UD; 
    char key1[20],key2[20]; 
    char word[50]; 
     
}digraph; 

digraph diGraphs[MAX]; 

 
typedef struct{ 
  int letter1,letter2; 
  double meanDUtotal, meanDU1, meanDU2, meanDD, meanUU, meanUD; 
  int nr; 
  double stdDevDUtotal, stdDevDU1, stdDevDU2, stdDevDD, stdDevUU, stdDevUD;  

  float minDUtotal, maxDUtotal; 
 }userDiPattern; 
 
 typedef struct{ 
   char user[20]; 
   userDiPattern pattern[10000];  

   int nPattern; 
   int sampleSize; 
   float distance[5000];  
 }diPattern; 
 

 diPattern diPatterns[5000]; 
 int nDiPatterns=0; 

 diPattern allDiPatterns; 
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typedef struct { 
    int letter1, letter2, letter3; 

    float DUtotal, DU1, DU2, DU3, UD1, UD2; 
    float D1D2, D1D3, D2D3, U1U2, U1U3, U2U3, D1U2, D2U3,U1D3; 
    char key1[20],key2[20],key3[20]; 
    char word[50]; 
}trigraph; 
trigraph triGraphs[MAX]; 
 

typedef struct { 
    int letter1, letter2, letter3, letter4; 
    float DUtotal, DU1, DU2, DU3, DU4, UD1, UD2, UD3; 
    char key1[20],key2[20],key3[20],key4[20]; 

    char word[50]; 
}fourgraph; 
fourgraph fourGraphs[MAX]; 

 
int openFiles() 
{ 
  int i; 
  f=fopen("keysAndTheirKeyCodes.txt","r"); 
  g=fopen("oneGraphsAllUsers.txt","w"); 

  h=fopen("diGraphsAllUsers.txt","w"); 
  k=fopen("triGraphsAllUsers.txt","w"); 
  l=fopen("fourGraphsAllUsers.txt","w"); 
  o=fopen("meanAndStdDevAllUsers.txt","w"); 
  
fprintf(o,"user\toneMeanDU\toneStdDevDU\toneMeanUD\toneStdDevUD\tdiMeanDUt
otal\tdiStdDevDUtotal\ttriMeanDUtotal\ttriStdDevDUtotal\tfourMeanDUtotal\tfourStd

DevDUtotal\n"); 

  for(i=0;i<100;i++) 
  { 
    fscanf(f,"%s%d",keyAndKeyCodes[i].key,&keyAndKeyCodes[i].keyCode); 
  } 
  fclose(f); 
  p=fopen("keysDistributionMeanAndStdDevAllUsers.txt","w"); 

  fprintf(p,"user\texp"); 
  for(i=0;i<100;i++) 
  { 
    fprintf(p,"\t%s",keyAndKeyCodes[i].key); 
  } 
  q=fopen("KeysDistributionAllUsers.txt","w"); 

  fprintf(q,"user\texp"); 
  for(i=0;i<100;i++) 
  { 
    fprintf(q,"\t%d",i*10); 
  } 

  fprintf(q,"\nuser\texp"); 
  for(i=0;i<120;i++) 

  { 
    fprintf(q,"\t%d",(i-20)*10); 
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  } 
  f=fopen("keyEventsListAllUsers.txt","r"); 

  return 1; 
} 
 
int keycodeToKey(char key[],int letter) 
{ 
  int i; 
  for(i=0;i<100;i++) 

  { 
    if(keyAndKeyCodes[i].keyCode==letter) 
    { 
      strcpy(key,keyAndKeyCodes[i].key); 

      return 1; 
    } 
  } 

  return 0; 
} 
 
void deleteOneGraph(int x,int n) 
{ 
  int i; 

  for(i=x;i<n-1;i++) 
  { 
    oneGraphs[i]=oneGraphs[i+1]; 
  } 
} 
 
int constructWord(char word[],int x,int nr) 

{ 

  int i; 
  char construct[50]=""; 
  for(i=x;i<x+nr;i++) 
    if(oneGraphs[i].letter<65 || oneGraphs[i].letter>90) 
      { 
        strcpy(word,""); 

        return 0; 
      } 
  i=x; 
  while(i>=0 && oneGraphs[i].letter>=65 && oneGraphs[i].letter<=90) 
  { 
    i--; 

  } 
  i++; 
  while(oneGraphs[i].letter>=65 && oneGraphs[i].letter<=90 && 
strlen(construct)<49) 
  { 

    strcat(construct,oneGraphs[i].key); 
    i++; 

  } 
  strcpy(word,construct); 

BUPT



The keystroke dynamics authentication algorithm 143 

  return 1; 
} 

 
int meanAndStdDev(int n) 
{ 
  int i; 
  for(i=0;i<n;i++) 
  { 
    oneMeanDU=oneMeanDU+oneGraphs[i].DU; 

    if(i<n-1) 
    { 
      oneMeanUD=oneMeanUD+oneGraphs[i].UDnext; 
 

      diMeanDUtotal+=diGraphs[i].DUtotal; 
    } 
    if(i<n-2) 

      triMeanDUtotal+=triGraphs[i].DUtotal; 
    if(i<n-3) 
      fourMeanDUtotal+=fourGraphs[i].DUtotal; 
  } 
  oneMeanDU=oneMeanDU/n; 
  oneMeanUD/=(n-1); 

  diMeanDUtotal/=(n-1); 
  triMeanDUtotal/=(n-2); 
  fourMeanDUtotal/=(n-3); 
  for(i=0;i<n;i++) 
  { 
    oneStdDevDU+=pow(oneGraphs[i].DU-oneMeanDU,2); 
    if(i<n-1) 

    { 

      oneStdDevUD+=pow(oneGraphs[i].UDnext-oneMeanUD,2); 
 
      diStdDevDUtotal+=pow(diGraphs[i].DUtotal-diMeanDUtotal,2); 
    } 
    if(i<n-2) 
      triStdDevDUtotal+=pow(triGraphs[i].DUtotal-triMeanDUtotal,2); 

     
    if(i<n-3) 
      fourStdDevDUtotal+=pow(fourGraphs[i].DUtotal-fourMeanDUtotal,2); 
  } 
  oneStdDevDU=sqrt(oneStdDevDU/n); 
  oneStdDevUD=sqrt(oneStdDevUD/(n-1)); 

  diStdDevDUtotal=sqrt(diStdDevDUtotal/(n-1)); 
  triStdDevDUtotal=sqrt(triStdDevDUtotal/(n-2)); 
  fourStdDevDUtotal=sqrt(fourStdDevDUtotal/(n-3)); 
  
fprintf(o,"\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n",oneM

eanDU,oneStdDevDU, 
oneMeanUD,oneStdDevUD,diMeanDUtotal,diStdDevDUtotal,triMeanDUtotal,triStdDev

DUtotal,fourMeanDUtotal,fourStdDevDUtotal); 
  return 1; 
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} 
 

int ZNormalization(int n) 
{ 
  int i; 
  meanAndStdDev(n); 
  for(i=0;i<n;i++) 
  { 
    oneGraphs[i].DU=fabs(oneGraphs[i].DU-oneMeanDU)/oneStdDevDU; 

    oneGraphs[i].UDnext=(oneGraphs[i].UDnext-oneMeanUD)/oneStdDevUD; 
    oneGraphs[i].UDprev=(oneGraphs[i].UDprev-oneMeanUD)/oneStdDevUD; 
  } 
  return 1; 

} 
 
int minMaxNormalization(int n) 

