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Rezumat,  
Spiking neural networks are introduced as the third generation of 
neural models. They are dynamic models that potentially have 
much more processing power than classic neural networks. This 
thesis presents a novel approach to perform Gabor filtering using 
Liquid State Machines based on Spiking Neurons. The Liquid 
State Machine is a powerful architecture that is capable of 
performing universal computations without being trained on 
specific data. It is the job of special readout units to interpret the 
computation results and map them on specific target functions. 
In addition, the thesis presents tools that allow fast simulating of 
large neural networks by running the simulation in parallel on a 
GPU. 
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1. INTRODUCTION 
 
 

1.1. Research Motivation 
 

Networks based on spiking neurons are thought to be the third generation of 
neural networks. This classification is done by Maass in [1] as follows: 

 
• Generation 1. Binary networks built from perceptrons that are able 

to perform simple classifications and compute digital functions 
• Generation 2. Networks with real-numbered outputs that could be 

used as universal approximators to any degree of precision.  
• Generation 3. Spiking neural networks (SNN). 
 

In contrast with previous generations, spiking neural networks return to 
models that resemble the biological neuron, and capture its dynamic spiking 
functionality. Even though the mathematical model for a biological neuron is an old 
discovery [2], it was left aside for decades because its complexity led to 
computationally overwhelming problems. Recently, with the continuously growing 
processing power of computers, researchers are returning to spiking models in order 
to find solutions to problems that were not solved by previous generations of neural 
networks. Some of the disadvantages of the classical models are presented in the 
following paragraphs. These combined with the numerous advantages of the new 
spiking models represented a strong motivation for embracing this research track.   

In case of older models it was assumed that the intricate details of the 
neuron behavior are irrelevant to information processing. If biological neurons used 
simple techniques to encode information, like rate coding, modeling by using an 
activation function would be sufficient. However, recent research shows that it is 
very likely that the dynamic behavior of the spiking neurons (tonic or phasic spiking, 
bursting, spike frequency adaptation, spike latency, sub-threshold oscillations, 
resonance, integration and coincidence, rebound spikes or bursts, bistability or 
threshold variations) plays an important part in information processing [81], [83]. 
These behaviors are well presented in [3]. Also, none of these behaviors were 
achievable by the older generations of neural networks. 

Several mechanisms are present at synapse level. Observations made in [4] 
show that a synapse can adjust its strength depending on the timing between the 
presynaptic spike and the postsynaptic spike. This way, two neurons that are both 
firing within a short time interval can lock and fire in synchrony, thus creating a 
natural implementation of Hebbian learning. This property requires that the neuron 
model is spiking. 

Research in the field of neuropsychology is continuously unveiling 
information regarding the technique used by the brain to code and process 
information. These discoveries, most often, are incompatible with the older neural 
models and cannot be applied directly because there is not a direct relationship 
between the biological observations and the elements of the model. In the case of 
spiking neural networks this discrepancy is eliminated. 
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 Spiking neural networks have another property that the traditional models 
do not. Since the spiking models are dynamic time-based models they can oscillate 
and can exhibit resonant behavior. In [5], [6] a spiking neural network achieves 
signal multiplexing by using resonate and fire neurons that are able to lock and 
synchronize with specific spike frequencies. In [7], Izhihevich introduces another 
interesting property of spiking neurons called “polychrony” different from 
“synchrony”. If synchrony refers to a group if neurons firing at the same time (or 
within a small time window), polychrony refers to a group of neurons that fire in the 
same order and with the same relative timing. This property is also referred to as 
temporal grouping in papers like [8], [9], [10], [11], [12], and seems to play a 
crucial part in how the central nervous system performs computations. Polychrony is 
possible due to the synapse propagation delays which cause the spiking network to 
generate spatial-temporal spike sequences when stimulated. The complex dynamics 
of an intricately connected network could lead to a potentially unlimited set of spike 
sequences. Therefore, a spiking neural network could implement a memory that has 
a storing capacity significantly bigger than its number of synapses.  
 Oscillation and synchrony are properties that are considered to play an 
important part in image segmentation and object binding [13], [14]. Csibra and 
Davis [13] observe a close relationship between object binding and 40Hz (gamma 
band) oscillations evident in the brain of an 8 months infant. This is the same age 
when the behavior of the child start to exhibit perception of spatially separated 
visual features. Oscillations can also play an important role in short term memory 
according to Jensen in [15] and [16]. Here it is demonstrated that oscillations in the 
alpha band (9 to 12Hz) have an increasing peak that related to the number of items 
retained by the short term memory.  
 Spiking neural networks are obviously an improvement compared to the 
more traditional models. Backing up this statement is the fact that spiking networks 
are able to perform all tasks and exhibit all behaviors present at the first generation 
and the second generation of networks.  In addition, the above paragraph describes 
new behaviors that are new and are very promising from the information processing 
perspective. Also, these models are much more similar to the biological neurons. 
This fact is encouraging because nature has repeatedly proven to be the ultimate 
designer. Because all good things come with a price, spiking neural models have 
their own disadvantages: 
 

• The complexities of the individual neuron and also the large size of the 
networks that need to be simulated require huge amounts of computational 
resources. This is even more critical when several simulations need to be 
performed during an optimization. The limited speed of the simulator was 
also the first big challenge of this thesis. A satisfactory solution to this 
problem was to use a GPU to accelerate the simulation in hardware. Of 
course, regardless of the simulation platform, there will always be a 
compromise between the sizes of the network, the complexity of the 
individual neuron, the duration of the simulation and the step size of the 
solver.  

• Spiking neural networks are systems with extremely complex dynamic 
behavior. The major difficulty in understanding how this behavior can 
process information. Investigating the functionality of the network by using 
rigorous mathematical tools that could directly pinpoint the solution to the 
problem is improbable. More likely to be successful are evolutionary 
techniques that allow the system to evolve on its own. 
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• Because these models are relatively new there is a shortage of knowledge, 
algorithms or tools that serve the utilization of such networks.  

• The spiking neural networks are very successful in the real world. However, 
it should be always kept in mind that the brain has around 30 billion 
neurons and each neuron is served by several thousands of synapses. These 
figures that are beyond any present simulation capabilities. It is unclear if 
similar performances can be obtained using a reduced size spiking neural 
network even for significantly simpler applications.  

 
 1.2. State of the Art 

 
 There is a continuous struggle to find new architectures and solutions to 
designing a biologically inspired neural network that is computationally powerful. It 
is the research area where several adjacent study fields collide (i.e. computer 
science, neuroscience, biophysics, and machine learning). In [17] Jaeger and Maass 
present that there are currently two approaches when trying to design a biologically 
inspired neural network. The first method, the bottom-up way, investigates the 
structure and the dynamic functionality of the brain by observation. Then it uses 
mathematical tools to try and capture dynamical patterns and special behaviors that 
are believed to be significant to information processing. The method is called 
bottom-up because it deduces the method and flow of the computation by 
examining the functioning of the hardware. Alternately, we can use the top-down 
method. In this case we start from known computing techniques and design sub-
modules of biologically inspired networks, each suitable for solving a part of the 
computational task. In contrast to the bottom-up method, the top-down approach 
fits the hardware to the method. Obviously, the top-down method has a higher 
chance of deviating from the actual biological architecture.  
 This thesis focuses on a new type of architecture called Liquid State Machine 
(LSM) introduced by Maass, Natschlaeger and Markram in [18]. It is a new design 
that adopts the principle of reservoir computing. In parallel, but independently, a 
similar architecture called Echo State Networks (ESN) was developed by Jaeger 
[19], [86]. The two models are similar in principle but were designed with different 
applications in mind. Liquid State Machines tend to be general and are formulated 
within the mathematical frameworks of dynamical systems theory and filtering 
theory. Because the model aims towards a biologically plausible implementation it is 
restricted to having spiking neurons as computational units that preserve the 
characteristics of the biological neuron and operate well under noisy conditions. On 
the other hand, the echo state networks are a particular case of LSM and so the 
theory applies. However, ESNs are designed to have a higher performance on 
particular engineering applications that use noiseless artificial neural networks as 
computing units.   
 There are several directions of research regarding LSMs and ESNs. The 
following paragraphs try to determine the most important research tracks and 
present some state of the art methods and results.  
 For example, Yamazaki and Tanaka [20] try to find a direct correspondence 
between the cerebellum and a liquid state machine. In fact they find evidence that 
the granular layer behaves as a liquid medium (reservoir), while the Purkinje cells 
which receive signals from the granular layer act as readout units. In [21], different 
forms of network plasticity are analyzed in an attempt to determine how they affect 
the dynamic behavior of recurrent spiking neural networks. The paper studies spike 
timing dependent plasticity (STDP) which is responsible for adapting synaptic 
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strength, and intrinsic plasticity (IP) which is responsible for adapting the excitability 
of individual neurons. The interaction between the two forms of plasticity maintains 
the homeostasis of neural activity and stabilizes the LSM.  

Joshi [22] demonstrates that a liquid state machine can also be used as a 
multi-tasking computing machine, where the computations related to all tasks are 
being performed in parallel by the same liquid medium. It is the duty of several 
readout units to map the liquid neural activity to the task specific output functions. 
It is very important to notice that unlike other parallel machines that dedicate 
separate resources to different tasks, the liquid state machine performs a unified 
computation of multiple tasks where the same neurons can participate at different 
tasks at the same time. In [22] it is also shown that the readout units can send 
feedback of their activity in order to tune up the activity of the liquid medium. The 
paper also presents an application with good results where a liquid state machine is 
used at driving electrical motors. In [23], Legenstein and Maass try to determine 
which properties of the recurrent circuits of spiking neurons are relevant for their 
computational performance. They also find to methods of analyzing the 
computational capabilities of spiking neural networks.  

Echo state networks are also well used in speech recognition applications as 
demonstrated by Skowronski and Harris [24]. Here a speech classifier that can 
recognize words from a small vocabulary is designed by combining an ESN and a 
state machine. The new classifier outperforms the Hidden Markow Models in regimes 
of low signal to noise ratios. Article [25] also presents an application with speech 
recognition that uses spiking neurons arranged in an architecture called “mus-
silicium”. The system contained approximately one thousand spiking neurons and 
was able to recognize ten spoken words regardless of the speaking speed. The mus-
silicium however, is not biologically inspired. Instead, it uses spiking neurons in an 
architecture that is built on more deterministic rules inspired from signal processing 
and computer science.  

In [26], Verstraeten and Schrauwen use a liquid state machine that is 
trained to perform isolated word recognition. Several techniques for encoding the 
input signals are tested. The encoding represents a bridge between the actual 
recorded signals and the liquid state machine. Surprising and also encouraging is 
the fact that the liquid state machine performs best when the model of the inner ear 
is used at encoding the vocal signals. This result increases the confidence that the 
liquid state machine is indeed biologically plausible. Another speech/audio 
application if presented in [33]. 

Another field where liquid state machines and echo state networks are 
applied is grammar and language learning. Tong presents in [27] an application that 
uses an echo state network to learn grammatical structure. The results are 
comparable to those obtained by the existing Elman networks. The advantage over 
the Elman networks is simpler design rules and simpler training algorithms. The 
Elman networks, which are also recurrent, were able learn internal data 
representations that were sensitive to linguistic processes by adjusting the synapses 
of the recurrent connections during a training algorithm. ESNs, like liquid state 
machines, have a fixed recurrent medium that does not need to be trained. Training 
occurs only at readout level and is much simpler.   

