

PERFORMANCE ANALYSIS OF WEB SERVICE TECHNOLOGY FOR

BUILDING A MULTICLOUD MIDDLEWARE FOR MOBILE DEVICES

Nithya RAVI

Research Scholar, Anna University, Chennai, India
nithyaravi01@gmail.com

Mala THANGARATHINAM

Associate Professor, Anna University, Chennai, India
malanehru@annauniv.edu

Abstract: The presence of numerous cloud service offerings
has lead to working with services and APIs of different
cloud vendors. These APIs are not interoperable and the
data stored into one cloud is non-transferrable to other
clouds. In addition, today’s cloud users are mobile devices
and consuming a cloud service onto mobile device poses
another set of risks. One way to handle this problem is to
devise a generic middleware with a unified cloud API set to
handle the API heterogeneity at the cloud end and make it
suitable for use with mobile devices. Thus, this paper
attempts to identify the best suitable API technology for the
middleware by doing an extensive comparative study of the
existing protocols.

Key words: mobile devices, vendor lock-in, cloud services,
API, SOAP, REST.

1. Introduction
 The buzz around cloud computing has reached a
fever pitch. It has emerged as a mainstream
phenomenon where any type of IT resources are
delivered as a service over the network to novice users
who need not have knowledge of, expertise in, or
control over the cloud infrastructure that supports
them. With the enormous offering that the cloud
provides, that market today has an equal enormous
offering of different cloud providers. Too often, people
end up in a lock-in situation because important
decisions were made casually or without any upfront
thought. This can occur easily with the cloud because
services are so easy to sign up for and use. At some
point later, companies are at the mercy of cloud
providers whenever rates increase or terms and
conditions change. Every cloud vendor exposes his
business functionality by means of his vendor specific
APIs. This creates vendor lock-in, and a user is not free
to use the services of multiple providers simultaneously
without investing in upfront cost, time and energy. This
limitation of cloud interoperability hampers cloud
adoption and does not drive integration of accessing
hybrid cloud services.
 Fortunately, some open source communities and
interested forums have come up with some approaches
to handle this problem. On the same lines, few open
source libraries have also come into existence to

manage the interoperability and portability issue. But,
however, efforts have not been introduced to service
mobile clients. Mobile devices are limited in terms of
computational power when compared to their PC
counterparts. Being locked-in by a cloud provider is
not what end customers plan to experience. The paper
[1] also mentions that developing native applications
individually to suit heterogeneous providers is an
arduous and expensive task. Hence, there arises a need
to write a single code that works with more than one
cloud provider simultaneously, regardless of the
differences in the API set.
 A majority of cloud service APIs are based on
SOAP and REST. Therefore, it is essential to develop a
single point of contact for all providers. Hence, a
generic middleware with a single stack of API set is
proposed, and using this single API call, the client can
access or leverage the benefits of global portability
among cloud services. This saves considerable amount
of time, and reduces the complexity, as there is just one
version of the client application to be developed for
invoking multiple services. To address the low
computational resources needs of mobile devices, a
performance analysis of the existing cloud service APIs
(SOAP and REST) is carried out to find out the best
suitable type for access from mobile devices. The
results have recommended REST style of APIs as more
efficient and consume fewer resources when compared
to that of SOAP. With this basis, it is identified that the
generic Multicloud middleware can be developed with
RESTful service APIs for servicing mobile clients.
 The rest of the paper is organized as follows:
Section 2 discusses about the challenges of cloud
interoperability with some insight into the existing
approaches. In Section 3, the emergence of Mobile
Cloud computing is discussed and Section 4 presents
the vision of Multicloud middleware for Mobile
devices. Section 5 gives a brief overview of the Web
service technologies with current state-of-the-art.
Performance analysis of SOAP and REST are
presented in section 6. Section 7 discusses about the
API heterogeneity and finally section 8 concludes the
paper and points out future research directions.