{ 
  int i; 
  float minDU,maxDU,minUD, maxUD; 
  for(i=0;i<n;i++) 
  { 
    if(i==0) 

    { 
      minDU=oneGraphs[i].DU; 
      maxDU=oneGraphs[i].DU; 
      minUD=oneGraphs[i].UDnext; 
      maxUD=oneGraphs[i].UDnext; 
    } 
    if(minDU > oneGraphs[i].DU) 

    { 

      minDU=oneGraphs[i].DU; 
    } 
    if(maxDU < oneGraphs[i].DU) 
    { 
      maxDU=oneGraphs[i].DU; 
    } 

    if(i!=n-1) 
    { 
      if(minUD > oneGraphs[i].UDnext) 
      { 
        minUD=oneGraphs[i].UDnext; 
      } 

      if(maxUD < oneGraphs[i].UDnext) 
      { 
        maxUD=oneGraphs[i].UDnext; 
      } 
    } 

  } 
  for(i=0;i<n;i++) 

  { 
    oneGraphs[i].DU=(oneGraphs[i].DU-minDU)/(maxDU-minDU); 
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    oneGraphs[i].UDnext=(oneGraphs[i].UDnext-minUD)/(maxUD-minUD); 
    oneGraphs[i].UDprev=(oneGraphs[i].UDprev-minUD)/(maxUD-minUD); 

  } 
  return 1; 
} 
 
int copyInPattern(char user[]) 
{ 
  int i; 

  strcpy(patterns[nPatterns].user,user); 
  for(i=0;i<230;i++) 
  { 
    patterns[nPatterns].distributions[i]=distributions[i]; 

  } 
  nPatterns++; 
  return 1; 

} 
 
float calculateEuclidianDistances() 
{ 
  int i,j,k; 
  float dist,max=0,distStdDev; 

  for(i=0;i<nPatterns;i++) 
  { 
    for(j=i;j<nPatterns;j++) 
    { 
      dist=0; 
      distStdDev=0; 
      for(k=65;k<=90;k++) 

       if(k==65 || k==69 || k==73 || k==84 || k==82 || k==78 || k==85 || k==83 

|| k==67 || k==76 || k==79 || k==77 || k==80 || k==68) 
        {if(patterns[i].distributions[k].mean!=0 && 
patterns[j].distributions[k].mean!=0) 
          { 
            dist=dist+pow(patterns[i].distributions[k].mean-
patterns[j].distributions[k].mean,2); 

            distStdDev=distStdDev+pow(patterns[i].distributions[k].stdDev-
patterns[j].distributions[k].stdDev,2); 
          } 
        if(k==57) 
          k=64; 
        } 

      dist=sqrt(dist); 
      distStdDev=sqrt(distStdDev); 
      patterns[i].distance[j]=dist; 
      patterns[j].distance[i]=dist; 
      if(max<dist) 

        max=dist; 
    } 

  } 
  return max; 
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} 
 

float calculateManhattanDistances(float coefficient) 
{ 
  int i,j,k; 
  float dist,max=0, distStdDev; 
  for(i=0;i<nPatterns;i++) 
  { 
    for(j=0;j<nPatterns;j++) 

    { 
      dist=0; 
      distStdDev=0; 
      for(k=65;k<=90;k++) 

      { 
        if(k==65 || k==69 || k==73 || k==84 || k==82 || k==78 || k==85 || 
k==83 || k==67 || k==76 || k==79 || k==77 || k==80 || k==68) 

        if(patterns[i].distributions[k].mean!=0 && 
patterns[j].distributions[k].mean!=0) 
          { 
            dist=dist+fabs(patterns[i].distributions[k].mean-
patterns[j].distributions[k].mean)-coefficient*patterns[i].distributions[k].stdDev; 
            distStdDev=distStdDev+fabs(patterns[i].distributions[k].stdDev-

patterns[j].distributions[k].stdDev); 
          } 
          if(k==57) 
            k=64; 
        } 
      patterns[i].distance[j]=dist; 
      if(max<dist) 

              max=dist; 

    } 
  } 
  return max; 
} 
 
float calculateBhattacharyyaDistances() 

{ 
  int i,j,k; 
  float dist,max=0; 
  for(i=0;i<nPatterns;i++) 
  { 
    for(j=i;j<nPatterns;j++) 

    { 
      dist=0; 
      for(k=48;k<=90;k++) 
        {if(patterns[i].distributions[k].mean!=0 && 
patterns[j].distributions[k].mean!=0) 

{            
dist=dist+sqrt(patterns[i].distributions[k].mean*patterns[j].distributions[k].

mean); 
          } 
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          //dist=log(dist); 
      patterns[i].distance[j]=dist; 

      patterns[j].distance[i]=dist; 
      if(max<dist) 
        max=dist; 
      if(k==57) 
        k=64; 
        } 
    } 

  } 
  return max; 
} 
 

float calculateRdistances() 
{ 
  int i,j,k,k2,sw; 

  float dist,max=0; 
  distribution aux; 
  for(i=0;i<nPatterns;i++) 
  { 
    for(k=0;k<223;k++) 
    { 

      patterns[i].distributions[k].keyCode=k; 
    } 
    patternsR[i]=patterns[i]; 
    sw=0; 
    while(sw==0) 
    { 
      sw=1; 

      for(j=65;j<=90;j++) 

      { 
        if(patternsR[i].distributions[j].mean < patternsR[i].distributions[j+1].mean) 
        { 
          aux=patternsR[i].distributions[j]; 
          patternsR[i].distributions[j]=patternsR[i].distributions[j+1]; 
          patternsR[i].distributions[j+1]=aux; 

          sw=0; 
        } 
      } 
    } 
  } 
  for(i=0;i<nPatterns;i++) 

  { 
    for(j=i;j<nPatterns;j++) 
    { 
      dist=0; 
      for(k=65;k<=90;k++) 

for(k2=65;k2<=90;k2++)                
if(patternsR[i].distributions[k].keyCode==patternsR[j].distributions[k2].key

Code) 
          { 
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            if(patternsR[i].distributions[k].mean!=0 && 
patterns[j].distributions[k2].mean!=0) 

            { 
              dist=dist+abs(k2-k); 
            } 
            break; 
          } 
      patternsR[i].distance[j]=dist; 
      patternsR[j].distance[i]=dist; 

      if(max<dist) 
        max=dist; 
    } 
  } 

  return max; 
} 
 

float calculateADistances(float t) 
{ 
  int i,j,k; 
  float dist,max=0; 
  for(i=0;i<nPatterns;i++) 
  { 

    for(j=i;j<nPatterns;j++) 
    { 
      dist=0; 
      for(k=65;k<=90;k++) 
      { 
        if(k==65 || k==69 || k==73 || k==84 || k==82 || k==78 || k==85 || 
k==83 || k==67 || k==76 || k==79 || k==77 || k==80 || k==68) 

        if(patterns[i].distributions[k].mean!=0 && 

patterns[j].distributions[k].mean!=0) 
          { 
            if(patterns[i].distributions[k].mean > patterns[j].distributions[k].mean) 
              { 
                if(patterns[i].distributions[k].mean/patterns[j].distributions[k].mean < t) 
                  dist++; 

              } 
            else 
            { 
              if(patterns[j].distributions[k].mean/patterns[i].distributions[k].mean < t) 
                  dist++; 
            } 