Currently liquid state machines and echo state networks have proven 
immense potential in several research fields targeting a wide range of applications. 
As expected some of these applications were more successful at using liquid state 
machines than others. Consequently, another research track arose that tries to 
determine what parameters of the liquid medium (reservoir) are most significant for 
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performance and if these parameters are specific to particular applications. Haykin 
and Xue [28] present a modified version of echo state network that uses lateral 
inhibition to improve the richness of the liquid medium dynamics. In [29], the 
authors present a method for quantifying the richness of the liquid medium 
dynamics by evaluating the entropy of the echo states. In [30], Dedual and Ozturk 
present a modified version of the readout units called MACE that is able achieve 
higher specificity in pattern recognition applications. 
 The last part of this paragraph is dedicated to implementation and 
simulation techniques. Currently, there’s no single simulation framework that can be 
considered standard for simulating spiking neural networks. Because the model is 
computationally demanding one of the biggest issues when choosing or designing a 
simulation framework is to accelerate it as much as possible. As it will be seen in the 
following chapters the model is very parallel and so the major trend in SNN 
simulation is to use a framework that runs on multi-core or GPU parallel 
architectures. Chapters 3 and 4 present two approaches to parallelize the model, 
one using a distributed architecture and another using a GPU. In [31] Bhuiyan, 
Pallipuram and Smith, compare the speed-ups obtained by four parallel 
architectures: IBM PS3, AMD Opteron, Intel Xeon and NVIDIA GPU [41]. The results 
of their study are presented in figure 1.1. The speedups obtained with the GPU 
architecture are very similar to those presented in chapter 4. The numbers, 
however, cannot be compared directly because the speedup was measured by 
benchmarking different processors.  
 

 
Fig. 1.1. Parallel Implementations for simulating Spiking Neural Networks 

 
The left graph in figure 1.1 corresponds to simulations where each individual 

neuron uses the Izhikevich model, while the right graph contains results of 
simulations that use the Huxley-Hodgkin (HH) neuron model. It is very interesting 
to see that the speedup differs significantly between the two graphs and also the 
ranking of the four architectures is not the same (i.e. GPU is worst for the Izhikevich 
model and best for the HH model). The reason is that each architecture has a 
specific flop/byte (computation/transfer) ratio that makes it most efficient. A CPU 
core dedicates a lot of chip area to data caching and less to computation. On the 
other hand a GPU has a huge number of execution units and almost no data 
caching. The PS3, Opteron and Xeon are somewhere in between. In conclusion, the 
GPU outperforms the other architectures when the flop/byte ratio is high. This is the 
case of the HH neuron model that is very computationally demanding (flop/byte = 
6.02 [31]). In the case of the Izhikevich model the flop/byte ratio is 0.65 [31] and 
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so the GPU is outperformed by the other architectures due to lack of caches. Also 
worth noticing is the fact that when the size of the neural network is very high the 
speedups obtained by the Xeon and Opteron also drop down and almost equal the 
speedup of the GPU. This is because the size of the cache becomes insufficient for 
the size of the network and so the cache’s miss rate increases dramatically.  

In conclusion a parallel implementation of a spiking neural network is 
appealing and can achieve substantial improvement of the simulation speed. The 
simulation performed in this thesis use models that are similar to the Izhikevich 
model rather than the Hodgkin-Huxley model. Therefore, the GPU implementation is 
not necessarily the fastest. Nevertheless, it was chosen due to its accessibility and 
reduced cost. The speedup obtained by the GPU implementation was sufficient to 
serve all tasks involving this thesis.  

 
1.3. Thesis Outline 

 
 The thesis is organized on seven chapters as follows: 
 
• Chapter 2 introduces some basic knowledge about the structure of the biological 

neuron equipped with dynamic synapses. Several dynamic behaviors are studied 
and four mathematical models are chosen to be most significant: the integrate 
and fire neuron, the integrate and fire with adaptation neuron, the integrate and 
fire with burst neuron, and the resonate and fire neuron. The chapter concludes 
by presenting some spike coding techniques and the ability of a spiking neuron 
to act as a context detector and implement a content addressable memory. 

• Chapter 3 presents a MATLAB simulation framework that was designed to easily 
implement and simulate a spiking neural network of desired architecture. The 
tool also contains functions for result analysis and visualization. The second part 
of the chapter presents a modification of the framework that allows parallel 
simulation on several computers connected by a network. The approach proves 
that the neural network model has a lot of parallelism to be exploited and also 
offers some improvement in terms of simulation speed. However, the 
improvement is not satisfactory because of the high communication time 
between computing units. Consequently, alternative parallel implementations 
are further searched. 

• Chapter 4 presents a parallel implementation that uses a graphics processor to 
hardware accelerate the simulation. The GPU is designed and optimized to be 
very efficient on parallel processing and so the implementation of the neural 
network model is inherently promising.  The simulation framework is redesigned 
such that it suits better the hardware design of the GPU. Throughout the 
chapter several difficulties are presented and also their solutions. In the second 
part of the chapter three additional improvements are presented that further 
accelerate the simulation. The chapter concludes by presenting a benchmark 
that compares the GPU model to the MATLAB model and also to a C++ model. A 
communication interface between CUDA C and MATLAB is also provided by 
means of MATLAB MEX files.  

• Chapter 5 presents the Liquid State Machine computing architecture as a 
potential solution to information processing using spiking neurons. The chapter 
presents the design rules of the network and also its potential advantages and 
disadvantages. In the second part of the chapter two alternatives for 
implementing the readout units are presented (parallel perceptron and the 
multi-layer feedforward network), accompanied by appropriate training 
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algorithms (p-Delta learning rule and backpropagation). Additionally, three 
improvements are made to the p-Delta rule that increase the convergence rate 
and convergence speed.  

• Chapter 6 presents an application that uses a Liquid State Machine based on 
spiking neurons to extract Gabor coefficients from fiducial points of an image. 
The pre-processing of the input signals is also done by means of spiking neural 
networks, yielding three variants for the input signal.  

• Chapter 7 presents the theoretical and practical contributions brought by the 
thesis, the conclusions and future work.       
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2. SPIKING NEURAL NETWORKS 
 

 
In [1], spiking neural networks (SNN) are presented to be the third 

generation of neural models.  The first generation of neural networks is based on 
McCulloch-Pitts neurons, also called perceptrons. Interconnecting the neurons in 
various ways yielded a wide variety of networks like: multi-layer perceptrons, 
Hopfield Networks, or Bolzmann machines. All networks using perceptrons had a 
digital output and were useful at classification or modeling digital functions.   

The second generation of neural networks uses activation functions in order 
to obtain a continuously varying output. Some of the most significant networks of 
this type are: feed-forward sigmoid networks, recurrent networks, and radial basis 
function networks. This type of networks can model both digital functions and 
functions with analog input/output. The biological neurons generate spikes rather 
than analog outputs. However, the second generation of neural networks is 
biologically plausible assuming that the biological neurons code information using 
the frequency of the spike train rather than the inter-spike timing relationships. This 
is present in the higher cortical areas of the brain where neurons adjust their firing 
rate slowly and so are able to carry frequency information. Another advantage of 
the continuous activation functions is the possibility to use gradient based training 
algorithms. Figure 2.1 presents three types of the second generation neural 
networks. 

 

 
Fig. 2.1. Second Generation Neural Networks 

 
However, some areas of the cortex perform tasks that require fast 

computations. In such cases frequency coding is questionable and it is more likely 
that inter-spike timing is used to encode information [45], [48], [51], [52]. The 
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third generation of neural networks tries to accommodate this new requirement. The 
new model has a “spiking” output that is very similar to the biological neurons. In 
addition, spiking networks still offer all the features present at the second 
generation of networks. Figure 2.2 presents the structure of a biological neural 
network.  

 

 
Fig. 2.2 Biological Neural Network 

 
The most important parts of a biological neuron are: the neuron cell (the 

computational unit), the dendrites (the inputs of the neuron), and the axon (the 
output of the neuron). The bridge between an axon and a dendrite is called synapse. 
Spikes (also called action potentials) propagate along the axon of the source 
neuron, cross the synapse and reach the target neuron via its dendrite. When a 
spike crosses a synapse, the shape, the timing and also the amplitude of the spike 
is influenced by dynamic properties of the synapse. In reality spikes do not actually 
cross a synapse. They simply trigger a pre-synaptic mechanism that generates a 
new post-synaptic spike. Therefore, synapses are active elements. The rest of this 
chapter presents some physical and chemical mechanisms that are present in 
biological synapses and neuron cells. It does a mathematical description of the 
neuron functionality and introduces four simplified models for spiking neurons and 
dynamic synapses that are suitable for simulation. The models manage to remain 
simple enough and still capture the main characteristics of the biological neuron. 
Model simplicity is the key of this project in order to be able to simulate large 
networks
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 2.1. Synapses 
  

A synapse is an active functional unit that connects two neurons. Most often 
it lies at the junction of an axon and a dendrite, but other types of connections are 
also possible: axon-cell body, axon-axon or dendrite-dendrite. In older neural 
models synapses are static signal pathways that can only be used at weighing 
signals, hence the name “static synapses”. This simplification comes from the 
assumption that neural processes are slow and that only firing rates are used at 
coding information rather than exact spike timing or network dynamics. In reality, 
the biological synapse, besides being a signal transducer, is a very powerful non-
linear signal pre-processor that has a complex dynamic behavior [50], [53].
   

2.2. Dynamic Synapses 
 

This sub-paragraph briefly presents the functioning of the biological synapse 
and introduces a simplified biologically inspired model called dynamic synapse. 
Figure 2.3 presents the structure of a biological synapse. In the left and right parts 
of the figure the pre-synaptic axon and the post-synaptic dendrite are depicted. 
Spikes arriving along the axon of the pre-synaptic neuron are also called action 
potentials. When an action potential reaches the terminal of the axon it raises the 
voltage locally causing calcium ion channels to open. This produces an influx of 
calcium ions that causes the vesicles of neurotransmitters to break and the release 
the neurotransmitters into the synaptic cleft. On the other side of the synapse, 
neurotransmitters bind with receptors triggering several ligand-gated ion channels.  
 
 

 
Fig 2.3. Biological Synapse 

   
As a result, the membrane potential of the post-synaptic neuron is raised. 

Eventually, the neurotransmitters brake loose from the receptors causing the 
channels to close and stopping the increase of the membrane potential. Some of the 
free neurotransmitters are removed from the synaptic cleft by the reuptake pumps 
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which send them back to the axon terminal. Here the neurotransmitters are 
repacked into vesicles and are ready to be used again. 

The strength of the synapse is considered to be the impact of one pre-
synaptic spike on the membrane potential of the post-synaptic neuron. This is 
analog to the weight of the static synapse. In contrast with the static synapse, the 
biological synapse does not have a constant strength, as it varies over time as an 
effect of several synapse internal mechanisms.  

 
2.2.1. Depressing Synapse 

 
Because neurotransmitters are the triggering factors for post-synaptic 

potentials they are considered to be the primary resources for this event. The 
amplitude of the post-synaptic potential depends on several factors like: quantity of 
released neurotransmitters, number of receptors, and the ability of each activated 
receptor to produce post-synaptic current. After a pre-synaptic action potential 
arrives a fraction of the available neurotransmitters are released. If another action 
potential arrives shortly after the first one, the quantity of available 
neurotransmitters (resources) might not be as high as for the first one. This is 
because the synapse did not have enough time to recover from the previous spike.  