BUPT

2. Cloud Interoperability Overview

2.1 Need for Cloud Interoperability
 Cloud computing has evolved as a disruptive
technology and picked up speed in 2008 and 2009 with
the presence of many vendors in the cloud computing
space. As the cloud market continues to grow, the
number of commercially available cloud-based service
offerings is also increasing at a higher rate. Cloud
services are offered in three styles: SaaS, PaaS, and
IaaS. Each cloud service provider exposes such
services through a specific set of APIs and a user
interacts with the cloud using that API leading to
something called the Cloud API propagation [2]. Cloud
providers belonging to a common category, (say IaaS
providers), may provide the same functionality but
differ in their APIs list. The APIs either use different
names / URIs, or use different protocols (such as
SOAP or REST) to invoke them. Applications that are
developed for one cloud may not be compatible with
one another. Therefore, applications must suffer some
changes when it is necessary to move from one cloud
to another. From an end user’s perspective, this
becomes a serious and tiring issue when trying to
access hybrid cloud services to achieve some
functionality. This will not reflect good programming
practice of developing several versions of a single
application for specific vendors. This eventually kills
the purpose of using cloud by limiting cloud choice
because of vendor lock-in, portability, and the ability to
use the cloud services provided by multiple vendors.
Therefore, the situation demands for a “Write once,
Run anywhere” paradigm to handle this cloud
interoperability issue. Fortunately, some
interoperability approaches have been initiated and the
same has been discussed below.

2.2 Cloud Interoperability approaches
 According to the paper [3], there are two groups
called the SDO and SSO. Standards developing
organization (SDO) are technically involved in
developing and publishing standards for cloud
computing, while Scientific Consortia and Standards-
setting Organization (SSO) is involved in promoting
the adoption of emerging technologies, without the
intention of developing their own standards. Table 1
begins with a gist of some of the prominent standard
initiatives[4-14] and open working groups[15-19].

Table 1
Standards and Open Working Groups

Standards
ETSI (2018) Interoperable solutions for

IaaS

Messina (2014) Two working groups P2301

and P2302 working on cloud

interoperability. P2301

focuses on cloud portability,

while P2302 focuses on cloud-

to-cloud interoperability and

federation.

ITU-T (2018) Works on next generation

networks in conjunction with

cloud computing

NIST (2018) Covers cloud architectures,

security and deployment

strategies

Karmakar & Pilz, 2012 Focuses on security challenges

in the cloud, consumer-

provider collaboration in

maximizing quality of service,

and specification for

enhancing the portability of

cloud applications and

enabling the interoperable

description of application and

infrastructure cloud services

CDMI (2018) Focus on data management in

the cloud

TMForum (2018) Encourages and stimulates the

growth of an open

marketplace for cloud

services.

Aradhana et al., 2011 Study on the risks & benefits

involved with cloud

portability

OCCI (2018) Management API for

deployment, autonomic

scaling, and monitoring of

IaaS resources

OVF (2018) Standard portable platform for

representing virtual machines

DMTF (2012) Focus on multi vendor

interoperability for enterprise

in system, tools and

applications.

Open Working Groups

Open Group (2018) Collaborates on standard

models & frameworks to

eliminate vendor lock-in for

enterprises

CSCC (2018) Guidance on critical elements

to consider when negotiating

an SLA

OCC (2018) Benchmarks for dealing with

large data clouds

Motohashi (2011) Standardization of network

protocols and interfaces

namely, the Intercloud

protocol and the Cloud

Resource Data model.

Cohen (2018) Unifies various cloud APIs

and abstracts it under a single,

open and standardized

interface. Holds a

specification (details for

integration with other

management models) and

schema (model descriptions).

Uses Semantic Web & OWL.

Uses the Resource Description

BUPT

Framework (RDF) to describe

a cloud data model.

2.3 Multicloud Libraries
 Few open source communities have come up with
some of the open source libraries that leverage the
cloud interoperability and portability problem. Some of
those libraries [20-26] are discussed in Table 2 below.

Table 2
Multi-Cloud Libraries

Library Description
Jets3t (2018) Java toolkit for accessing

S3 and Google Storage

services for storage.

Jclouds (2018) Compatible with

OpenStack for the compute

and Blobstore feature. Not

compatible with any mobile

platform.

Darryl (2011) Multi-cloud API that

supports Eucalyptus and

Rackspace with

XML/JSON instructions.

No support for mobile

platform.