          } 
        if(k==57) 
          k=64; 
      } 
      dist=1-dist/37; //27 

      patterns[i].distance[j]=dist; 
      patterns[j].distance[i]=dist; 

      if(max<dist) 
              max=dist; 
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    } 
  } 

  return max; 
} 
 
int calculateFARandFRR(float max, char file[]) 
{ 
  FILE *d; 
  d=fopen(file,"w"); 

  int i,j,k, sw=0; 
  float ERR=0, FAR=0, FRR=0, TAR=0, TRR=0, TA=0, TR=0, FA=0, FR=0, iERR=0, 
coeff=1; 
  if(max<=10) 

    coeff=1000; 
  for(i=0;i<=(int)max*(int)coeff;i++) 
  { 

    TA=0, TR=0, FA=0, FR=0; 
    for(j=0;j<nPatterns;j++) 
    { 
      for(k=j+1;k<nPatterns;k++) 
      { 
        if(patterns[j].user[4]==patterns[k].user[4] && 

patterns[j].user[5]==patterns[k].user[5] && 
patterns[j].user[6]==patterns[k].user[6] && 
patterns[j].user[7]==patterns[k].user[7]) 
        { 
          if(patterns[j].distance[k]<(float)i/coeff) 
            TA++; 
          else 

            FR++; 

        } 
        else 
        { 
          if(patterns[j].distance[k]<(float)i/coeff) 
            FA++; 
          else 

            TR++; 
        } 
      } 
    } 
    FAR=FA/(FA+TR)*100; 
    FRR=FR/(FR+TA)*100; 

    TAR=TA/(TA+FR)*100; 
    TRR=TR/(TR+FA)*100; 
    if(FAR>FRR && sw==0) 
    { 
      ERR=FAR; 

      iERR=i; 
      sw=1; 

    } 
    fprintf(d,"\n%.3f\t%.2f\t%.2f\t%.2f\t%.2f",(float)i/coeff,FAR,FRR,TAR,TRR); 
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  } 
  fprintf(d,"\nERR= %.2f in %.2f",ERR, (float)iERR/coeff); 

  printf("EER=\t%.2f\t%.2f\n",ERR, (float)iERR/coeff); 
  fclose(d); 
  return 1; 
} 
 
int RcalculateFARandFRR(float max, char file[]) 
{ 

  FILE *d; 
  d=fopen(file,"w"); 
  int i,j,k, sw=0; 
  float ERR=0, FAR=0, FRR=0, TAR=0, TRR=0, TA=0, TR=0, FA=0, FR=0, coeff=1, 

iERR=0; 
  if(max<=10) 
    coeff=1000; 

  for(i=1;i<(int)max*(int)coeff;i++) 
  { 
    TA=0, TR=0, FA=0, FR=0; 
    for(j=0;j<nPatterns;j++) 
    { 
      for(k=j+1;k<nPatterns;k++) 

      { 
        if(patternsR[j].user[4]==patternsR[k].user[4] && 
patternsR[j].user[5]==patternsR[k].user[5] && 
patternsR[j].user[6]==patternsR[k].user[6] && 
patternsR[j].user[7]==patternsR[k].user[7]) 
        { 
          if(patternsR[j].distance[k]<(float)i/coeff) 

            TA++; 

          else 
            FR++; 
        } 
        else 
        { 
          if(patternsR[j].distance[k]<(float)i/coeff) 

            FA++; 
          else 
            TR++; 
        } 
      } 
    } 

    FAR=FA/(FA+TR)*100; 
    FRR=FR/(FR+TA)*100; 
    TAR=TA/(TA+FR)*100; 
    TRR=TR/(TR+FA)*100; 
    if(FAR>FRR && sw==0) 

    { 
      ERR=FAR; 

      iERR=i; 
      sw=1; 
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    } 
    fprintf(d,"\n%.2f\t%.2f\t%.2f\t%.2f\t%.2f",(float)i/coeff,FAR,FRR,TAR,TRR); 

  } 
  fprintf(d,"\nERR= %.2f in %.2f",ERR, iERR/coeff); 
  printf("%.2f\t%.2f\n",ERR, iERR/coeff); 
  fclose(d); 
  return 1; 
} 
 

int writeDistances() 
{ 
  int i,j,k; 
  FILE *d; 

  d=fopen("oneEuclidianDistances.txt","w"); 
  fprintf(d,"users\t"); 
  for(i=0;i<nPatterns;i++) 

  { 
    fprintf(d,"%s\t",patterns[i].user); 
  } 
  fprintf(d,"\n"); 
  for(i=0;i<nPatterns;i++) 
  { 

    fprintf(d,"%s\t",patterns[i].user); 
    for(j=0;j<nPatterns;j++) 
    { 
      fprintf(d,"%.2f\t",patterns[i].distance[j]); 
    } 
    fprintf(d,"\n"); 
  } 

  fclose(d); 

  return 1; 
} 
 
int keyDistribution(int n, char user[]) 
{ 
  int i,j; 

  for(i=0;i<230;i++) 
      { 
        distributions[i].nr=0; 
        distributions[i].mean=0; 
        distributions[i].stdDev=0; 
        for(j=0;j<100;j++) 

        { 
          distributions[i].dist[j]=0; 
        } 
      } 
  for(i=0;i<120;i++) 

        { 
          allKeysDistribution[i].DU=0; 

          allKeysDistribution[i].UD=0; 
        } 
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  for(i=0;i<n;i++) 
  { 

    distributions[oneGraphs[i].letter].nr++; 
    distributions[oneGraphs[i].letter].mean+=oneGraphs[i].DU; 
    if(oneGraphs[i].DU<1000) 
    { 
      distributions[oneGraphs[i].letter].dist[(int)oneGraphs[i].DU/10]++; 
      allKeysDistribution[(int)oneGraphs[i].DU/10].DU++; 
    } 

    if(oneGraphs[i].UDnext<1000 && oneGraphs[i].UDnext>-200) 
    { 
      allKeysDistribution[(int)oneGraphs[i].UDnext/10+20].UD++; 
    } 

  } 
  for(i=0;i<230;i++) 
  { 

    if(distributions[i].nr!=0) 
      distributions[i].mean=distributions[i].mean/distributions[i].nr; 
  } 
  for(i=0;i<n;i++) 
  { 
    distributions[oneGraphs[i].letter].stdDev+=pow(oneGraphs[i].DU-

distributions[oneGraphs[i].letter].mean,2); 
  } 
  for(i=0;i<230;i++) 
  { 
    if(distributions[i].nr!=0) 
    distributions[i].stdDev=sqrt((float)distributions[i].stdDev/distributions[i].nr); 
  } 

  fprintf(p,"\n%s\tNr",user); 

  for(i=0;i<100;i++) 
  { 
    fprintf(p,"\t%d",distributions[keyAndKeyCodes[i].keyCode].nr); 
  } 
  fprintf(p,"\n%s\tMean",user); 
  for(i=0;i<100;i++) 

  { 
    fprintf(p,"\t%.2f", distributions[keyAndKeyCodes[i].keyCode].mean); 
  } 
  fprintf(p,"\n%s\tStdDev",user); 
  for(i=0;i<100;i++) 
  { 

    fprintf(p,"\t%.2f",distributions[keyAndKeyCodes[i].keyCode].stdDev); 
  } 
  fprintf(q,"\n%s\tDU",user); 
  for(i=0;i<100;i++) 
  { 

    fprintf(q,"\t%.2f",allKeysDistribution[i].DU); 
  } 

  fprintf(q,"\n%s\tUD",user); 
  for(i=0;i<120;i++) 
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  { 
    fprintf(q,"\t%.2f",allKeysDistribution[i].UD); 