Equations (2.1), (2.2) and (2.3) model this process. X, Y and Z are functions 
of time that represent: resources available on the pre-synaptic side (waiting neuro-
transmitters), active resources on the post-synaptic side (released neuro-
transmitters), and recoverable resources (that can be pumped back to the axon 
terminal). All variables x, y and z are fractions where 1 represents the maximum 
level of resources the synapse can provide.    
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Because the shape and energy of the pre-synaptic spike is not important 

and does not influence the functioning of the synapse or the shape of the post-
synaptic potential, it is modeled by a Dirac pulse δ that occurs at the time of the 
spike tsp. When a spike is received, a fraction USE (utilization of synapse efficacy) of 
the available resources is released (second term of eq. 2.1). At the same time, the 
same quantity of resources is received on the post-synaptic side (second term of eq. 
2.2).  As soon as the released resources bind with the receptors the post-synaptic 
membrane potential starts to increase at a rate proportional to the amount of active 
resources (eq. 2.4). 

 

( ) ( ) ( )∫=⇒∗=
∂

∂
t

dttyAtVtyA
t

V

0

   (2.4) 

BUPT



2.2. Dynamic Synapses 23 

Constant A is a scaling constant and represents the static efficacy (weight) 
of the synapse. The first term of eq. 2.2 represents the rate at which the resource-
receptor binds break apart. The time constant τin controls how fast resources 
become inactive. All inactive resources are in fact recoverable resources and so Z 
increases with the same rate (first term of eq. 2.3). The first term of eq. 2.1 and 
second term of eq. 2.3 show the rate at which resources are recovered (pumped 
from post-synaptic to pre-synaptic side).  

Figure 2.4 presents the dynamic functionality of a biologic synapse and the 
variation of resource quantities (neurotransmitters) over time. It is considered that 
the first pre-synaptic spike of the sequence occurs at a moment when all resources 
have had time to recover and are available for use (x = 1, y = 0, z = 0). It can be 
noticed that the first spike generates a maximum amount of active resources. This 
is controlled by the value of USE, which in this case is 0.5. The next three spikes 
have a smaller effect because there is not enough time for the resources to recover. 
Notice that the resources activated by the 2nd, 3rd and 4th spikes are similar in 
amount due to the fact that the period between these spikes is roughly the same. 
This leads to the conclusion that the efficacy of the dynamic synapse is frequency 
dependent. Literature shows that this mechanism is present and very useful in 
biological neural networks because it stabilizes and prevents saturation of the 
network.  

 

 
Fig. 2.4. Synapse Dynamic functionality 

 
2.2.2. Synapse Delay 

 
This sub-paragraph introduces a simplification to the synapse model in eq. 

2.1, 2.2 and 2.3. As presented in 2.2.1 when a spike is received a certain amount of 
resources activate. Until these resources inactivate, they produce a current 
proportional to their amount causing the post-synaptic membrane potential to rise. 
We simplify the model by considering that resources activate and then inactivate 
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instantaneously, reducing τin to zero. Doing so, they trigger their entire associated 
energy at once, causing the membrane potential to rise as a step function. The 
simplification causes the membrane potential to rise faster and can potentially lead 
to a post-synaptic neuron that fires a spike prematurely. In compensation, we 
introduce a delay between the time when the pre-synaptic spike arrives and the 
time when the resources activate. This delay is equal to the time the membrane 
potential would need to rise to the K fraction of its final value (eq. 2.5). D0 is a 
delay that accounts for all other delays that could potentially appear in a biological 
neuron (flight time of pre-synaptic spike across the axon length). The model 
described by equations 2.1, 2.2, 2.3 changes to the model in 2.6, 2.7 and 2.8. N is 
the total number of pre-synaptic spikes.  
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2.2.3. Facilitating Synapse 

 
In the previous paragraphs USE is constant and controls the amount of 

resources that become active as the result of a pre-synaptic spike. In reality, USE is 
not constant and is affected by the past activity of the synapse. A model of this 
mechanism as presented in equation 2.9. When a pre-synaptic spike is received the 
increased voltage inside the axon terminal causes the calcium channels to open. The 
fraction of channels that open (out of the total number of available channels) is 
represented by USE. After opening, the channels close at a rate given by τfacil (first 
term in eq.2.9). If a new pre-synaptic spike is received, a fraction USE of the closed 
channels (1 - uSE) open additionally to the channels that are already open (uSE). 
Therefore, the number of channels that open is higher than USE and is equivalent to 
the instantaneous value of uSE. This type of synapse is called to be facilitating. A 
spike will increase the efficacy of the synapse if the subsequent spikes arrive in a 
time window comparable to τfacil. The depressing and facilitating mechanisms are 
contradictory but have different dynamics and time constants. Therefore, adjusting 
the τrec and τfacil can change significantly the behavior of the dynamic synapse. 
Additional information about the processing power of synapses can be found in [46] 
and [49]. 
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2.2.4. Recursive Model for Dynamic Synapse 

 
The dynamic synapse can be modeled globally by a gain G and a delay D. 

The synapse is dynamic because the gain is not constant and depends on an internal 
synapse state [x uSE]. At each moment the gain is controlled by the state variable 
as shown in equation 2.10. Superscript index n is a discrete time index associated 
with the nth pre-synaptic spike.  
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Equations 2.6 and 2.9 can be transformed from differential into recursive 

expressions that allows us to compute the state variable at the time of the (n+1)th 
spike based on the state variable at the time of the nth spike. Equation 2.11 
describes the computation of xn+1 based on xn and uSE

n. ∆tn
n+1 is the time interval 

between the consecutive pre-synaptic spikes. In a similar way equation 2.9 can be 
rewritten as a recursive expression in 2.12, where USE is the utilization of synaptic 
efficacy in static conditions (low frequency spike trains compared to 1/ τfacil).  
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A useful property of the above model is that whenever the pre-synaptic 

spike train has a steady frequency, the synapse state [x uSE] stabilizes at a constant 
value that is dependent on the frequency of the spike train. This is a useful property 
that is used in the following chapters at building the spiking neural network 
simulation framework. Equations 2.13 and 2.14 compute the synapse state when 
the frequency of the spike train is steady and equal to fsp.  
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2.3. Spiking Neurons Models 

 
 Synapses transmit action potentials between pairs of neurons. When a 
neuron receives a post-synaptic spike its membrane potential is changed and in 
some cases the neuron generates an action potential. There are several models that 
simulate the mechanisms governing the functioning of a neuron cell. The most 
elaborate model is the Hodgkin-Huxley neuron which was developed after studying 
the giant squid neuron. Due to limited computing resources, several other simplified 
models have been later developed. These models try to preserve the aspects of 
neuron functionality that are believed to be significant to information processing. 
This thesis presents and uses four different models for spiking neurons. In order to 
justify the simplified models the next sub-paragraph introduces the functionality of 
the biological neuron as presented by Hodgkin-Huxley. 
 
 2.3. 1. The Biological Neuron 
 

Like all cells the neuron has a cell membrane that separates it from the 
extra-cellular space. The interior of the cell is connected to the exterior by a series 
of ion pumps and voltage-controlled ion channels. Sodium, potassium and calcium 
ions are most important in the functioning of the neuron. The active pumps create a 
flux of ions between the interior and exterior of the neuron cell, thus creating a 
difference in ion concentration. Sodium is pumped out of the cell while potassium is 
pumped into the cell. The difference in concentration produces a voltage across the 
cell membrane called Nernst potential. This voltage opens the voltage-controlled ion 
channels and produces a flux of ions that is opposite to the pump flux, thus 
balancing the process. If only sodium was present the equilibrium is at about 
+50mV across the cell membrane. In the case of potassium equilibrium sets in at 
around -77mV. With both types of ions present, the equilibrium potential was 
experimentally determined around -65mV. At this voltage, sodium ions flow into the 
cell while potassium ion flow out of the cell (via the ion channels). On the other 
side, the ion pumps balance the process by pumping the ions back. The equilibrium 
voltage is called resting potential. This is the potential across the neuron membrane 
if the neuron is not disturbed by an external stimulus for a sufficiently long period of 
time. Figure 2.5 presents the Hodgkin-Huxley neuron model. The capacitor 
represents the neuron membrane that serves as an insulator between the inside and 
outside of the neuron cell. The two batteries represent the equilibrium potentials 
generated by the sodium and potassium ion flows. The ion channels are modeled by 
variable resistors that are controlled by the voltage across the membrane. The 
circuit is stimulated by an external current that represents the post-synaptic 
current.    

Despite its apparent simplicity the model can have a very complex behavior. 
This is because the dependence of the channel conductance on the membrane 
potential is very dynamic and highly non-linear. Furthermore, combining two or 
more channels with different parameters can lead vast range of dynamic behaviors 
for the neuron model. Equation 2.15 describes the functionality of the model, where 
the sum is across all existing ion channels (Na and K in this case). Equation 2.16 
sums the components of the sodium and potassium currents respectively. Gn is the 
maximum conductance of the channel. This conductance is modulated by the 
dynamic variables m and h which are called activating and inactivating variables. 
Parameters p and q are constants and are specific to the ion channel. In the case of 
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the Hodgkin-Huxley neuron the parameters were experimentally determined (pNa=3, 
qNa=1, pK=4, qK=0). Because qK is zero the potassium channel has no inactivation 
variable.  

 

   
Fig. 2.5 Hodgkin-Huxley Neuron Model 
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 The activation and inactivation variables m and h are voltage dependent and 
also time dependent, therefore they have a dynamic behavior. Figure 2.6 shows an 
example of how these variables behave. The left picture represents the static value 
of the variable. The right picture shows the time constant of the variable.  
 

( )
( ))(

1
0 uxx

ut

x
−−=

∂

∂

τ
             (2.17) 

 

 
a) Stationary Values    b) Time constants 
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 During the transitory regime, variable x changes asymptotically towards the 
new stationary value x0(u) with time constant τ(u) (eq.2.17). Note that both the 
stationary value and the time constant are voltage dependent. It is important to 
notice that the m and h variables model biological mechanisms that activate and de-
activate the ion channels independently. Therefore, the variables are also 
independent; they can change with different time constants; and their effect is 
multiplicative since any of the variables can annihilate the effect of the other.    
 

2.3.1.1. Spike Generation 

 When no external stimulus is present the neuron settles at resting potential. 
This means that the activating and inactivating variables have just the right value to 
keep the Na and K ion channels open at the levels required for equilibrium. If an 
external synaptic current is injected the potential across the membrane potential 
rises. As an effect all variables m and h also rise for both Na and K. Notice that the 
activating variable mNa of the Na channel has a time constant that is significantly 
smaller than the rest. This means that this variable will rise a lot faster that the 
other. It also means that the Na ion channel will open first allowing an influx of Na 
ions inside the cell. This causes an additional increase in membrane potential which 
in turn opens the Na channel even more. Therefore, a temporary positive feedback 
appears.  

If the external stimulus is weak and initial increase in membrane potential is 
also small. This places the mNa variable at a position on the graph where the 
sensitivity of the variable is small with respect to voltage variations. Consequently, 
the positive feedback created by the Na channel is small and is unable to de-
stabilize the neuron. This corresponds to the situation presented in figure 2.7a. 
Having larger time constants it takes some time until the inactivating variable hNa of 
the Na channel and the activating variable mK of the K channel rise. However, when 
that happens two effects can be seen. First, the Na channel is closed by its 
inactivating variable. Second, the K channel is opened producing an ex-flux of K ions 
out of the cell. This produces a decrease in the membrane potential. Because of the 
high time constant of the K channel there is a certain delay until the channel 
manages to close. This creates a negative overshoot of membrane potential. 