ZCloud API (2018) Supports storage from S3,

Sun Cloud service,

Eucalyptus Walrus, Mezeo,

as well as private storage

clouds. No support for

mobile platforms.

Joe (2018) Rest API for compute and

storage purposes. A top-

level Apache project that

works from EC2 to RedHat

Enterprise.

Libcloud (2018) Python library for multi-

cloud management.

Supports LoadBalancers as

a service, DNS as a service,

Rackspace and AWS for

compute cloud, S3 for

storage and others.

Typica API (2018) Supports compute service

of EC2 and Eucalyptus. No

support for mobile

platforms

 Most of these libraries are at its infancy stage, and
are evolving with better features everyday. Cloud
computing has started reaching its acceptance in the
mobile domain and hence, the real benefits of cloud
attains completeness in satisfying the needs of a mobile
device access to hybrid cloud services offered by
multiple cloud providers.

3. Transforming from Cloud to Mobile Cloud
Computing

 Mobile devices are invading our lives, and its use is
growing at an unprecedented rate. Due to the
convenience it offers, people enjoy being associated
with mobile for activities such as mobile banking,
BYOD (Bring Your Own Device), social networking
or even online shopping [27]. With this shift in
consumers’ expectations, newer mobile applications
are being developing rapidly to satisfy the needs of a
wider range of audience. However, despite the rapid
advancements and developments of smartphones, they
are intrinsically limited by several factors such as
computational speed, storage capacity, processing
power, etc. when compared to PCs. On an average, the
processing power of a mobile device is 3 times lesser
than that of a personal computer, RAM memory is 4
times lesser, storage is 30 times lesser, and the display
size is 5 times smaller.
 Smartphones lack the luxury of performing very
high compute intensive tasks due to the unavailability
of required computing power and limited battery
lifetime. And as such, applications that run on mobile
devices are not business class applications. To help
smartphones overcome these challenges, smartphones
have been backboned with the power of Cloud
computing, bringing about a new research domain
called the Mobile Cloud Computing (MCC). In MCC,
mobile devices delegate all data processing, storage
and other intensive operations to the clouds. According
to Shah [28], mobile applications have already started
leveraging the cloud and have become a necessity to
solve complex problems in science and engineering
fields. Some of them are the Apple iCloud and the
Amazon Silk Browser. Apple’s iCloud stores
customers’ photos, videos, apps, calendars, etc. on
Amazon EC2 and Windows Azure, and synchronizes
them with all the iOS devices. Amazon Silk Browser is
a cloud-accelerated “split browser”. On a web page
request, the browser dynamically decides which sub-
components of the browser run on the mobile and
which has to be delegated to Amazon EC2 depending
on the page complexity and network conditions. Thus,
today’s market highly utilizes the immense capacity of
cloud to bridge the limitations of mobile devices.

4. MultiCloud Middleware for Mobile Devices
 Every cloud vendor who comes up with a new set of
proprietary APIs everyday is generally observed to be
slow in providing support for mobile devices. A cloud
service is basically a Web service. Web services are
software functions that are exposed over the Web to
perform some task. Consuming Web services from
mobile devices is certainly different from that of PCs.
The APIs available for direct deployment on a PC are
not suitable for mobile deployment, due to the
integration issues with the compiler and reference to
other external libraries required by the API. Some run
time issues emerge due to the platform restrictions and
compiler inabilities. Also, a mobile device is developed

BUPT

in a variety of OS such as Android, Apple iOS,
Symbian, etc. Each platforms component differs from
one another in its architecture and implementation, and
this can also greatly reduce the opportunity of
accessing cloud from mobile phones. However, some
cloud providers have initiated to provide its cloud
service support by offering a separate SDK for
different mobile devices such as Android and Apple.
Some of those providers are Amazon, Apple iCloud,
Google Drive, Dropbox, Microsoft SkyDrive,
SugarSync, Box, etc. But here again, there is vendor
lock-in with each service, and a user is forced to
develop different mobile applications for different
cloud providers. Hence, in an effort to ease the
development at the client side, and with the intention to
invoke hybrid cloud services, it is desirable to develop
a generic middleware to handle the platform
independence feature of the mobile device and solve
the interoperability problems of different clouds. Cloud
integration and mobile performance optimization will
be the key drivers of the middleware. The Multi-Cloud
Middleware for Mobile devices should include features
like:

 Unified Cloud API
 Protocol transformation
 Result Optimization
 Data Integration
 Advanced SLA Controls
 Billing and Monetization
 Mobile performance optimization

5. Cloud Service Invocation from Mobile Devices

Any service exposed over the cloud is a Cloud
service. Cloud services expose their behavior through
APIs. An API is a set of instructions for interacting
with an application via a programming language.
According to Programmable Web [29], currently there
are 20,613 APIs recorded in its registry. Many service
providers use this public registry to advertise their
APIs. Cloud APIs are of two Web service technology
types, namely the SOAP (Simple Object Access
Protocol) and the REST (REpresentational State
Transfer). SOAP and REST have been brought forward
to implement RPC calls over the Web. Both define
standards for application integration, but differ in their
methodology and effectiveness. For instance, SOAP
follows a Service Oriented Architecture style with the
request and response formats in XML, however REST
follows the Resource Oriented Architecture style. The
request format is in XML or JSON, and the response
format could be in XML, JSON, HTML, RAW, PDF,
JPEG, CSS, RSS, Serialized PHP and CSV. The
CRUD (Create, Read, Update, Delete) operations
performed on SOAP are GET and POST, whereas the
CRUD operations on REST protocol are GET, PUT,
POST, and DELETE.

To handle the vendor-lock in limitation, a
middleware is planned to provide a unified API

abstracting all other cloud APIs. The end user
communicates with only the middleware API and the
API in turn communicates with the respective cloud
API. Also, the APIs of the middleware need to be
offered in a manner that is optimized for access from
mobile devices. Hence, it necessitates developing a
common API set based on a specific technology, either
being the SOAP or REST. Thus, the objective of our
work is to find out the technology basis of developing
the middleware. A thorough examination of SOAP and
REST is carried out to explore the best suitable Web
service technology to use for developing the cloud
APIs and extending its support to mobile devices. With
this knowledge in hand, let us proceed to understand
the characteristics of the two technologies SOAP and
REST in detail.

5.1 Simple Object Access Protocol

Simple Object Access Protocol was introduced by
the World Wide Web Consortium (W3C) to integrate
applications of diverse platform and language. It is a
protocol specification for Web service communication.
A client communicates with a Web service by
exchanging SOAP messages. For the purpose of
interoperability, SOAP messages use XML as the data
format along with standard XML types. SOAP works
mainly on top of HTTP, and as well works with other
transport protocols such as SMTP, TCP, etc. SOAP
communications revolve around GET and POST
operations over HTTP. Since SOAP messages are text
based and self describing, they can easily convey
information between services of heterogeneous
computing environments. SOAP also handles security
and reliability of the messages involved. Figure 1(a)
and Figure 1(b) depicts the skeleton of SOAP request
and response messages.

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header/>

<soapenv:Body/>

</soapenv:Envelope>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>

<ns:sayHelloResponse xmlns:ns="http://hello">

 <ns:return>Hello World!</ns:return>

</ns:sayHelloResponse>

</soapenv:Body>

</soapenv:Envelope>

Fig. 1(a), 1(b). SOAP Request & Response Messages

5.2 Representational State Transfer

Representational State Transfer (REST) is an
architectural style introduced by Roy Fielding for

BUPT

building large-scale distributed hypermedia systems.
REST mainly focuses on the data of an element and its
corresponding state. It is perceived to be simple
because it leverages the existing Web standards. Any
data or information such as a document, image, or
temporal service, is termed as resources and they are
the key aspect of REST. Each resource is identified by
a distinguished URI (Uniform Resource Identifier).
The resources are acted upon using the four HTTP
operations: GET, POST, PUT, and DELETE. While
SOAP based Web services expose service APIs
through WSDL document, RESTful style of Web
services expose services through a Web browser using
the four HTTP methods. GET is used to retrieve
resource, POST to create new resource, PUT to update
or modify resource and DELETE to delete the
resource. REST classifies any kind of Web service
operations into these main four “verbs”. Since,
everything revolves around resources; REST is a
resource-oriented technology while SOAP is a service-
oriented technology. REST is a stateless
communication protocol in the sense that the client
should contain all the necessary information for a
server to understand the request and should not leave
any information by assuming some stored context at the
server. This feature can be helpful when there is a
failure in the communication and also improves
scalability at the server end as it need not maintain state
of all clients and keep track of them. But yet to
improve the efficiency in responding to requests, cache
constraints are introduced explicitly by labeling as
cacheable. Figure 2(a) and Figure 2(b) depicts the
skeleton of REST request and response messages.