    } 
  copyInPattern(user); 
  return 1; 
} 
 
int constructOneGraphs(int n, char user[]) 
{ 

  int letter,event,timestamp; 
  int i; 
  n=0; 
  do 

  { 
    fscanf(f,"%d",&letter); 
    if(letter==-1) 

     { 
       break; 
     } 
    fscanf(f,"%d%d",&event,&timestamp); 
    if(event==1) 
    { 

     if(n!=0) 
     {                          
      for(i=n-1;i>=0;i--) 
      { 
        if(oneGraphs[i].letter==letter) 
        { 
          oneGraphs[i].U=timestamp; 

          while(oneGraphs[i].letter==oneGraphs[i-1].letter && oneGraphs[i-1].U==0) 

          { 
            deleteOneGraph(i-1,n); 
            i--; 
            n--; 
          } 
          break; 

        } 
      } 
     } 
    } 
    if(event==0) 
    { 

      oneGraphs[n].letter=letter; 
      keycodeToKey(oneGraphs[n].key,letter); 
      oneGraphs[n].D=timestamp; 
      oneGraphs[n].U=0; 
      n++; 

    } 
  }while(letter!=-1);  

 n--; 
  for(i=0;i<n;i++) //construct oneGraphs 

BUPT



  Appendix 1 – The algorithm 154 

  { 
   oneGraphs[i].DU= oneGraphs[i].U - oneGraphs[i].D;      

   if(oneGraphs[i].DU>999) 
     oneGraphs[i].DU=999; 
   if(oneGraphs[i].DU<0) 
   { 
      deleteOneGraph(i,n); 
      n--; 
   } 

   if(i==0) 
   { 
     oneGraphs[i].UDprev=0; 
     oneGraphs[i].letterPrev=0; 

     strcpy(oneGraphs[i].keyPrev,""); 
     oneGraphs[i].UDnext=oneGraphs[i+1].D-oneGraphs[i].U;              
     oneGraphs[i].letterNext=oneGraphs[i+1].letter; 

     strcpy(oneGraphs[i].keyNext,oneGraphs[i+1].key); 
    } 
    else 
    { 
     if(i==n-1) 
     { 

       oneGraphs[i].UDprev=oneGraphs[i].D-oneGraphs[i-1].U; 
       oneGraphs[i].letterPrev=oneGraphs[i-1].letter; 
       strcpy(oneGraphs[i].keyPrev,oneGraphs[i-1].key); 
       oneGraphs[i].UDnext=0; 
       oneGraphs[i].letterNext=0; 
       strcpy(oneGraphs[i].keyNext,""); 
      } 

      else 

      { 
        oneGraphs[i].UDprev=oneGraphs[i].D-oneGraphs[i-1].U; 
        oneGraphs[i].letterPrev=oneGraphs[i-1].letter; 
        strcpy(oneGraphs[i].keyPrev,oneGraphs[i-1].key); 
        oneGraphs[i].UDnext=oneGraphs[i+1].D-oneGraphs[i].U; 
        oneGraphs[i].letterNext=oneGraphs[i+1].letter; 

        strcpy(oneGraphs[i].keyNext,oneGraphs[i+1].key); 
      } 
     } 
     if(oneGraphs[i].UDnext<-199) 
       oneGraphs[i].UDnext=-199; 
     if(oneGraphs[i].UDnext>999) 

       oneGraphs[i].UDnext=999; 
     if(oneGraphs[i].UDprev<-199) 
       oneGraphs[i].UDprev=-199; 
     if(oneGraphs[i].UDprev>999) 
       oneGraphs[i].UDprev=999; 

  } 
  return n; 

} 
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int constructDiGraphs(int n, char user[]) 
{ 

  int i; 
  for(i=0;i<n-1;i++) //construct diGraphs 
            { 
              diGraphs[i].letter1=oneGraphs[i].letter; 
              diGraphs[i].letter2=oneGraphs[i+1].letter; 
              strcpy(diGraphs[i].key1, oneGraphs[i].key); 
              strcpy(diGraphs[i].key2, oneGraphs[i+1].key); 

              diGraphs[i].DU1=oneGraphs[i].DU/100; 
              diGraphs[i].DU2=oneGraphs[i+1].DU/100; 
              diGraphs[i].UD=oneGraphs[i+1].UDprev/100; 
              diGraphs[i].DD=diGraphs[i].UD+diGraphs[i].DU1; 

   diGraphs[i].UU=diGraphs[i].UD+diGraphs[i].DU2;              
diGraphs[i].DUtotal=(diGraphs[i].DU1+diGraphs[i].UD+diGraphs[i].DU2)/3; 

constructWord(diGraphs[i].word,i,2);              

fprintf(h,"%s\t%s\t%d\t%d\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%s\n",d
iGraphs[i].key1,diGraphs[i].key2,diGraphs[i].letter1,diGraphs[i].letter2,diGr
aphs[i].DU1,diGraphs[i].DU2,diGraphs[i].UD,diGraphs[i].DD,diGraphs[i].UU,
diGraphs[i].DUtotal,diGraphs[i].word); 

            } 
  return 1; 

} 
 
int constructDiPattern(char user[], int n) 
{ 
  int i,j; 
  strcpy(diPatterns[nDiPatterns].user,user); 
  diPatterns[nDiPatterns].sampleSize=n-1; 

  for(i=0;i<n-1;i++) 

  { 
    for(j=0;j<diPatterns[nDiPatterns].nPattern;j++) 
    { 
      if(diGraphs[i].letter1 == diPatterns[nDiPatterns].pattern[j].letter1 && 
diGraphs[i].letter2 == diPatterns[nDiPatterns].pattern[j].letter2) 
        break; 

    } 
    if((diGraphs[i].letter1<=90 && diGraphs[i].letter1>=65)  &&  
(diGraphs[i].letter2<=90 && diGraphs[i].letter2>=65)) 
    { 
        diPatterns[nDiPatterns].pattern[j].letter1=diGraphs[i].letter1; 
        diPatterns[nDiPatterns].pattern[j].letter2=diGraphs[i].letter2; 

        diPatterns[nDiPatterns].pattern[j].nr++; 
        diPatterns[nDiPatterns].pattern[j].meanDUtotal+=diGraphs[i].DUtotal; 
        diPatterns[nDiPatterns].pattern[j].meanDU1+=diGraphs[i].DU1; 
        diPatterns[nDiPatterns].pattern[j].meanDU2+=diGraphs[i].DU2; 
        diPatterns[nDiPatterns].pattern[j].meanDD+=diGraphs[i].DD; 

        diPatterns[nDiPatterns].pattern[j].meanUU+=diGraphs[i].UU; 
        diPatterns[nDiPatterns].pattern[j].meanUD+=diGraphs[i].UD; 

        if(diPatterns[nDiPatterns].pattern[j].minDUtotal>diGraphs[i].DUtotal || 
j==diPatterns[nDiPatterns].nPattern) 
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          diPatterns[nDiPatterns].pattern[j].minDUtotal=diGraphs[i].DUtotal; 
        if(diPatterns[nDiPatterns].pattern[j].maxDUtotal<diGraphs[i].DUtotal || 

j==diPatterns[nDiPatterns].nPattern) 
          diPatterns[nDiPatterns].pattern[j].maxDUtotal=diGraphs[i].DUtotal; 
        if(j==diPatterns[nDiPatterns].nPattern) 
          diPatterns[nDiPatterns].nPattern++; 
    } 
  } 
  for(j=0;j<diPatterns[nDiPatterns].nPattern;j++) 