If the external stimulus is strong it will produce a higher membrane 
potential and will bring the Na channel in a state where it is more sensitive to 
potential variations (upper part of the graph). This creates a stronger positive 
feedback. If the membrane potential is sufficiently high (reaches a threshold), the 
positive feedback is sufficiently large to sustain itself. This opens the Na channel to 
maximum allowing a massive in-flux on Na ions inside the neuron and leading to the 
generation of an action potential. This is shown in figure 2.7b. At such high values 
of the membrane potential the time constants of the hNa and mK decrease 
significantly allowing quick inactivation on the Na channel and activation of the K 
channel. The high value of the membrane potential opens the K channel more than 
in the situation when an action potential is not generated. The result is a 
significantly stronger negative overshoot called refractory period.  

 
2.3.1.2. Refractory Period 

During the refractory period the neuron is less sensitive to incoming stimuli. 
This means that a stimulus that would generate an action potential if the neuron is 
in resting state might not generate an action potential if the neuron is in refractory 
state. The effect of a refractory period is not just a shift towards a more negative 
potential (an increased distance to the threshold). In addition, during the refractory 
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period the overall conductance of the neuron membrane is reduced because very 
many ion channels are opened immediately after the action potential. This increased 
conductance allows the charge that is brought by the external stimulus to drain 
quickly and so diminishes the impact of the stimulus upon the membrane potential 
during the succeeding time window. This is depicted in figure 2.7c. There is a 
sequence of four spikes during the refractory period following the action potential. 
All spikes carry the same amount of energy and raise the membrane potential 
equally. However, the potential brought by the first spike diminishes a lot faster 
than the potential brought by the following spikes. This is because the refractory 
effect is more profound then.  During the refractory period the chance that a group 
of spikes triggers an action potential is reduced. The same group of spikes might 
easily trigger an action potential if the neuron was at resting potential. In addition, if 
the group of spikes merged into a single spike that carries the cumulated energy it 
might trigger an action potential even if the neuron is in refractory period.  

 

  
a) Low Stimulus. No Action Potential        b) High Stimulus. Action Potential 

 
c) Pre-Synaptic Spikes during refractory period 

 
Fig. 2.7. Functioning of the Neuron. Generating spikes 

 
2.3. 2. Integrate and Fire Neuron 

 
 The integrate-and-fire neuron model (I&F) is the simplest model inspired 
from the Hodgkin-Huxley neuron. The I&F neuron is shown in figure 2.8 and is 
modeled by equation 2.18 or 2.19 (differential form). The synapses are constructed 
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from a gain block and a delay block. The gain block is either a simple constant gain 
or can be built as a state machine modeled by equation 2.10, 2.11 and 2.12. It can 
be seen that the neuron cell is represented by a lossy integrator which is the 
equivalent of the capacitor. The resting potential of the neuron is zero. All post-
synaptic spikes are added and accumulated by the integrator as membrane 
potential. If the potential reaches threshold ϑ the integrator resets to its resting 
potential and an action potential is generated at the output. If the threshold is not 
reached and no new post-synaptic spikes arrive the integrator leaks to its resting 
potential with loss factor K. Two possibilities are proposed for modeling the 
refractory period. In figure 2.8 it is implemented by a switch controlled by a timing 
circuit. This prevents the neuron to accumulate any potential during the refractory 
period and so no new action potentials can be generated during this period.  

Another method would be to reset the integrator at a value lower than its 
resting potential. This approach is similar to what the biological neuron does, and 
decreases the probability that a new action potential is generated during the 
refractory period. However, this model is linear while the biological neuron is highly 
non-linear and has a significantly higher probability to generate a new action 
potential during the refractory period. For this reason and also from experimental 
results the discontinuous switch controlled model (fig. 2.8) is preferred.     
 
 

   
Fig. 2.8. Integrate and fire neuron model   
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The leakage current models the effect produced by the potassium currents 

which tend to bring the neuron at resting potential if the post-synaptic stimulus is 
not sufficient to trigger an action potential. The main advantage of this model is its 
simplicity, requiring a reduced number of floating-point operations for simulating 
one neuron. This advantage can be important if very large networks need to be 
simulated. As a tradeoff, the model does not have adaptation or bursting abilities.  
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2.3.3. Integrate and Fire with Burst Neuron 

 
A burst is a sequence of action potentials generated at very short time 

intervals. The first action potential is triggered by the same mechanisms of a non-
bursting neuron. The remaining spikes of the sequences are triggered by a self-
sustained mechanism and do not need any synaptic stimulus. The biological 
explanation for such functionality stands in the existence of the calcium ion channel 
which was mentioned in paragraph 2.3.1. Like the sodium current, the calcium 
current is also from the outside towards the inside of the neuron cell, thus raises the 
membrane potential. The mathematical model of the calcium current is given by 
equation 2.16 and so is the same as that of sodium or potassium. Additionally, the 
shape of the activating and inactivating variables m and h is also similar. The 
distinctive characteristic of the calcium ion current is that the curves of the 
activating and inactivating variables are shifted left towards the negative area of the 
membrane potential. This is the reason why this current is also called “low-threshold 
calcium current”. At resting potential the mCa variable is fully activated while the hCa 
variable is fully inactivated. Therefore, the calcium channel is closed as an effect of 
the hCa variable. The sodium channel is also closed at resting potential as an effect 
of the mNa variable. Even if the sodium channel and calcium channel are in the same 
state, closed, each has a different reason for it: the sodium channel is not-activated, 
while the calcium channel is in-activated. If for any reason the membrane potential 
decreases below the resting potential the inactivating variable hCa will start to rise 
and the calcium channel will open. The membrane potential can go below the 
resting potential either as the result of an inhibitory synaptic current or an after-
spike negative overshoot (due to potassium currents).  

Figure 2.9 shows an example the neuron is stimulated with an inhibitory 
synaptic current. The inhibitory current is removed (at time 600ms) the membrane 
potential starts to increase, mCa starts to increase and hCa starts to decrease. 
Because hCa has a large time constant and does not decrease immediately the 
activating variable mCa opens the calcium channel. As a result the membrane 
potential is increases and might cause a sodium channel to open and generate an 
action potential. After the first action potential, if the hCa still has not had time to 
decrease, the calcium current is still on and causes a new action potential. Several 
such action potentials can be generated in a burst. The number of action potentials 
is given by the time window allowed by the time constant of the hCa variable. Once 
the calcium channel closes the mechanism cannot be triggered until the membrane 
potential is again sufficiently low.  

The I&FB neuron is a simplified model that tries to capture the functionality 
described above. Equations 2.20 and 2.21 implement the model. The first two terms 
of eq.2.20 are the same as for the I&F neuron. Additionally, there is a third term 
related to the calcium current. The term pCa is smaller than the resting potential and 
sets the potential level where the calcium channel starts to open (mCa and hCa 
curves cross). Equation 2.21 shows that whenever the potential is below pCa the 
calcium current increases and when the potential is above pCa the calcium current 
decreases. In the case of the biological neuron, both the m and h variables influence 
the calcium channel at the same time. For simplicity, this model considers that the 
calcium current increases as effect of the m variable and that the current decreases 
as effect of the h variable. Consequently, the τm time constant controls the rate at 
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which the calcium current increases while the τh controls the rate at which the 
current decreases.  

 
a) Membrane potential during burst        b) Activating/inactivating variables 

 during burst  
 

Fig. 2.9. Calcium Current Effect 
 
Function H of eq. 2.20 is the Heaviside function. Its purpose is to disable the 

calcium current when the potential is below pCa. In the case of the biological neuron 
a membrane potential below pCa prepares the calcium channel to open by raising 
the level of hCa. However, the channel is closed because of the mCa variable and 
remains so until the membrane potential is above pCa. Because in a similar situation 
the model described in eq. 2.20 and 2.21 has an increasing current, the current 
needs to be shunted artificially until the membrane potential is above pCa. This is 
achieved by the H function.  

The calcium current influences the neuron at small potentials above the 
resting potential. It generally helps at producing sodium current and does not 
trigger the action potential itself. For this purpose, the calcium current term in eq. 
2.20 is modulated by a term that represents the distance between the membrane 
potential and the reference potential pT.  
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 If parameter pCa is set at a level that is reached by the membrane potential 
during the refractory period and also if parameters ICa

max and τm are sufficiently 
large, any sodium generated action potential can trigger a burst. For this case the 
refractory period cannot be modeled by a switched as described in 2.3.2. The 
duration of the burst can be controlled by parameter τh. 
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2.3. 4. Integrate and Fire with Adaptation Neuron 

 
Adaptation is a neuron property to adjust its sensitivity to incoming stimulus 

in order to prevent over excitation and output saturation. The biological neuron is 
able to adapt by combining two special ion currents. The first current is called “high-
threshold calcium current”. This current is very similar to the low-threshold calcium 
current presented in the previous paragraph. The difference is that this current 
activates only at high values of the membrane potential, particularly during the 
generation of action potentials. The high threshold calcium current has two roles: 
firstly, it produces an additional boost to the membrane potential during the action 
potential; secondly, and more important for the adaptation mechanism, it 
temporarily increases the calcium concentration inside the neuron cell immediately 
after the action potential.  

In addition, a new type of potassium current is present. It differs from the 
regular K currents by the fact that it flows through a calcium dependent-voltage 
independent potassium channel. Consequently, this channel opens when the calcium 
concentration is high regardless of the potential across the neuron membrane. This 
dependence law is shown in equation 2.22, where Ca2+ is the calcium concentration 
and c is a parameter.  
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If an isolated action potential occurs the calcium concentration rises but the 

calcium dependent potassium channel does not have sufficient time to open. On the 
other hand, figure 2.10b shows that whenever several action potentials occur during 
a short interval of time, the persistent high calcium concentration allow the 
potassium channels to open. As a result, the outward potassium current acts as an 
inhibition current. Figure 2.10a shows that the frequency of action potentials 
decreases even if the input stimulus is constant, exhibiting a mechanism of 
adaptation against over stimulation.  

 

 
a) Membrane potential during adaptation b) Calcium concentration and 

       activation variable of potassium channel 
 

Fig. 2.10. Adaptation Mechanism 
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2.3. 5. Resonate and Fire Neuron 

 
Resonate and fire (R&F) neurons exhibit sub-threshold oscillations when an 

action potential is not generated. This type of behavior makes the neuron sensitive 
to the exact timing of the pre-synaptic spikes and therefore requires an excitatory 
spike train that resonates with its internal frequency in order to generate an action 
potential. Many biological neurons also exhibit such behaviors. To explain such 
functionality we return to the biological model containing a sodium channel and a 
potassium channel. When the neuron is stimulated the sodium channel opens and 
the membrane potential rises. If the increase is not enough to trigger an action 
potential, the sodium channel inactivates and the potassium channel opens causing 
the membrane potential to decrease. However, the membrane potential does not 
decrease to the same extent as it would in the case of an action potential. The low 
potential inactivates the potassium channel and “de-inactivates” the sodium channel 
causing the membrane potential to rise again. After a few such damped oscillations 
the membrane comes to a stop at the resting potential. When an action potential is 
generated, the low membrane potential during the refractory period shuts down the 
sodium channel completely and so an oscillation does not occur.  