http://localhost:8000/restful/resources/helloworld

<data contentType="text/plain" contentLength="25">

<![CDATA[This is a Hello from REST]]>

 </data>
Fig. 2(a), 2(b). REST Request & Response
Messages

5.3 State-of-the-art
Several research activities have been carried out for

estimating the performance and efficiency of Web
services. With Web services extending its support to
lower end devices such as mobile phones, care is taken
to offer mobile friendly Web services such that it can
meet the hardware limitations of mobile devices.
Hamad et al. [30] have evaluated the performance of
SOAP and RESTful Web services for mobile devices.
The message size and processing time involved in
handling an array of string concatenation and floating
number addition are found and the results
recommended REST style of Web services as the apt
type for mobile devices. Mobile devices can be Web
service consumers, at the same time; they can provision
Web services themselves. In the latter case, a mobile

device should have the necessary capacity to
accommodate Web servers to deploy services on them.
 Recently, certain servers have been developed
specifically for mobile devices such as RhoSync,
iFMW, FineWS and I-Jetty. Aijaz et al. [31] have
compared the REST based Mobile Web server
provisioning against the SOAP architecture in terms of
HTTP payload. In addition, the synchronous and
asynchronous type of interaction for a RESTful Mobile
Web service is discussed. The results indicated that a
synchronous and asynchronous Mobile Web service
communication consumes ≈96% and ≈75% reduced
payload when compared to SOAP. The paper [32] is a
more elaborate extension of [31] by discussing the
architecture of a REST-interfaced Mobile Web server
with emphasis on synchronous interaction strategy for
short-lived Mobile Web service. The results showed
promising signs of optimized processing performance,
lesser latency and reduced payload when compared to
SOAP. In the same range of idea, the authors Mizouni
et al. [33] have evaluated the QoS of REST and SOAP
Web services on the basis of response time,
availability, throughput and scalability. Results indicate
RESTful Web services to be superior when compared
to SOAP for mobile devices.
A Web service needs to be made available in a mobile
environment by handling un-interrupted connectivity
when the mobile device moves from one location to
another. Mobility becomes a key feature as far as a
mobile device is considered. AlShahwan & Moessner,
[34] investigate into mechanisms of providing un-
interrupted Web services from resource constrained
mobile devices such as J2ME. Preliminary work is
carried on to find the best type of Web services (SOAP
or REST) offered from mobile devices and some
intermediate components are introduced to retain
continuous network connectivity. The results revealed
that RESTful based Mobile Web Services are more
scalable and reliable when compared to SOAP based
Mobile Web Services. A mobile phone has limited
luxury in terms of computation, storage and battery
lifetime. Hence, it may not be able to efficiently
execute a large service on its own. Ideally, a better
idea would be to partially offload its execution to other
mobile phones, to let the mobile device execute its
huge compute-intensive service. AlShahwan et al. [35]
extends the idea of paper [34] by facilitating the
offloading of services and service fragments to other
mobile devices. The REST implementation
outperformed SOAP by processing cycles, reduced
delay and lesser message size for the distributed service
execution scenario.

The objective of our work is to further explore the
feasibility of providing RESTful Web services from
mobile devices and to compare its performance against
SOAP in terms of message size, processing time, data
formats and throughput to suggest the base for
developing the middleware.

BUPT

6. Comparison Levels
 We have measured the performance of SOAP and
REST on various parameters such as the size of the
SOAP and REST request / response messages, time
taken to process a REST / SOAP service, and the
scalability or the load a service can handle. Three types
of case study have been considered for the evaluation
of the above parameters. They are:

 Hello Service – No input, but the response is a
simple Hello World message.