  {    
diPatterns[nDiPatterns].pattern[j].meanDUtotal/=diPatterns[nDiPatterns].pattern[j].
nr;    
diPatterns[nDiPatterns].pattern[j].meanDU1/=diPatterns[nDiPatterns].pattern[j].nr;    

diPatterns[nDiPatterns].pattern[j].meanDU2/=diPatterns[nDiPatterns].pattern[j].nr;    
diPatterns[nDiPatterns].pattern[j].meanDD/=diPatterns[nDiPatterns].pattern[j].nr;    
diPatterns[nDiPatterns].pattern[j].meanUU/=diPatterns[nDiPatterns].pattern[j].nr;    

diPatterns[nDiPatterns].pattern[j].meanUD/=diPatterns[nDiPatterns].pattern[j].nr; 
  } 
  for(j=0;j<diPatterns[nDiPatterns].nPattern;j++) 
  { 
    for(i=0;i<n;i++) 
    { 

      if(diGraphs[i].letter1 == diPatterns[nDiPatterns].pattern[j].letter1 && 
diGraphs[i].letter2 == diPatterns[nDiPatterns].pattern[j].letter2) 
      {        
diPatterns[nDiPatterns].pattern[j].stdDevDUtotal+=pow(diPatterns[nDiPatterns].pat
tern[j].stdDevDUtotal+diGraphs[i].DUtotal,2);        
diPatterns[nDiPatterns].pattern[j].stdDevDU1+=pow(diPatterns[nDiPatterns].patter
n[j].stdDevDU1+diGraphs[i].DU1,2);        

diPatterns[nDiPatterns].pattern[j].stdDevDU2+=pow(diPatterns[nDiPatterns].patter

n[j].stdDevDU2+diGraphs[i].DU2,2);        
diPatterns[nDiPatterns].pattern[j].stdDevDD+=pow(diPatterns[nDiPatterns].pattern
[j].stdDevDD+diGraphs[i].DD,2);        
diPatterns[nDiPatterns].pattern[j].stdDevUU+=pow(diPatterns[nDiPatterns].pattern
[j].stdDevUU+diGraphs[i].UU,2);        
diPatterns[nDiPatterns].pattern[j].stdDevUD+=pow(diPatterns[nDiPatterns].pattern

[j].stdDevUD+diGraphs[i].UD,2); 
      } 
    } 
  } 
  for(j=0;j<diPatterns[nDiPatterns].nPattern;j++) 
  { 

    
diPatterns[nDiPatterns].pattern[j].stdDevDUtotal=sqrt(diPatterns[nDiPatterns].patte
rn[j].stdDevDUtotal/diPatterns[nDiPatterns].pattern[j].nr);    
diPatterns[nDiPatterns].pattern[j].stdDevDU1=sqrt(diPatterns[nDiPatterns].pattern[
j].stdDevDU1/diPatterns[nDiPatterns].pattern[j].nr);    

diPatterns[nDiPatterns].pattern[j].stdDevDU2=sqrt(diPatterns[nDiPatterns].pattern[
j].stdDevDU2/diPatterns[nDiPatterns].pattern[j].nr);    

diPatterns[nDiPatterns].pattern[j].stdDevDD=sqrt(diPatterns[nDiPatterns].pattern[j]
.stdDevDD/diPatterns[nDiPatterns].pattern[j].nr);    
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diPatterns[nDiPatterns].pattern[j].stdDevUU=sqrt(diPatterns[nDiPatterns].pattern[j]
.stdDevUU/diPatterns[nDiPatterns].pattern[j].nr);    

diPatterns[nDiPatterns].pattern[j].stdDevUD=sqrt(diPatterns[nDiPatterns].pattern[j]
.stdDevUD/diPatterns[nDiPatterns].pattern[j].nr); 
  } 
  nDiPatterns++; 
  return 1; 
} 
 

int writeMeanAndStdDevDiPattern() 
{ 
  int i,j,user; 
  FILE *d; 

  d=fopen("DiPatternMeanStdDev.txt","w");   
  for(user=0;user<nDiPatterns;user++) 
  { 

    fprintf(d,"\n%sL1\t",diPatterns[user].user); 
    for(i=0;i<diPatterns[user].nPattern;i++) 
        fprintf(d,"%d\t",diPatterns[user].pattern[i].letter1); 
    fprintf(d,"\n%sL2\t",diPatterns[user].user); 
    for(i=0;i<diPatterns[user].nPattern;i++) 
        fprintf(d,"%.d\t",diPatterns[user].pattern[i].letter2); 

    fprintf(d,"\n%sNr\t",diPatterns[user].user); 
    for(i=0;i<diPatterns[user].nPattern;i++) 
        fprintf(d,"%d\t",diPatterns[user].pattern[i].nr); 
    fprintf(d,"\n%sMean\t",diPatterns[user].user); 
    for(i=0;i<diPatterns[user].nPattern;i++) 
        fprintf(d,"%.3f\t",diPatterns[user].pattern[i].meanDUtotal); 
    fprintf(d,"\n%sStdDev\t",diPatterns[user].user); 

    for(i=0;i<diPatterns[user].nPattern;i++) 

    { 
        fprintf(d,"%.3f\t",diPatterns[user].pattern[i].stdDevDUtotal); 
    } 
  } 
  fclose(d); 
  return 1; 

} 
 
int constructAllDiPattern() 
{ 
  int i,j,k, user; 
  for(user=0;user<nDiPatterns;user++) 

  { 
    for(i=0;i<diPatterns[user].nPattern;i++) 
    { 
      for(j=0;j<allDiPatterns.nPattern;j++) 
      { 

        if(diPatterns[user].pattern[i].letter1 == allDiPatterns.pattern[j].letter1 && 
diPatterns[user].pattern[i].letter2 == allDiPatterns.pattern[j].letter2) 

          break; 
      } 
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        allDiPatterns.pattern[j].letter1=diPatterns[user].pattern[i].letter1; 
        allDiPatterns.pattern[j].letter2=diPatterns[user].pattern[i].letter2; 

        allDiPatterns.pattern[j].nr+=diPatterns[user].pattern[i].nr; 
        
allDiPatterns.pattern[j].meanDUtotal+=diPatterns[user].pattern[i].meanDUtotal; 
        allDiPatterns.pattern[j].meanDU1+=diPatterns[user].pattern[i].meanDU1; 
        allDiPatterns.pattern[j].meanDU2+=diPatterns[user].pattern[i].meanDU2; 
        allDiPatterns.pattern[j].meanDD+=diPatterns[user].pattern[i].meanDD; 
        allDiPatterns.pattern[j].meanUU+=diPatterns[user].pattern[i].meanUU; 

        allDiPatterns.pattern[j].meanUD+=diPatterns[user].pattern[i].meanUD; 
        
allDiPatterns.pattern[j].stdDevDUtotal+=diPatterns[user].pattern[i].stdDevDUtotal; 
        allDiPatterns.pattern[j].stdDevDU1+=diPatterns[user].pattern[i].stdDevDU1; 

        allDiPatterns.pattern[j].stdDevDU2+=diPatterns[user].pattern[i].stdDevDU2; 
        allDiPatterns.pattern[j].stdDevDD+=diPatterns[user].pattern[i].stdDevDD; 
        allDiPatterns.pattern[j].stdDevUU+=diPatterns[user].pattern[i].stdDevUU; 

        allDiPatterns.pattern[j].stdDevUD+=diPatterns[user].pattern[i].stdDevUD; 
        if(j==allDiPatterns.nPattern) 
          allDiPatterns.nPattern++; 
    } 
  } 
  for(j=0;j<allDiPatterns.nPattern;j++) 