The easiest way to model an R&F neuron is to represent the membrane 
potential as a complex number p, where the real part is the current component and 
the imaginary part is the voltage component. Equation 2.25 models the variations of 
membrane potential for an R&F neuron. Parameter b is negative and represents the 
attraction to the rest state. ω is the internal frequency of the neuron. Parameter a is 
introduced to modulate the amplitude and phase of the synaptic current. However, 
in most cases it is a real number and therefore cannot shift the phase of the 
membrane potential.  
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Whenever the voltage component (Im(p)) exceeds the threshold the 

membrane potential is brought back to an initial reset state and the neuron output 
generates an action potential. The reset state is either zero, which is analog to the 
resting state of the previous models, or can be any complex number (i.e. jTh). In 
the latter case the neuron continues to oscillate starting from the amplitude and 
phase given by the reset state. 

Figure 2.11 plots the membrane potential of a R&F neuron when it is 
stimulated with four different spike trains. In 2.11a the three spikes are grouped 
and arrive within a short interval of time. This boosts the membrane potential above 
the threshold and triggers an output action potential. The action potential is 
represented by the solid round marker. In this case the reset state is j*TH.  
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In 2.11b the spikes are out of phase relative to the oscillation of the 
membrane potential. It can be seen that the third input spike actually lowers the 
amplitude of the oscillation and therefore diminishes the probability of an action 
potential. In 2.11c the third input spike has a timing that is not close together with 
the first and second spike. Even so, because the timing of the third spike has 
roughly the same phase relative to the phase of the oscillation an action potential is 
generated. In figure 2.11d the second spike is out of phase with the other spikes. 
However, because the spike is inhibitory, it is able to trigger an action potential. 

Additional information about neuron models can be found in [47] 
 

 
Fig. 2.11. R&F Neuron Membrane Potential 

 
2.4. Coding with Spikes 
 
One of the most difficult problems involving processing with neural networks 

is finding an efficient method to represent and code information. Several approaches 
have been tried each of them having advantages and disadvantages [32], [34]. For 
example, some neural network models use a continuous variable as output even 
though the biological counterpart generates spikes. This approach is based on the 
assumption that the information is coded entirely in the rate of the spike train. 
Hence, time-averaging along the signal reduces it to a continuous variable.   

Another method, which is presented in this paragraph, is coding by using 
spatial-temporal spike sequences. Such a sequence codes information in the relative 
timing between spikes and also in the identity of the neuron that generates the 
spike. Figure 2.12 presents an example of a spatial-temporal spike sequence 
generated by three neurons.  
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The complete description of such a spike sequence is done by specifying the 
timing of each individual spike relative to the remaining spikes of the sequence. 
Such a set of time delays is called the “context” of the spike. There are two types of 
contexts as they include all the spikes of the sequence or just a partial subset. 
Figure 2.12 presents the two types of contexts and calls them complete contexts 
and incomplete contexts respectively. The number of spikes that comprises each 
context is referred to as “context size”.  

Consequently, a network that generates a spatial-temporal spike sequence 
needs to be comprised of several context detectors each of them being responsible 
for generating a spike if and only if the appropriate context has occurred. The next 
section presents a method of implementing a context detector by using an I&F 
spiking neuron. Further details concerning this coding scheme can be found in [25], 
[35], [36], [37] and [38]. 

 

 
a) Spike sequence       b) Complete Context       c) Incomplete Context 

 
Fig. 2.12. Spatial-temporal spike sequences. Complete and incomplete spike 

contexts  
 

2.4.1. Spiking Neuron as Context Detector 

 
Every context contains a set of delays that correspond to the relative 

timings between spikes. If these delay values are programmed in the delay blocks of 
the neural synapses the occurrence of a certain context causes several spikes to be 
synchronized at the input of the neuron. This event can be easily detected if the 
neuron uses a large loss factor combined with appropriate synapse and threshold 
values. This is because the large loss factor does not allow the neuron potential to 
exceed the threshold unless all of the expected spikes arrive at the same time or 
within a very short time interval.  

The value of the loss factor offers a mechanism that allows us to introduce a 
certain tolerance to the exactness with which the context needs to be reproduced in 
order to be detected. This means that if the context is similar but not identical to 
the context used during training the spikes will not be fully synchronized. However, 
if the loss factor is not too large a small de-synchronization is allowed and the 
context is still recognized. On the other hand if the loss factor is too small confusion 
between contexts can occur. The remaining of this section presents an analytical 
approach of how to compute a loss factor when a certain time tolerance is desired. 
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The tolerance is denoted by symbol t∆ and represents the time delay between the 
first and the last of the N received spikes comprising a context.  

The charging of the lossy integrator is given by formula (2.27), where S is 
the gain of the synapse and k is the loss factor. After receiving N-1 spikes the 
potential accumulated by the integrator reaches level A1 (2.28). The amplitude of 
each spike is 1 and the width is W. It is important that the neuron is not triggered 
after receiving the first N-1 spikes and therefore the condition A1 ≤ Th must be 
satisfied. This leads to a restriction imposed on the synapse gain (2.29). Until the 
last spike is received at time t∆ the integrator discharges from level A1 to level A2 
(2.30). The last spike charges the integrator to level A3 (2.31). 
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In order for the context to be detected it is necessary that level A3 exceeds 

threshold Th. Equation (2.31) shows that the highest value for k is achieved when 
S=Smax. Substitution of (2.29) in (2.31) and regrouping leads to condition (2.32). 
Equation (2.32) shows that when a high tolerance is desired the loss factor k needs 
to be decreased. When the size of the context N is large it is difficult to obtain a 
high time tolerance due to the excessively small loss factor. Theoretically, when N 

goes to infinitely the tolerance will need to be zero because 0
1

2
ln →

−

−

N

N
.  

Having defined how a single neuron can implement a context detector, the 
next section will present how a spiking neural network can implement a content 
addressable memory and also why this is useful. 
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2.4.2. Content Addressable Memory with Spiking Neural Networks 
 
Content addressable memories are different from conventional memories 

because of the addressing method they use. Rather than using an address as 
reference to a certain memory cell content addressable memories retrieve a 
memorized item by specifying an incomplete or noise affected version of the item 
itself. This approach is similar to the human brain functionality which remembers 
learned data when being stimulated with some similar or incomplete data.  

Implementing a content addressable memory that stores spatial-temporal 
spike sequences can be useful in feature classification applications. Assuming that 
such a spike sequence is used for coding information, the sequence can be stored in 
a content addressable memory and then be used as the class prototype vector. 
Once the memory is addressed with a new spike sequence it will retrieve the 
prototype sequence that is most similar, hence classification is performed.   
Configuring a spiking neural network as a content addressable memory is done in 
three steps:  

 
• A neuron is allocated for every spike in the sequence. 
• For every spike (neuron) a context is chosen assuming that a context size 

has been pre-determined. A procedure to choose a context and also a 
context size is proposed in section 2.4.2.1.  

• According to each context, synapse gains and delays can be programmed. If 
tolerance is desired an appropriate neural loss factor can be computed with 
formula (2.33).    

 
The functionality is as follows: a new spike sequence is used to stimulate 

the network. If this sequence is similar to the sequence that is stored in the network 
some spikes might create appropriate contexts causing some of the missing spikes 
also to be generated. These new spikes will lead to new contexts and so after a few 
iterations all the missing spikes of the sequence will be added. A detailed description 
about the capacity of a content addressable memory implemented by a spiking 
neural network is found in [25]. The next section investigates how different 
parameters influence the ability of a network to successfully recall a stored spike 
sequence. 
 

2.4.2.1. Choosing Spike Contexts 

The previous paragraph defined the performance of a content addressable 
memory as the ability to completely reproduce a stored spike sequence from a 
partial sub-sequence. For evaluation purposes, we create a performance variable.  
The variable represents the ratio of the spikes that are correctly reproduced by the 
memory and the total number of spikes in the sequence. Ideally, after the initial 
sub-sequence is externally fed, the network adds all of the missing spikes. In 
practice however, due to several recursive dependencies some contexts are never 
completed and thus some spikes are not generated. This leads to other several 
incomplete contexts and so the network fails to self-lock on the entire spike 
sequence. Two factors that have significant influence on the network performance 
are the size of the contexts and the number of spikes used for initial excitation. 
When a large number of spikes are used for excitation the chance of a recursive 
dependency to appear is small. On the other hand a large value for context size 
increases this chance.  

BUPT



2.4. Coding with Spikes 39 

When designing a network a compromise needs to be made with respect to 
the size of the context. This is because a context that is too large will most likely 
lead to the inability of the spike sequence to complete. A context that is too small 
will solve that problem but will reduce the robustness of the design because small 
contexts can falsely occur due to noise. The rest of the section will study the 
dependence of the network performance on the size of the context. The experiment 
generates a random sequence consisting of 100 spikes which is memorized in a 
neural network. The excitation of the network is done with partial sequences 
consisting of 50 spikes that are randomly picked out of the initial sequence. In this 
analysis every context is constructed from spikes picked out of the sequence 
according to a uniform spatial-temporal distribution. For every possible size of the 
context a statistical evaluation of performance is done by averaging the 
performance of 30 simulations.  

Figure 2.13 presents the results of the analysis by plotting a family of curves 
parameterized by parameter C. The parameter models a degree of permissiveness 
that allows the algorithm to consider that a context is completed even if only a 
majority of the expected spikes have occurred. For example, if the size of the 
context is 10 and C is 2 than the context detector will activate if 8, 9 or 10 spikes of 
the context have occurred. The neuron context detector presented in section 2.4.1 
can have this characteristic if the synapses are set to a value higher than Smax that 
is given in formula (2.29). 

All the curves in the graph show that at some point when the context size is 
too large the performance drops as recursive dependencies start to appear. As 
expected, a larger value for C destroys some of these dependencies and so allows 
designs to perform well for larger contexts.  

 

 
Fig. 2.13. Context size influence on performance. 

 
An interesting observation can be made by examining individual 

performance markers rather than the average performance curve. It can be seen 
that curves having a larger value for C do not have markers distributed around the 
average as mostly expected. In this case the average is obtained from groups of 
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points having either high performance or low performance, the average being 
determined by the number of points in each group. This type of behavior can be 
explained by examining the reason why performance drops. As stated before, 
performance decreases when some spikes do not occur due to incompletion of the 
contexts they depend on. This phenomenon is present when a recursive dependency 
occurs, meaning that a spike is never generated due to a linked dependency on 
itself. When C is small these dependencies can be present in small groups (even in 
pairs for C=0). Therefore, small groups of spikes fail to be generated causing the 
performance to be decreased only by a small percentage and so allowing markers to 
be distributed around the average. When C is large, the permissiveness of the 
context detector breaks the dependencies that appear in small groups allowing the 
performance to be high even for larger values for the context size. In this case, the 
performance decreases only as an effect of large group dependencies. This causes a 
sudden performance loss as several spikes fail to be generated together. Additional 
information on this topic can be found in [39]. 

Other ways of evaluating performance are presented in [25]. While our 
study presents the dependence of performance on the context size, [25] assumes a 
fixed context size and analyzes the ability of the network to store multiple spike 
sequences (capacity study) and to reject pattern noise. 
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3. MODELING AND SIMULATION 
 

In order to investigate the functionality of a spiking neural network, a 
simulation environment is required. Tools for processing and visualizing results are 
also needed. Such an environment is MATLAB [57], which preferred by most 
scientists due to its vast library of functions and toolboxes which are oriented 
towards scientific modeling and experimentation. Unfortunately, MATLAB does not 
include a toolbox that is suited for simulation of spiking neural networks. Therefore, 
one had to be developed. This chapter presents a MATLAB framework, designed by 
our research team, which can be used to simulate spiking neural networks [55]. It 
also describes some functions that are useful for processing and visualizing results. 