 Arithmetic Service – Given two input
parameters, the service responds with the
addition of the two numbers.

 Video Service – The user demands for a video,
and the video is transferred as a binary
attachment.

 The SOAP and REST Web services have been
implemented using the AXIS2 (Apache eXtensible
Interaction System) framework and Jersey (JSR-311
reference implementation) library respectively. The
analysis has been carried out on a Web server with a
PC client. The next section compares the message size
of the Web services for three scenarios.

6.1 Message Size

Fig. 3. Comparison of message size of SOAP and
 REST request / response messages

 Figure 3 depicts a huge marginal difference in the
message sizes of the two protocols. The size of the
messages have been evaluated from only the body of
the HTTP packet for both the cases. The HTTP header
details are not considered here. A SOAP envelope
contains extra parameters in addition to the actual
response data. This creates an unnecessary increase of
payload size, whereas REST derives only the actual
payload. Also, SOAP uses XML which is heavy weight
when compared to REST which uses JSON as the data
format. In addition to JSON, REST also uses XML as
the data format.

6.2 Processing Time
 The processing time taken to obtain the request and
provide the desired response is shown in Figure 4
below.

Fig. 4. Time taken to process REST and SOAP service

 REST responds far quickly when compared to
SOAP style of services. The average processing time
involved between the request and response is inclusive
of connection setup, network latency, jitter, service
processing time. Due to the overhead nature of verbose
XML, SOAP incurs huge processing overhead when
compared to REST. JSON comparatively occupies
lesser time to respond than XML.

6.3 Throughput
 Apache Jmeter [36] is used to test the performance
and scalability by configuring test plans and perform
load testing for Arithmetic SOAP and REST services.
The scalability feature is tested on three parameters.
They are:

 Number of users sending the requests
 Ramp-Up period determining how often the

user request arrives. By default, it is
considered that all requests arrive at the same
time.

 Loop count deciding the number of requests, a
user sends. In our case, 100 users are
considered to send the request at the same time
with each user sending only one request.

BUPT

Fig. 5(a), 5(b). Scalability test for Arithmetic SOAP
 service
The above figures Figures 5(a) and Figure 5 (b) shows
the average parsing time and their standard deviations
for the SOAP messages over 100 independent samples.
The throughput i.e., the number of requests that the
service can handle is identified to be approximately
167 requests per minute. Now, let us compare it against
the REST service in Figure 6 (a) and 6 (b).

Fig. 6(a), 6(b). Scalability test for Arithmetic REST
 service
 From the figures Figure 6(a) and 6(b), it is known
that the throughput of an Arithmetic REST service is
observed to be 313 requests per minute which is higher

than that of a SOAP service. This clarifies that a REST
service can handle more loads at the same time, and is
specifically beneficial in a cloud environment, where
all users has to be satisfied on an all time basis.
 On a PC environment, it is understood from the
above results that RESTful Web services are far more
efficient when compared to SOAP based Web services.
However, it is likely to test for Web service access
from mobile devices and test the competence of SOAP
and REST.
 An Arithmetic SOAP and REST service have been
deployed on a Web server and an Android application
is developed to access the Web service. The test bed
environment consists of an Android phone of ICS (Ice
Cream Sandwich) version with a RAM of 1GB and
internal phone storage of 16 GB. It holds a 1GHZ
U8500 Dual Core processor. The Internet speed at
which the Web service and mobile application
communicates is 2 Mbps. Figure 7 (a), 7 (b), 8(a) and 8
(b) shows the screenshot of the computational resource
occupied by the application to access the Web service.

Fig. 7(a), 7(b). Screenshot of mobile arithmeticSOAP
 application usage and its execution time.

Fig. 8(a), 8(b). Screenshot of mobile arithmeticREST
 application usage and its execution time.
 The mobile applications have been developed for
consuming the SOAP and REST types of Web
services. It is observed that REST application
consumes a RTCPU (Real-Time CPU) of 1.18% when
compared to SOAP which consumes a RTCPU of
1.0%. This difference is due to the stateless nature of
REST. The REST style of Web service records no

BUPT

preconceived information about the client, and
therefore, it provokes to consume little more time when
compared to SOAP. This might be due to transmission
delays during request or response time. Overall, REST
is the preferred protocol due to its stateless nature.