      { 
        allDiPatterns.pattern[j].meanDUtotal/=allDiPatterns.pattern[j].nr; 
        allDiPatterns.pattern[j].meanDU1/=allDiPatterns.pattern[j].nr; 
        allDiPatterns.pattern[j].meanDU2/=allDiPatterns.pattern[j].nr; 
        allDiPatterns.pattern[j].meanDD/=allDiPatterns.pattern[j].nr; 
        allDiPatterns.pattern[j].meanUU/=allDiPatterns.pattern[j].nr; 
        allDiPatterns.pattern[j].meanUD/=allDiPatterns.pattern[j].nr; 

        allDiPatterns.pattern[j].stdDevDUtotal/=allDiPatterns.pattern[j].nr; 

        allDiPatterns.pattern[j].stdDevDU1/=allDiPatterns.pattern[j].nr; 
        allDiPatterns.pattern[j].stdDevDU2/=allDiPatterns.pattern[j].nr; 
        allDiPatterns.pattern[j].stdDevDD/=allDiPatterns.pattern[j].nr; 
        allDiPatterns.pattern[j].stdDevUU/=allDiPatterns.pattern[j].nr; 
        allDiPatterns.pattern[j].stdDevUD/=allDiPatterns.pattern[j].nr; 
      } 

  return 1; 
} 
 
int sortDiPatterns() 
{ 
  int i,j,k,sw=1,allKey=0; 

  userDiPattern aux; 
  sw=1; 
  while(sw!=0) 
  { 
    sw=0; 

    for(i=0;i<allDiPatterns.nPattern-1;i++) 
    { 

      if(allDiPatterns.pattern[i].nr < allDiPatterns.pattern[i+1].nr) 
      { 
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        aux=allDiPatterns.pattern[i]; 
        allDiPatterns.pattern[i]=allDiPatterns.pattern[i+1]; 

        allDiPatterns.pattern[i+1]=aux; 
        sw=1; 
      } 
    } 
  } 
  for(i=0;i<allDiPatterns.nPattern-1;i++) 
  { 

    for(j=0;j<100;j++) 
    { 
      if(keyAndKeyCodes[j].keyCode==allDiPatterns.pattern[i].letter1) 
      break; 

    } 
    for(k=0;k<100;k++) 
    { 

      if(keyAndKeyCodes[k].keyCode==allDiPatterns.pattern[i].letter2) 
      break; 
    } 
    allKey+=allDiPatterns.pattern[i].nr; 
  } 
  printf("TOTAL %d taste\n",allKey); 

  return 1;     
} 
 
int firstDiPatterns(int x,int letter1,int letter2) 
{ 
  int i; 
  for(i=0;i<x;i++) 

  { 

    if(letter1==allDiPatterns.pattern[i].letter1 && 
letter2==allDiPatterns.pattern[i].letter2) 
    { 
      return 1; 
    } 
  } 

  return 0; 
} 
 
float EuclidianDistanceDiGraph(int first) 
{ 
  int user1,user2,i,j,nr=0; 

  float max=0; 
   for(user1=0;user1<nDiPatterns;user1++) 
  { 
    for(user2=0;user2<nDiPatterns;user2++) 
    { 

      diPatterns[user1].distance[user2]=0; 
    } 

  } 
  for(user1=0;user1<nDiPatterns;user1++) 
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  { 
    for(user2=0;user2<nDiPatterns;user2++) 

    { 
      nr=0; 
      for(i=0;i<diPatterns[user1].nPattern;i++) 
        { 
          for(j=0;j<diPatterns[user2].nPattern;j++) 
          { 
            if(diPatterns[user1].pattern[i].letter1 == 

diPatterns[user2].pattern[j].letter1 && diPatterns[user1].pattern[i].letter2 == 
diPatterns[user2].pattern[j].letter2) 
            { 
              

if(firstDiPatterns(first,diPatterns[user1].pattern[i].letter1,diPatterns[user1].pattern[i
].letter2)) 
                { 

                  break; 
                } 
            } 
          } 
          if(j!=diPatterns[user2].nPattern) 
          { 

            
diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanDUtotal-
diPatterns[user2].pattern[j].meanDUtotal,2); 
            
diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanDU1-
diPatterns[user2].pattern[j].meanDU1,2); 
            

diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanDU2-

diPatterns[user2].pattern[j].meanDU2,2); 
            
diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanDD-
diPatterns[user2].pattern[j].meanDD,2); 
            
diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanUU-

diPatterns[user2].pattern[j].meanUU,2); 
            
diPatterns[user1].distance[user2]+=pow(diPatterns[user1].pattern[i].meanUD-
diPatterns[user2].pattern[j].meanUD,2); 
            nr+=6; 
          }            

        } 
        diPatterns[user1].distance[user2]=sqrt(diPatterns[user1].distance[user2]); 
        if(max<diPatterns[user1].distance[user2]) 
        { 
          max=diPatterns[user1].distance[user2]; 

        } 
    } 

  } 
  return max; 
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} 
 

float ManhattanDistanceDiGraph(int first) 
{ 
  int user1,user2,i,j,nr=0; 
  float max=0; 
   for(user1=0;user1<nDiPatterns;user1++) 
  { 
    for(user2=0;user2<nDiPatterns;user2++) 

    { 
      diPatterns[user1].distance[user2]=0; 
    } 
  } 

  for(user1=0;user1<nDiPatterns;user1++) 
  { 
    for(user2=0;user2<nDiPatterns;user2++) 

    { 
      nr=0; 
      for(i=0;i<diPatterns[user1].nPattern;i++) 
        { 
          for(j=0;j<diPatterns[user2].nPattern;j++) 
          { 

            if(diPatterns[user1].pattern[i].letter1 == 
diPatterns[user2].pattern[j].letter1 && diPatterns[user1].pattern[i].letter2 == 
diPatterns[user2].pattern[j].letter2) 
            { 
              
if(firstDiPatterns(first,diPatterns[user1].pattern[i].letter1,diPatterns[user1].pattern[i
].letter2)) 

              { 

                break; 
              } 
            } 
          } 
          if(j!=diPatterns[user2].nPattern) 
          { 

            
diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanDUtotal-
diPatterns[user2].pattern[j].meanDUtotal); 
            
diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanDU1-
diPatterns[user2].pattern[j].meanDU1); 

            
diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanDU2-
diPatterns[user2].pattern[j].meanDU2); 
            
diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanDD-

diPatterns[user2].pattern[j].meanDD); 
            

diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanUU-
diPatterns[user2].pattern[j].meanUU); 
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diPatterns[user1].distance[user2]+=fabs(diPatterns[user1].pattern[i].meanUD-

diPatterns[user2].pattern[j].meanUD); 
            nr+=1; 
          }            
        } 
        if(max<diPatterns[user1].distance[user2]) 
        { 
          max=diPatterns[user1].distance[user2]; 

        } 
    } 
  } 
  return max; 

} 
 
float ADistanceDiGraph(float t, float first) 

{ 
  int user1,user2,i,j,nr=0; 
  float max=0; 
 
   for(user1=0;user1<nDiPatterns;user1++) 
  { 

    for(user2=0;user2<nDiPatterns;user2++) 
    { 
      diPatterns[user1].distance[user2]=0; 
    } 
  } 
  for(user1=0;user1<nDiPatterns;user1++) 
  { 

    for(user2=0;user2<nDiPatterns;user2++) 