 
3.1. Model Objects 

 
 The model is organized on objects of different hierarchical standings. This 
approach allows a direct association between software modules and actual parts of 
the network architecture, easing the task of extracting and interpreting simulation 
results. Figure 3.1 presents how the objects are organized. 
 

 
Fig.3.1. Model architecture 

 
3.1.1. Network Object 
 

The highest hierarchy object is the network object. It includes the entire 
network architecture, specifically all network parameters and all sub-objects. Figure 
3.2a presents the contents of a network object. The network is volumetric, is 
organized on layers and each layer has a bi-dimensional topology. In this case the 
dimensions of the network are 3x5x5. An important variable of the network object is 
the layer array. The array has several entries, each being filled by one layer object. 
Other variables memorize network constants such as the membrane loss factor and 
neuron threshold. In order to create a network object function “createNetwork” is 
used.  
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3.1.2. Layer Object 
 

The content of the layer object is presented in figure 3.2b. Some 
parameters like topology, loss factor and threshold are stored redundantly and are 
the same as found in the network object. The model is intended to be general and 
allows connections between any pair of layers. In practice, however, only some of 
these connections are valid and the rest are zero. For this reason every layer object 
contains a variable called connectivity vector. It is a Boolean map that shows which 
layers are connected to the current layer. This is useful because the simulator will 
examine this vector and will skip propagating spikes between layers with null 
connections, decreasing simulation time significantly. In this example the 
connectivity vector holds only zeros as the network has not been initialized. 

The simulator, as it will be described later, is a time based solver. The 
output of the simulation is the spike activity of the network. Each spike is 
represented by a Boolean value coding the presence or the absence of the spike. 
Variable “state” of the layer object holds the spike activity of the layer at the current 
time instant. The variable is a matrix of the same size as the layer topology. Every 
entry in this matrix corresponds to the output of one individual neuron. This means 
that building the spike trace of one neuron is done by recording the value of one 
matrix entry at every time instant of the simulation.   

 

 
a) Network object       b) Layer object  
 

Fig. 3.2. Network and Layer Objects 
 

 The layer object contains a secondary state variable named “nextState”. The 
reason why two state variables are needed comes from the functional difference 
that exists between a biological neural system and a computer system. All the 
neurons of the biological system operate in parallel while the computer code is 
executed sequentially. This means that any change in the output of one neuron will 
affect the simulation of the next neuron. This is incorrect since normally the two 
neurons are performing in parallel. In order to preserve the parallel functionality of 
the network two state variables are used. All neurons read signals from the “state” 
variable while their outputs write signals into the “nextState” variable. The 
framework considers time to remain unchanged until all the neurons are simulated. 
When the “nextState” variable is complete the simulator swaps the two variables 
and time is advanced. This technique is shown in figure 3.3. The “neuronArray” 
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variable is an array with the same topology as the layer object. This array holds all 
the neuron objects. 
 

3.1.3. Neuron Object 

 
 Each neuron object contains the mathematical model of an individual neuron 
together with the current neuron state and other parameters. Every individual 
neuron can use one of the four proposed models: I&F, I&FB, I&FA or R&F. Spikes 
coming from neuron k to neuron i cross a synapse which produces gain Gik and 
delay Dik. Both static and dynamic synapses can be used. Detailed information about 
the neuron and synapse models is found in chapter 2. 
 

 

Fig.3.3. Updating the network state 
 

The neuron object is depicted in figure 3.4. The “potential” variable holds 
the neuron potential that is computed according to the neuron model.  The 
parameters and internal states of Gik and Dik are stored in the “synapseMatrix” and 
“delayMatrix” variables. 

 

 
Fig.3.4. Neuron Object  

 
Spikes propagate between neurons with different delays. This means that in 

order to compute the spike influence on current potentials a history of the spike 
activity of the neural network needs to be recorded. This history needs to be at least 
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as long as the largest delay value. The simulation framework is organized such that 
each neuron keeps track of all the spikes that will affect its potential at some time in 
the future. This is done by placing a “dataDelayLine” vector in each neuron object. 
When a neuron object is simulated the framework solver computes all the post-
synaptic spikes produced by all the synapses associated to this neuron. This is done 
by using the model of the synapse. The post-synaptic spikes are then placed into 
the dataDelayLine vector at a position given by the delay value of each synapse.  At 
each simulation time step the delay line is shifted and the first entry is used for 
computing the new neuron potential. 

The output of each neuron is Boolean and represents the spiking activity of 
the neuron. Every neuron output is mapped on the “state” variable of the layer 
object. 
 

 3.2. Model Functions 
 

3.2.1. Simulation Functions 

 
Simulating a network is done by calling function “simulateNetwork”. The 

function has two input variables. The first input variable is the network object. The 
second variable is the simulation duration in seconds. The simulation is performed 
by calling repetitively subroutines like “advanceTime”, updateNeuron” and 
“computeNextState”. The function returns two objects as output. One output object 
is the post-simulation network. Therefore, a comparison between the internal state 
of the initial network object and the final network object can show the influence that 
the external stimuli has had on the network within the time span of the simulation. 
The second output object is an activity object. During the simulation, time traces of 
the neural outputs and membrane potentials are recorded. These traces are 
organized in multidimensional vectors that are stored inside the activity object. The 
activity object is very useful because it holds data that completely characterizes the 
behavior of the network during the simulation. An instance of such an object is 
shown in figure 3.5. The neural activity has the same topology as the network that 
generated it. Several other functions are offered for creating and initializing new 
objects and also for uploading stimuli and adapting synapses. 

 

 
Fig.3.5. Network spiking activity object  

 
3.2.2 Visualization Functions 

 
The activity object contains the time traces recorded from the membrane 

potentials and neural outputs.  Most often, the easiest way to interpret this data is 
by visualization. 
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3.2.2.1. Visualizing Neural Time Traces 

The most straightforward way to visualize is by plotting the actual time 
traces. For this purpose function “displayActivity” can be used. The function accepts 
several variables which influence the display mode. The first variable for this 
function is the activity object that supplies the data. The second variable will specify 
the number of the neural layer that will be plotted. If this variable is omitted all 
layers will be plotted in several distinct windows. The third variable is a string that 
will select between displaying the neural spiking output activity or the membrane 
potentials. Figure 3.6 shows the output of this function for both cases. The fourth 
variable is optional and allows visualization of a sub-region of the neural array.   

Visualization of the time traces is not very useful when it comes to the 
interpretation of the data because not very many neurons can be fitted clearly into a 
single window. However, the function described above can be very useful during the 
debugging period of a project. Subtle effects created by different network 
parameters can be spotted on the time traces and so several problems can be 
avoided or fixed. 

     

 
a) Layer spiking output          b) Layer membrane potential  
 

Fig. 3.6. Visualization of spiking and potential traces  
 

3.2.2.2. Visualizing Neural Spike Rates 

When the neural array is large visualizing by plotting time traces can be 
very difficult or even impossible. For this purpose the function “displayRate” was 
developed. This function computes the rate of the spike train for each neuron and 
then maps these rates onto a black-white image. This permits easy visualization of 
large arrays. The function’s input variables allow selecting the time at which the 
average rate is computed and also the size of the averaging window. Figure 3.7 
shows the output of this function. Figure 3.7a displays the image that is fed to the 
network as input stimuli. The image only presents a snapshot of the input stimuli 
which will continuously change during the simulation as an effect of the time-
varying white noise. Figure 3.7b presents the rate-image of a spiking neural 
network that uses an I&F neuron model. The low-filtering effect of the neuron is 
seen in the fact that the noise is eliminated from the image.  
 

3.2.2.3. Visualizing Neural Synchrony 

 Another important aspect in neural activity analysis is neural synchrony. For 
example, at image processing and shape recognition, neural synchrony can be used 
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in the segmentation stage. Observations among biological systems have led to the 
idea that neurons processing pixels belonging to the same object tend to fire at the 
similar rates and also in synchrony.  

 

 
a) Noisy image       b) Average spike rate  
 

Fig. 3.7. Visualization of the average spike rate as image 
 

If neurons are stimulated by the pixels of an image they will fire spike trains 
that rate-code the pixel information. The neurons that are connected to pixels 
belonging to the same object will fire at the close rates. This is based on the 
assumption that the two pixels that are sourcing the neurons will have similar 
values. However, due to different initial conditions or system noise, these neurons 
will fall out of phase. Synchrony can still be achieved by using lateral connections in 
the proximity of each neuron. This way, spikes generated by one neuron can force 
neurons that are almost ready to fire to generate a spike ahead of time and thus 
inducing synchrony. Additional information on neural synchrony can be found in 
[43], [54] and [58]. For the purpose of visualizing neural synchrony function 
“displaySynchrony” was developed. The function expects three variables as input. 
The first one is the neural activity object that is supposed to be analyzed. The 
second one is the time value at which synchrony is evaluated.  The third variable is 
a synchrony threshold. 

The function uses a fraction variable to denote how well two neurons are 
synchronized with 0 meaning completely out of phase and 1 meaning fully 
synchronized. Assuming that the neurons are firing at the same rate full de-
synchronization occurs when the time distance between spikes is half of the period. 
The function builds a map of synchrony between each neuron and its neighbors. 
Then, by comparing the synchrony levels with the synchrony threshold, decides 
whether the two neurons are sufficiently synchronous to be considered as belonging 
to the same object. This way segmentation is performed. Lastly, the function maps 
groups of synchronized neurons to different colors and plots the result. Figure 3.8a, 
3.8b and 3.8c presents the output of this function at different times during the 
simulation.  

The activity object was obtained by simulating a network model similar to 
the one described above that was sourced with a grey scale image comprising of 
three objects, each at a different grey level. It can be observed that initially the 
neurons are unsynchronized and so the image is segmented into large number of 
objects. At 100ms large groups of neurons become synchronized. After 160ms all 
neurons of the same object are fully synchronized (above the synchrony threshold 
which in this case was 0.8). 
 

BUPT



3.3 – Parallelizing the Model 47 

3.3. Parallelizing the Model 
 

The major drawback for this approach is that the neural network is 
simulated by running the model of each neuron serially on the same processing unit. 
Because of this, the simulation time can become very large or even unacceptable in 
some cases. However, it is worth noticing that the model of the neural network is 
parallel and that the simulation of any neuron is fully independent of the results 
produced by the simulation of any other neuron during the same simulation time 
step. In order to simulate a neuron the following information needs to be known:  
 

• The input stimuli 
• The current network state 
• The neuron’s own internal state: membrane potential and content of the 

data delay line. 
 

 
a) T= 30ms        b) T = 100ms             c) T = 160ms 
 

Fig. 3.8. Visualizing Neural Synchrony 
 

All this information is available at the beginning of every simulation time 
step and remains unchanged during the simulation time step. Consequently, the 
neuron can be simulated by any processing unit, in parallel with all the other 
neurons, provided that the above information is known at the beginning of each 
simulation time step. Therefore the simulation framework was broken apart and 
distributed in a computer network as shown in figure 3.9. 

In the original framework, the neuron objects were stored locally inside the 
neuron arrays of the layer objects. Now, these arrays are extracted and distributed 
on several slave computers. Inside the layer objects, the neuron arrays are replaced 
with a neuron distribution map variable. This is necessary so the master computer 
can track the location of each neuron.  

The master and slave computers communicate through files written on a 
shared hard drive space. At the beginning of each simulation time step the master 
computer writes a file that contains the current network state and the current input 
stimuli. The slave computers wait until the file is available, read it and start 
simulating the neurons. All the internal state variables of each neuron are stored by 
the neuron objects and therefore are available locally on the slave computers. When 
a slave computer finishes the simulation it writes a response file that contains the 
output of all neurons. The master computer reads the file and uses the neuron 
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distribution map to build the next state of the neural network. When the next state 
is complete it replaces the current state and the simulation time is advanced to the 
next time step. 