7. Conclusions and Future Directions
 The need for a multicloud middleware for mobile
devices has been explored and the performance
analysis of the cloud service APIs have been carried
out and the results recommend RESTful APIs as more
efficient in terms of performance and processing
overhead, and occupies less storage on the phone since
the data format is JSON. The study on the entire stack
of middleware has to be carried out to bring a full-
featured generic middleware. The need for “open
APIs” has to be propagated far and wide.

References
1. Lachgar, M., Abdali, A: Modeling and generating native

code for cross-platform mobile applications using DSL.
In: Intelligent Automation & Soft Computing, 23 (2016),
No.3, p. 445–458.

2. Cohen, R: Cloud API Propagation and the Race to Zero
(Cloud Interoperability). Jan 20, 2009. Retrieved from

http://www.elasticvapor.com/2009/01/cloud-
api-propagation-and-race-to-zero.html

3. Hogan, M., Liu, F., Sokol, A., Tong, J: NIST Cloud
Computing Standards Roadmap. NIST CCSRWG-092,
First Edition, Gaithersburg, 2011.

4. ETSI (http://www.etsi.org).
5. Messina, J: IEEE Project 2301 – Guide for Cloud

Portability and Interoperability Profiles (CPIP). IEEE
Computer Society, 2014. Retrieved from
http://standards.ieee.org/develop/project/2301.html

6. ITU Telecommunication Standardization Sector. ITU
(https://www.itu.int/en/ITU-T/Pages/default.aspx).

7. National Institute of Standards and Technology. NIST
(https://www.nist.gov/itl).

8. Karmakar, A., Pilz, G: OASIS Cloud Application
Management for Platforms (CAMP) TC. In: OASIS –
Advancing open standards for the information society,
2012. Retrieved from https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=camp.

9. Cloud Data Management Interface (CDMI). SNIA.
(https://www.snia.org/cdmi).

10. TMForum (https://www.tmforum.org).
11. Aradhana, C., Balaji, R., Jim, P., Joe, W., Michele, D.,

Tushar, B: Interoperability and Portability, Cloud
Security Alliance Group 4.

12. Open Cloud Computing Interface (http://occi-wg.org/).
13. Open Virtualization Format. DMTF.

(https://www.dmtf.org/standards/ovf).
14. DMTF Standard: Cloud Infrastructure Management

Interface (CIMI) Model and RESTful HTTP-based
Protocol – An Interface for Managing Cloud
Infrastructure. Distributed Management Task Force
Standard, DSP0263, 2012. Retrieved from
https://www.dmtf.org/sites/default/files/standards/docum
ents/DSP0263_1.0.1.pdf

15. The Open Group (http://www.opengroup.org).
16. Cloud Standards Customer Council. CSCC.

(http://www.cloud-council.org).
17. Open Commons Consortium (http://occ-

data.org/index.html)
18. Motohashi, K. (2011). Global Inter-Cloud Technology

Forum. NTT DATA Agilenet L.L.C. Retrieved from
https://www.dmtf.org/sites/default/files/20110518_ISO_J
TC1_SG38_SGCC_GICTF_2.pdf

19. Cohen, R: Unified Cloud Interface. 2018.Retrieved from
https://code.google.com/archive/p/unifiedcloud

20. JetS3t (http://www.jets3t.org)
21. Jclouds

(http://jclouds.incubator.apache.org/documentation/refer
ence/supported-providers/)

22. Darryl, E: New Multi-Cloud API, New Add Server
Assistant, and Community Translations. Aug 25, 2011.
Retrieved from
http://www.rightscale.com/blog/rightscale-news/new-
multicloud-api-new-add-server-assistant-and-community-
translations

23. ZCloud API (http://www.zmanda.com/zcloud.html).
24. Joe, B: DeltaCloud. Feb 17, 2012. Retrieved from

http://readwrite.com/2012/02/17/a-look-at-deltacloud-
the-multi/

25. Libcloud (http://clean-clouds.com/2013/).
26. Typica API (http://code.google.com/p/typica/).
27. Park, S., Seo, C., Yi. J: Cyber Threats to Mobile

messenger apps from identity cloning. In: Intelligent
automation & Soft computing, 22(2016), No.3, p.379-
387.