    { 
      nr=0; 
      for(i=0;i<diPatterns[user1].nPattern;i++) 
        { 
          for(j=0;j<diPatterns[user2].nPattern;j++) 
          { 

            if(diPatterns[user1].pattern[i].letter1 == 
diPatterns[user2].pattern[j].letter1 && diPatterns[user1].pattern[i].letter2 == 
diPatterns[user2].pattern[j].letter2) 
            { 
              
if(firstDiPatterns(first,diPatterns[user1].pattern[i].letter1,diPatterns[user1].pattern[i

].letter2)) 
              { 
                nr++; 
                break; 
              } 

            } 
          } 

          if(j!=diPatterns[user2].nPattern) 
          { 

BUPT



The keystroke dynamics authentication algorithm 163 

            if(diPatterns[user1].pattern[i].meanDUtotal > 
diPatterns[user2].pattern[j].meanDUtotal) 

            { 
              if(diPatterns[user1].pattern[i].meanDUtotal / 
diPatterns[user2].pattern[j].meanDUtotal < t) 
                  diPatterns[user1].distance[user2]++; 
            } 
            else 
            { 

              if(diPatterns[user2].pattern[j].meanDUtotal / 
diPatterns[user1].pattern[i].meanDUtotal < t) 
                diPatterns[user1].distance[user2]++; 
            } 

          } 
        }  
      diPatterns[user1].distance[user2]=1-diPatterns[user1].distance[user2]/nr; 

 
      if(max<diPatterns[user1].distance[user2]) 
      { 
        max=diPatterns[user1].distance[user2]; 
      } 
    } 

  } 
  return max; 
} 
 
int writeDistancesDiGraph() 
{ 
  int user1, user2; 

  FILE *d; 

  d=fopen("DistancesDiGraphs.txt","w"); 
  fprintf(d,"user \t"); 
  for(user1=0;user1<nDiPatterns;user1++) 
  { 
    fprintf(d,"%s\t",diPatterns[user1].user); 
  } 

  for(user1=0;user1<nDiPatterns;user1++) 
  { 
    fprintf(d,"\n%s\t",diPatterns[user1].user); 
    for(user2=0;user2<nDiPatterns;user2++) 
    { 
      fprintf(d,"%.2f\t",diPatterns[user1].distance[user2]); 

    } 
  } 
  fclose(d); 
  return 1; 
} 

 
int diGraphsFARandFRR(char file[],float max) 

{ 
  FILE *d; 
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  d=fopen(file,"w"); 
  int i,j,k,user1,user2, sw=0, swZMFAR=0; 

  float EER=0, FAR=0, FRR=0, TAR=0, TRR=0, TA=0, TR=0, FA=0, FR=0, coeff=1, 
iEER=0, ZMFAR, iZMFAR; 
  if(max<=100) 
    coeff=100; 
  if(max<=10) 
    coeff=1000; 
  for(i=0;i<((int)max+1)*(int)coeff;i++) 

  { 
    TA=0, TR=0, FA=0, FR=0; 
    for(user1=0;user1<nDiPatterns;user1++) 
    { 

      for(user2=0;user2<nDiPatterns;user2++) 
      { 
        if(user1!=user2) 

        { 
          if(diPatterns[user1].user[4]==diPatterns[user2].user[4] && 
diPatterns[user1].user[5]==diPatterns[user2].user[5] && 
diPatterns[user1].user[6]==diPatterns[user2].user[6] && 
diPatterns[user1].user[7]==diPatterns[user2].user[7]) 
          { 

            if(diPatterns[user1].distance[user2]<(float)i/coeff) 
              TA++; 
            else 
              FR++; 
          } 
          else 
          { 

            if(diPatterns[user1].distance[user2]<(float)i/coeff) 

              FA++; 
            else 
              TR++; 
          } 
        } 
      } 

    } 
    FAR=FA/(FA+TR)*100; 
    FRR=FR/(FR+TA)*100; 
    TAR=TA/(TA+FR)*100; 
    TRR=TR/(TR+FA)*100; 
    if(FAR>FRR && sw==0) 

    { 
      EER=FAR; 
      iEER=i; 
      sw=1; 
    } 

    if(FAR!=0 && swZMFAR==0) 
    { 

      ZMFAR=(FRR+ZMFAR)/2; 
      iZMFAR=(iZMFAR+i)/2; 
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      swZMFAR=1; 
    } 

    if(FAR==0) 
    { 
      ZMFAR=FRR; 
      iZMFAR=i; 
    } 
    fprintf(d,"\n%.2f\t%.2f\t%.2f\t%.2f\t%.2f",(float)i/coeff,FAR,FRR,TAR,TRR); 
  } 

  fprintf(d,"\nEER= %.2f in %.2f",EER, iEER/coeff); 
  printf("EER=\t%.2f\t%.2f\n",EER, iEER/coeff); 
  printf("ZMFAR=\t%.2f\t%.2f\n", ZMFAR, iZMFAR/coeff); 
  fclose(d); 

  return 1; 
} 
 

int constructTriGraphs(int n, char user[]) 
{ 
  int i; 
  for(i=0;i<n-2;i++) //construct triGraphs 
            { 
              triGraphs[i].letter1=oneGraphs[i].letter; 

              triGraphs[i].letter2=oneGraphs[i+1].letter; 
              triGraphs[i].letter3=oneGraphs[i+2].letter; 
              strcpy(triGraphs[i].key1, oneGraphs[i].key); 
              strcpy(triGraphs[i].key2, oneGraphs[i+1].key); 
              strcpy(triGraphs[i].key3, oneGraphs[i+2].key); 
              triGraphs[i].DU1=oneGraphs[i].DU; 
              triGraphs[i].DU2=oneGraphs[i+1].DU; 

              triGraphs[i].DU3=oneGraphs[i+2].DU; 

              triGraphs[i].UD1=oneGraphs[i+1].UDprev; 
              triGraphs[i].UD2=oneGraphs[i+2].UDprev; 
              triGraphs[i].D1D2=triGraphs[i].UD1+triGraphs[i].DU1; 
              triGraphs[i].D1D3=triGraphs[i].D1D2+triGraphs[i].UD2+triGraphs[i].DU2; 
              triGraphs[i].D2D3=triGraphs[i].UD2+triGraphs[i].DU2;               
              triGraphs[i].U1U2=triGraphs[i].UD1+triGraphs[i].DU2; 

              triGraphs[i].U1U3=triGraphs[i].U1U2+triGraphs[i].UD2+triGraphs[i].DU3; 
              triGraphs[i].U2U3=triGraphs[i].UD2+triGraphs[i].DU3; 
              triGraphs[i].D1U2=triGraphs[i].D1D2+triGraphs[i].DU2; 
              triGraphs[i].D2U3=triGraphs[i].D2D3+triGraphs[i].DU3; 

   triGraphs[i].U1D3=triGraphs[i].U1U2+triGraphs[i].UD2;              
triGraphs[i].DUtotal=triGraphs[i].DU1+triGraphs[i].UD1+triGraphs[i].DU2+t

riGraphs[i].UD2+triGraphs[i].DU3; 
              constructWord(triGraphs[i].word,i,3);              
fprintf(k,"%s\t%s\t%s\t%d\t%d\t%d\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t
%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%s\n",triGraphs[i].key1,triGrap
hs[i].key2,triGraphs[i].key3,triGraphs[i].letter1,triGraphs[i].letter2,triGraphs[i].lette

r3,triGraphs[i].DU1,triGraphs[i].DU2,triGraphs[i].DU3,triGraphs[i].UD1,triGraphs[i].
UD2,triGraphs[i].D1D2,triGraphs[i].D1D3,triGraphs[i].D2D3,triGraphs[i].U1U2,triGr

aphs[i].U1U3,triGraphs[i].U2U3,triGraphs[i].D1U2,triGraphs[i].D2U3,triGraphs[i].U1
D3,triGraphs[i].DUtotal,triGraphs[i].word); 
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            } 
  return 1; 