 

 
Fig. 3.9. Distributed Model on a network of Computers 

 
3.3.1. Choosing number of slaves 

 
By distributing the workload on several slaves which work in parallel the 

time required for simulating the models is reduced proportionally by the number of 
slaves. Therefore it is desired to have as many slaves as possible. However, some 
time is lost with communication.  When more slaves are used, more communication 
time is needed. This paragraph studies what is the optimum number of slaves given 
that simulation time and communication time are known. Figure 3.10 presents all 
the stages that appear during one simulation time step. The master computer starts 
by sending the data to the slave computers. This operation takes time Tcomm11. As 
soon as the data is sent, the slave computer starts to simulate (which takes time 
TS1) and the master sends the data to the second slave (which takes time Tcomm21). 
It is assumed that the master computer sends the data to all slave computers 
before the first slave finishes simulation. This is true if T1<T2. Otherwise, the master 
computer will not be ready to collect the data from the first slave as soon as it will 
be ready. 

 
Fig. 3.10. Master-Slave Interaction 
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Let TNP be the time required for simulating the entire network model in a 
non-parallel approach. Considering that the slave computers are identical it can be 
accepted that the simulating times TS are roughly the same and are equal to TNP/N, 
where N is the number of slaves. Therefore, from figure 3.10 the time required for 
simulating one time step in a parallel approach TP can be computed with (3.1). 
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In order to find the optimal number of slaves it is required to find the 

minimum for the ratio in (3.2). This is done in (3.3). 
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Equation (3.3) shows that if communication time is small, a high number of 

slaves are desired. Ideally, if communication time is zero, the more slaves are 
available the better. In a real situation any number of slaves higher than the one in 
(3.3) would increase simulation time. This happens because the communication time 
added by an additional slave is always constant while the advantage gained by 
distributing some of the workload to the additional slave is diminishing.   

 
3.3.2. Results 
 
The previous paragraph computes an optimal number of slave computers 

given some generic simulation time and communication time. In practice, the 
simulation time TNP depends on the processing speed (CPU throughput) of the slave 
and master computer while the communication time depends on network speed and 
hard disk access speed. Some quantitative lab experimentation was performed on 
the following equipment: 

 
• INTEL CORE2 QUAD Q6600 2x2.4Ghz 
• RAM 4GB 
• WINDOWS VISTA 32BIT SP2 
• MATLAB 7.7.0 (R2008b) 
• NET CARD INTEL 82566DM GIGABIT 
 
First, several non-parallel simulations were performed in order to evaluate 

simulation time TNP. Neural networks of different sizes were tested. The results are 
shown in Fig. 3.11 and numerically available in table (3.1). Due to the “multi-
tasking” nature of the system, measurement during a single simulation is unreliable. 
Therefore, for each size of the neural network 100 simulations were performed and 
the simulation time was estimated to be the median value of those measurements.  

It is seen that the simulation time does not increase linearly with the 
number of neurons. This happens because simulation time depends on the number 
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of neurons and also on the time required for simulating each neuron. In the case of 
large neural networks each neuron receives signals from more sources and so the 
simulation time of each neuron also depends on the number of neurons. 
Consequently, the simulation time depends on the number of neurons in a quadratic 
manner. It is expected that the parallelization technique is more efficient for large 
neural networks, because in this case the serial simulation time increases 
drastically. 

 

 
Fig. 3.11 Non-Linear simulation time as a function of the number of neurons 

 
Table (3.1) also contains the size of the data packet. Please note that a 

larger network means a larger file due to the larger network state variable.  
However, a larger file does not mean a higher communication time. This is due to 
communication overhead which dominates the transmission (files are very small) 
and also due to the un-repeatability of the “multi-tasking” system.  

 
Table 3.1. Simulation Results and optimal number of slaves 
Number of 

neurons 
NPT (seconds) Communication file 

size (BYTES) 

Optimal 

Slave Nr. N 

90 0.01 336 0 

270 0.07 350 0 

450 0.18 361 0 

630 0.34 366 2 

810 0.55 372 2 

990 0.80 378 3 

1170 1.13 426 3 

1350 1.51 436 4 

1530 1.88 443 4 

1710 2.37 450 4 

1890 2.90 454 5 

2070 3.49 493 5 
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It sometimes happens that large files require a smaller communication time 

than small files. Therefore in order to estimate communication time several 
measurements were performed. It resulted that Tcomm is rather constant in the 
range 0.11 to 0.14 seconds. The median value of 0.12 seconds was chosen. Table 
(3.1) also shows the optimal number of slaves computed with (3.3). When the 
optimal number is zero it means that non-parallel computing is faster. This happens 
for small neural networks where simulation time is small and adding a single 
communication time would increase duration of the simulation. In order to quantify 
the improvement we choose the best case situation (2070 neurons). 

If N=5 is substituted in (3.2) it yields TP / TNP= 0.4. This means that the 
parallel simulation is 2.5 time faster than the non-parallel simulation. Ideally, if 
there was no communication, the parallel simulation should be 5 times faster since 
there is 5 times more processing power. This shows that much more improvement 
can be achieved if communication between computing units is reduced. A possible 
option is to use a grid superscalar computer. In this case computing units 
communicate by shared RAM memory and so communication time can become 
insignificant compared to simulation time. A cheaper and more accessible method is 
to use a graphics processing unit GPU as a parallel general purpose processor. This 
hardware acceleration technique is presented in chapter 4. Further details of the 
parallel MATLAB implementation can be found in [56]. 
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4. GPU ACCELERATED MODEL FOR SPIKING 
NEURAL NETWORKS 

 
 The previous chapter presents a MATLAB framework useful for simulating 
spiking neural networks. It also introduces a set of functions useful for analyzing 
and displaying results. The major drawback is simulation speed, which can become 
a bottleneck when dealing with large neural networks or when trying to perform 
iterative simulation. Iterative simulation is a common situation especially when 
trying to perform an optimization of the network parameters. Therefore improving 
simulation speed is a critical issue. Chapter three proposes a possible solution to 
this problem by parallelizing the model and distributing it among a network of 
computers. This approach produces some improvement. However, due to the high 
communication time, the performance gain is small compared to the amount of 
additional computing power. This chapter presents an alternative solution by 
implementing the spiking neural network on a GPU. 
 

4.1. General Purpose GPU Computing 
 

Large scale simulations are often the task of massively parallel cluster 
computers. For a long time scientists dealing with complex modeling had to use 
such expensive machines in order to obtain simulation results in reasonable 
amounts of time. This made large scale parallel computing inaccessible and 
uncommon. Recently, CPU producers have started to incorporate several cores in 
the same chip growing the amount of computational parallelism. However, it is still 
not sufficient for some demanding tasks in modeling and simulation.  

Initially, the GPU (Graphics Processing Unit) was introduced as a dedicated 
processing unit that dealt with image processing and display related tasks. Because 
its target applications differed in nature from the CPUs, the GPU evolved toward a 
different type of architecture. It mostly deals with image processing and 3D graphics 
rendering which are parallel applications (very often each pixel or vertex can be 
processed individually). Therefore, the GPU architecture has several simple 
processing units rather than a single complex core. Figure 4.1 shows the processing 
throughput of a GPU versus a CPU.  

 
Fig.4.1. CPU vs. GPU evolution 
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The amazing throughput of the GPU is only available when the application is 
parallelizable. Otherwise it will only use a single GPU processing unit which is most 
likely to be outperformed by a CPU. The ability of a GPU to process in parallel drew 
attention to researchers interested in parallel simulations. The main attraction is the 
low price and availability of such a device. 

 
4.1.1 Early GPU Computing 
 
The usual GPU processing pipeline is presented in figure 4.2. This type of 

architecture is implemented under OpenGL1 or DirectX2 and is accessible via the 
regular display driver programs. The programmer is allowed to upload code 
fragments inside the VERTEX and PIXEL blocks. These fragments of code are called 
“shaders” and will be used at the processing of individual vertices or pixels. At the 
time when programmers observed the opportunity of a GPU to perform general 
purpose computing rather that graphics dedicated computing the hardware and 
software did not offer any explicit support for this matter. Therefore, in order to 
perform non-graphic computations the programmer had to “fool” the hardware and 
software by wrapping the application as if it were a graphics application. For 
example, the application’s input data had to be organized as if it were graphics 
data: vertex coordinates, vertex colors, texture maps and many others.  The 
application’s processing code would be uploaded as vertex or pixel shaders even if 
the processing is not graphics related. In the end the frame buffer will contain 
processing results rather than images. This approach is successful but is indirect and 
requires 3D graphics knowledge. Therefore, even if the GPUs were extremely 
powerful and had the parallel computing capability, researchers were reserved 
towards using it as a general purpose computing machine. 

 

 
Fig.4.2. OpenGL graphics processing pipeline.  

                                                 
1
 OpenGL (Open Graphics Library) is a standard specification defining a cross-
language, cross-platform API for writing applications that produce 2D and 3D 
computer graphics. 
2 Microsoft DirectX is a collection of application programming interfaces (APIs) for 
handling tasks related to multimedia, especially game programming and video, on 
Microsoft platforms. 
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4.1.2. NVIDIA’s CUDA3 Architecture 
 

In late 2006 NVIDIA introduced a new computing architecture for its GPUs 
called CUDA [59]. The architecture is oriented towards general purpose computing 
(GPGPU4) and offers hardware and software support such that it can be used easily 
under Visual Studio C++ with only a small set of extensions to the basic 
programming language. The new architecture, driver and API allow the programmer 
to view the GPU as a parallel computing machine rather than a graphics processing 
pipeline [62], [63].  

    
4.1.3. Simple CUDA Example 
 
A simple example is presented in figure 4.3 for the purpose of describing the 

CUDA functionality [59]. 
 

int main{ 
int vectorHost[N];    //declares and allocates host vector 
InitalizeVector(vectorHost);  //initializes host vector 
int *vectorDevice;   //declares pointer to device vector 
 
cudaMalloc(&vectorDevice, N*sizeof(int)); //allocates device vector 
 
cudaMemcpy(vectorDevice, vectorHost, N*sizeof(int), cudaMemcpyHostToDevice);

      //copies data from host to device 
VectorSquare<<<1, N>>>(vectorDevice); //calls kernel 
 
cudaMemcpy(vectorHost, vectorDevice, N*sizeof(int), cudaMemcpyDeviceToHost);

      //copies data from device to host 
cudafree(vectorDevice);   //frees device memory 

} 
 
__global__ void VectorSquare(int *vectorDevice){ 

int index = threadIdx.x;   //determine index inside vector 
vectorDevice[index] = vectorDevice[index]*vectorDevice[index]; 

} 

Fig.4.3. Simple CUDA parallel program 
 

As a general rule, all variables that have names terminating with “host” are 
located in the memory of the host PC, while variables terminating with “device” are 

                                                 
3 CUDA or Compute Unified Device Architecture is a parallel computing architecture 
developed by NVIDIA. CUDA is the computing engine in NVIDIA graphics processing 
units (GPUs) that is accessible to software developers through variants of industry 
standard programming languages like C, C++ or FORTRAN. CUDA gives developers 
access to the virtual instruction set and memory of the parallel computational 
elements in CUDA GPUs. Using CUDA, the latest NVIDIA GPUs become as accessible 
for computation as CPUs. 
4 General-purpose computing on graphics processing units (GPGPU, also referred to 
as GPGP and less often GP²U) is the technique of using a GPU, which typically 
handles computation only for computer graphics, to perform computation in 
applications traditionally handled by the CPU. It is made possible by the addition of 
programmable stages and higher precision arithmetic to the rendering pipelines, 
which allows programmers to use stream processing on non-graphics data 
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located in the memory of the GPU. Consequently, host variables are processed by 
the CPU and device variables are processed by the GPU.  