28. Shah, S: Recent advances in Mobile Grid and Cloud
Computing. In: Intelligent automation & Soft computing,
24(2018), No.2, p.285-298.

29. Programmable Web
(http://www.programmableweb.com/).

30. Hamad, H., Saad, M., Abed, R: Performance Evaluation
of RESTful Web Services for Mobile Devices. In: Arab
Journal of e-Technology, 1 (2010), No. 3, p.72-78.

31. Aijaz, F., Ali, S.Z.Chaudhary, M.A., Walke, B: Enabling
High Performance Mobile Web Service Provisioning. In:
Proceedings of the 70th Vehicular Technology
Conference VTC 2009, 2009, Anchorage, AK, USA,
p.1-6.

32. Aijaz, F., Ali, S.Z., Chaudhary, M.A., Walke, B:
Enabling Resource-oriented Mobile Web Server for
Short-Lived services. In: Proceedings of the IEEE 9th
Malaysia International Conference on Communications
MICC 2009, 2009, Kuala Lumpur, Malaysia, p. 392-396.

33. Mizouni, R., Serhani, M.A., Dssouli, R., Benharref, A.,
Taleb, I: Performance Evaluation of Mobile Web
Services. In Proceedings of the IEEE 9th European
Conference on Web Services ECOWS 2011, Sept 2011,
Lugano, Switzerland, p. 184-191.

34. AlShahwan, F., Moessner, K: Providing SOAP Web
Services and RESTful Web Services from Mobile Hosts.
In: Proceedings of the IEEE 5th International Conference
on Internet and Web applications and Services ICIW
2010, May, 2010, Barcelona, Spain, p.174-179.

35. AlShahwan, F., Moessner, K., Carrez, F: Distributing
Resource Intensive Mobile Web Services. In:
Proceedings of the IEEE International Conference on
Innovations in Information Technology IIT 2011, April,
2011, p. 41-46.

36. Jmeter(http://jakarta.apache.org/jmeter/)

BUPT

http://www.elasticvapor.com/2009/01/cloud-api-propagation-and-race-to-zero.html
http://www.elasticvapor.com/2009/01/cloud-api-propagation-and-race-to-zero.html
http://www.etsi.org/
http://standards.ieee.org/develop/project/2301.html
https://www.itu.int/en/ITU-T/Pages/default.aspx
https://www.nist.gov/itl
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=camp
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=camp
https://www.snia.org/cdmi
https://www.tmforum.org/
http://occi-wg.org/
https://www.dmtf.org/standards/ovf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.1.pdf
http://www.opengroup.org/
http://www.cloud-council.org/
http://occ-data.org/index.html
http://occ-data.org/index.html
https://www.dmtf.org/sites/default/files/20110518_ISO_JTC1_SG38_SGCC_GICTF_2.pdf
https://www.dmtf.org/sites/default/files/20110518_ISO_JTC1_SG38_SGCC_GICTF_2.pdf
https://code.google.com/archive/p/unifiedcloud
http://www.jets3t.org/
http://jclouds.incubator.apache.org/documentation/reference/supported-providers/
http://jclouds.incubator.apache.org/documentation/reference/supported-providers/
http://www.rightscale.com/blog/rightscale-news/new-multicloud-api-new-add-server-assistant-and-community-translations
http://www.rightscale.com/blog/rightscale-news/new-multicloud-api-new-add-server-assistant-and-community-translations
http://www.rightscale.com/blog/rightscale-news/new-multicloud-api-new-add-server-assistant-and-community-translations
http://www.zmanda.com/zcloud.html
http://readwrite.com/2012/02/17/a-look-at-deltacloud-the-multi/
http://readwrite.com/2012/02/17/a-look-at-deltacloud-the-multi/
http://clean-clouds.com/2013/03/12/overview-of-libcloud-cloud-management/
http://code.google.com/p/typica/
http://www.programmableweb.com/
http://jakarta.apache.org/jmeter/