} 
int constructFourGraphs(int n, char user[]) 
{ 
  int i; 
  for(i=0;i<n-3;i++) //construct 4Graphs 
            { 
              fourGraphs[i].letter1=oneGraphs[i].letter; 

              fourGraphs[i].letter2=oneGraphs[i+1].letter; 
              fourGraphs[i].letter3=oneGraphs[i+2].letter; 
              fourGraphs[i].letter4=oneGraphs[i+3].letter; 
              strcpy(fourGraphs[i].key1, oneGraphs[i].key); 

              strcpy(fourGraphs[i].key2, oneGraphs[i+1].key); 
              strcpy(fourGraphs[i].key3, oneGraphs[i+2].key); 
              strcpy(fourGraphs[i].key4, oneGraphs[i+3].key); 

              fourGraphs[i].DU1=oneGraphs[i].DU; 
              fourGraphs[i].DU2=oneGraphs[i+1].DU; 
              fourGraphs[i].DU3=oneGraphs[i+2].DU; 
              fourGraphs[i].DU4=oneGraphs[i+3].DU; 
              fourGraphs[i].UD1=oneGraphs[i+1].UDprev; 
              fourGraphs[i].UD2=oneGraphs[i+2].UDprev; 

              fourGraphs[i].UD3=oneGraphs[i+3].UDprev;              
fourGraphs[i].DUtotal=fourGraphs[i].DU1+fourGraphs[i].UD1+fourGraphs[i].DU2+f
ourGraphs[i].UD2+fourGraphs[i].DU3+fourGraphs[i].UD3+fourGraphs[i].DU4; 
              constructWord(fourGraphs[i].word,i,4);              
fprintf(l,"%s\t%s\t%s\t%s\t%d\t%d\t%d\t%d\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.
2f\t%.2f\t%.2f\t%s\n",fourGraphs[i].key1,fourGraphs[i].key2,fourGraphs[i].key3,fo
urGraphs[i].key4,fourGraphs[i].letter1,fourGraphs[i].letter2,fourGraphs[i].letter3,fo

urGraphs[i].letter4,fourGraphs[i].DU1,fourGraphs[i].DU2,fourGraphs[i].DU3,fourGra

phs[i].DU4,fourGraphs[i].UD1,fourGraphs[i].UD2,fourGraphs[i].UD3,fourGraphs[i].D
Utotal,fourGraphs[i].word); 
            } 
  return 1; 
} 
 

int closeFiles() 
{ 
  fprintf(g,"-1\n"); 
  fprintf(h,"-1\n"); 
  fprintf(k,"-1\n"); 
  fprintf(l,"-1\n"); 

  fclose(f); 
  fclose(g); 
  fclose(h); 
  fclose(k); 
  fclose(l); 

  fclose(o); 
  fclose(p); 

  fclose(q); 
  return 1; 
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} 
 

int main(void)  
{ 
  int i,n,nAll=0; 
  int allKey=0; 
  char user[20],fileUser[20]; 
  openFiles(); 
  do{ 

        fscanf(f,"%s",user);               
        if(strcmp(user,"-1")==0) 
            break; 
        if(user[0]=='u' && user[1]=='s' && user[2]=='e' && user[3]=='r') 

        { 
          strcpy(fileUser,"UsersTexts/"); 
          strcat(fileUser,user); 

          strcat(fileUser,".txt"); 
          m=fopen(fileUser,"w"); 
          fprintf(g,"%s\n",user); 
          fprintf(h,"%s\n",user); 
          fprintf(k,"%s\n",user); 
          fprintf(l,"%s\n",user); 

          fprintf(o,"%s\n",user); 
          n=constructOneGraphs(n, user); 
          for(i=0;i<n;i++) 

{            
fprintf(g,"%s\t%d\t%d\t%d\t%.2f\t%.2f\t%.2f\t%d\t%s\t%d\t%s\n",oneG
raphs[i].key, oneGraphs[i].letter, oneGraphs[i].D, 
oneGraphs[i].U,oneGraphs[i].DU,oneGraphs[i].UDprev,oneGraphs[i].UDnext

,oneGraphs[i].letterPrev,oneGraphs[i].keyPrev,oneGraphs[i].letterNext,one

Graphs[i].keyNext); 
           }                         
          for(i=0;i<n;i++) 
          { 
            allUsersOneGraphs[nAll++]=oneGraphs[i]; 
          } 

          constructDiGraphs(n, user);           
          allKey=allKey+n-1; 
          constructDiPattern(user,n); 
          constructTriGraphs(n, user); 
          constructFourGraphs(n, user);           
          meanAndStdDev(n); 

          keyDistribution(n,user); 
          fclose(m); 
          fprintf(g,"-1\n"); 
          fprintf(h,"-1\n"); 
          fprintf(k,"-1\n"); 

          fprintf(l,"-1\n");         
        }         

    }while(strcmp(user,"-1")!=0); 
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for(i=0;i<nAll;i++) 
  { 

    oneGraphs[i]=allUsersOneGraphs[i]; 
  } 
  n=nAll; 
  constructDiGraphs(n, "All"); 
  constructTriGraphs(n, "All"); 
  constructFourGraphs(n, "All"); 
  meanAndStdDev(n); 

  keyDistribution(n,user); 
  float max; 
  max=calculateEuclidianDistances(); 
  writeDistances(); 

  calculateFARandFRR(max,"FARandFRR_EuclidianDist.txt"); 
  max=calculateManhattanDistances(0.31); 
  printf("%.2f\n",0.31); 

  writeDistances(); 
  calculateFARandFRR(max,"FARandFRR_manhattanDist.txt"); 
  printf("Manhattan Succes\n"); 
  max=calculateRdistances(); 
  writeDistances(); 
  RcalculateFARandFRR(max,"FARandFRR_R_Dist.txt"); 

  max=calculateADistances(1.25); 
  writeDistances(); 
  calculateFARandFRR(max,"FARandFRR_A1.25_Dist.txt"); 
  max=calculateADistances(1.13); 
  writeDistances(); 
  constructAllDiPattern(); 
  sortDiPatterns(); 

  writeMeanAndStdDevDiPattern(); 

  i=10; 
  max=EuclidianDistanceDiGraph(i); 
  printf("%d\n",i); 
  diGraphsFARandFRR("diGraphsFARandFRR_Euclid.txt",max); 
  printf("Euclid diGraphs SUCCES\n"); 
  i=12; 

  max=ManhattanDistanceDiGraph(i); 
  writeDistancesDiGraph(); 
  printf("%d\n",i); 
  diGraphsFARandFRR("diGraphsFARandFRR_Manhattan.txt",max); 
  printf("Manhattan diGraphs SUCCES\n"); 
  max=ADistanceDiGraph(1.25,i); 

  diGraphsFARandFRR("diGraphsFARandFRR_A1.25.txt",max); 
  closeFiles(); 
  return 0; 
} 
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(WOS:000385397100001) 
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