The example in figure 4.3 has to square the elements of a vector without 
using a “for” loop. The first three statements declare, allocate and initialize the host 
vector (vectorHost) and also declare a pointer to the device vector (vectorDevice). 
The fourth statement allocates memory on the device and stores the reference to 
this memory space inside the pointer. It is very important to notice that 
dereferencing this pointer inside the CPU code leads to a run-time error or a false 
result. The pointer cannot be de-referenced because the CPU treats it as if it pointed 
to its own memory space and not the GPUs. Its purpose is to store a memory 
address that can be used later only by CUDA specific instructions (transfer functions 
and kernel launches).   

The fifth statement transfers data from the host to the device. The function 
needs the pointers to the two memory spaces and also the size of the data block in 
bytes. The sixth statement is the “kernel” launch and represents the key to the 
CUDA optimized solution. A kernel is a piece of code that can be launched in parallel 
on multiple computing units inside the GPU. Each instance of the kernel code is 
called “thread”. The number of launched threads is specified inside the brackets 
“<<>>”; in this case N. This is the same as the vector size meaning that each 
thread will operate on one entry inside the vector. The parameter to the function is 
the starting address to memory space where the vector has been stored on the 
device. Any function that is to be used as a kernel needs to have the “__global__” 
identifier and must respect the CUDA programming restrictions. 

Figure 4.4 presents the launch of the kernel. Basically, the same code will 
be running inside every thread.  

 

 
Fig.4.4. Kernel Launch 
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However, CUDA offers hardware and software mechanisms that allows 
identification of the thread from inside the kernel code. This way, branches and 
accessing by reference allow different threads to have independent execution paths 
and operate on different memory addresses. This is achieved by the first line of the 
VectorSquare kernel in figure 4.3. Even though variable threadIdx.x is never 
declared it will be available at run-time and will differ in value from one thread to 
another, unveiling the identity of the thread (0 to N-1). The thread identity 
initializes an index that is used at referencing the vector memory. This way every 
thread will operate on a different entry inside the vector. The second statement of 
the kernel squares the element. The last two statements of the main function copy 
the results back to the host and free the device memory.    
 

4.2. Spiking Neural Network CUDA Model 
 

Implementing the spiking neural network model on the GPU can produce 
significant speedup by simulating the model in parallel. However, in order for this to 
be possible the model itself needs to be parallelizable. In chapter three we have 
proven the all neurons of a SNN can be simulated in parallel. However, the attempt 
to parallelize the model by distributing it on a network of computers was not 
satisfactory because of the significant communication times between computational 
units. In order to simulate the SNN model on the GPU, the MATLAB model had to be 
redesigned such that it suits the GPU architecture. In addition, the code had to be 
re-written in CUDA C. Figure 4.5 shows how the MATLAB code and the CUDA C code 
communicate by using the MEX interface. MEX files allow calling a pre-compiled C 
files as they were in-built MATLAB functions. It is important to be able to call the 
GPU simulator from MATLAB because this way we can reuse the design, analyze and 
display functions that were already written for the MATLAB simulator.    

 

 
Fig. 4.5. MATLAB-CUDA C interfacing 

 
4.2.1. Model Architecture 
 
Our proposed GPU model is object oriented and contains 6 classes as 

follows: SpikingNeuralNetwork, Neuron, DelayLine, Synapse, InputSource, 
and ActivityRecorder (classes and objects are printed in bold). Each class contains 

Design the SNN 
Architecture 

 
Generate/Import 
Input signals 

Simulate the SNN 
in parallel 

Analyze and 
Display Results 

MATLAB 
HOST PC 

CUDA C 
GPU 

MEX 
Interface 

BUPT



GPU Accelerated Model for Spiking Neural Networks - 4 58 

all necessary host and device (GPU) methods. Host methods serve in: 
create/initialize the model; send/retrieve the model to/from the device; save 
results. Device methods perform the simulation. Figure 4.6 presents the CUDA C 
model. The arrows show the flow of information inside the model. The simulator 
sends input signals to the InputSource object, design parameters to the 
SpikingNeuralNetwork object and reads results from the ActivityRecorder 
object. The simulator also creates control variables and synchronizes the simulation. 
The dotted line marks the fact that the arrays of Neuron objects and Synapse 
objects are internal components of the SpikingNeuralNetwork object. The 
DelayLine object is responsible for keeping track of spikes while they propagate 
(with delay) between neurons. Consequently every Neuron object has a DelayLine 
pair-object.  

 

 
Fig.4.6. Spiking Neural Network Architecture 

 
4.2.2 Delay Line Implementation 

 
Paragraph 4.2.3 will reveal that the DelayLine object is the one that 

performs the most memory accesses during simulation. Therefore, for the purpose 
of accelerating the simulation, it is important to design the object carefully such that 
the number of memory accesses is minimized. Without going into the details of how 
the simulation works (presented in paragraph 4.2.3), it can be summarized that the 
DelayLine object performs three types of actions:  

 
• inserts new spikes (when a neuron receives a new spike from a synapse the 

spike is inserted in the delay line) 
• searches for active spikes (spikes that have time stamps equal to zero are 

called “active spike” in the sense that these spikes will contribute to the 
membrane potential of the neuron during the current simulation time step)   

• updates the delay line (when the simulation time advances, the time stamp 
of all spikes needs to be modified; also, all active spikes are removed) 
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Two implementations for the DelayLine are proposed. Both 
implementations use two buffers of data: one for the spike amplitudes and one for 
the spike time stamps. Buffer entries that have the same index store information 
about the amplitude and time of the same spike. In the first implementation of the 
DelayLine, new spikes are stored at the end of the buffer. This way inserting a new 
spike is done easily because the position of the spike inside the buffer is pre-
determined. This implies a reduced number of memory accesses. In the second 
implementation spikes are always stored in an ordered fashion, such that successive 
entries in the buffers store spikes with increasing delay times. Figure 4.7 shows the 
functionality of the DelayLine object for this case.  

 

 
Fig.4.7. Delay Line Functionality 
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amplitude and time information of previously received spikes. When a new spike is 
received, its time ST is compared to the previously stored data in DLT. If the time of 
the new spike matches any of the entries in DLT then the same entry in DLA 
accumulates the amplitude of the new spike SA. Because the two spikes arrive at 
the neuron at the same time, there is no reason to store them separately since their 
effect on the neuron’s membrane potential is cumulative. If the time of the new 
spike ST does not match any of the entries in DLT, a new entry needs to be 
allocated in DLT and DLA to store the new spike. Spikes are always stored in an 
ordered fashion, such that successive entries in DLT and DLA store spikes with 
increasing delay times. This is useful because the simulator only needs to check the 
first entry in DLT when computing the new value for the neuron membrane 
potential. Needless to say this approach requires significantly more memory 
accesses for inserting a spike. However, because the delay line is always ordered, it 
offers an advantage when searching for active spikes or updating the delay line. 

In order to determine which of the two implementations is better we tried to 
quantify the average number of memory accesses for each of the two cases. This 
cannot be done by examining the compiled code alone, because the execution path 
is determined by the exact neural network architecture and value of the input 
signal. In order to estimate the average number of memory accesses for each of the 
two implementations 1000 simulations were performed for each implementation of 
the delay line by combining 20 neural networks and 50 versions for the input 
signals. A set of counters was used to determine the number of memory accesses 
for each simulation. Table 4.1 presents the average number of memory accesses for 
the three actions for each of the two implementations. 
 
Table 4.1. Number of memory accesses 

Action Symbol Implementation 1 Implementation 2 
Insert new spike IS 4 accesses 15 accesses 

Search for active spike SAS 14 accesses 2 accesses 
Update delay line UDL 119 accesses 22 accesses 

 
In order to quantify the overall number of memory accesses for each of the 

three actions note that IS is performed for each spike propagating inside the neural 
network while SAS and UDL are performed for each neuron.  

 

( ) NS NNMEM ∗++∗= 1191441  SN = nr of propagating spikes  (4.1) 

( ) NS NNMEM ∗++∗= 222152  NN = nr of neurons   (4.2) 

 
The two implementations of the DelayLine have the same number of 

memory accesses if:  
 

90.910911 =⇒∗=∗
N

S
NS

N

N
NN    (4.3) 

 
The average number of spikes that are propagating inside the neural 

network Ns is equal to the average number of neurons that are firing a spike 
multiplied by the average number of synapses branching from each neuron. 
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  (4.4) 

 
Kfire is the average fraction of neurons that are firing a spike during a single 

simulation time step. If for example 30% of all neurons are currently firing (which is 
a realistic situation), the average number of synapses branching from each neuron 
Nsyn needs to be 33 in order for the two DelayLine implementations to have the 
same number of memory accesses. Chapter 5 presents introduces a computational 
architecture called Liquid State Machine that is based on a spiking neural network. 
In the case of the Liquid State Machine the average number of synapses branching 
from each neuron is Nsyn is below 10 in most cases. Therefore, for the purpose of 
this project the second implementation (presented in figure 4.7) for the DelayLine 
is considered to be more efficient.    

   
4.2.3. Moving Objects between Host Computer and Device GPU 

 

The model is created and initialized by the host program. In order for the 
simulation to run on the device GPU a copy of the model needs to be transferred to 
the device. After the simulation is done the device model needs to be transferred 
back to the host in order to update the state of the host model and to retrieve the 
simulation results. Transferring the model between the host and device raises a 
problem which is discussed and solved by the next section. 

CUDA C offers a single function for transferring data between the host and 
device (cudaMemcpy). The function transfers a block of data of given size between 
two specified memory addresses each belonging to the host and to the device 
respectively. In many situations, especially when memory is allocated dynamically, 
complex data structures (objects) are not a continuous block of data. The internal 
components of an object could be stored inside disjointed blocks of memory and be 
linked by pointers. In this case using cudaMemcpy directly on the object could lead 
to an incomplete transfer and also to false references inside the device memory. 
Figure 4.8 presents such a situation. This is the outcome of the following two lines: 

 
cudaMalloc (&objectDevice, sizeof (objectHost));  
cudaMemcpy (objectHost, objectDevice, sizeof (objectHost), cudaMemcpyDeviceToHost); 

 
One problem is that the contents of the array are not transferred. The 

second problem is that the pointer to the array on the device contains the memory 
address of the host array. If the device code tries to dereference the pointer it will 
cause a runtime error.  

In order to transfer all the internal data of the object and to keep the correct 
internal references the steps enumerated below need to be performed. Note the 
operations marked with *. Our design is build such that this restriction is not 
violated. However, there are situations when external factors (i.e. exceptions) can 
violate the restriction. Future improvements to the design will eliminate the 
problem.  

 
• Allocate device memory for the main object 
• Allocate device memory for all internal arrays 
• Transfer internal arrays with cudaMemcpy 
• Save original values for all host pointers 
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• Replace host pointers with device pointers (Host object cannot be used 
because it temporarily contains false memory references) * 

• Transfer main object with cudaMemcpy 
• Restore values for all host pointers (Host object is ready to be used again) 

 
The above steps assure that both the host and device objects will operate 

correctly inside the host and device code respectively. Similarly, the object transfer 
from device to host is performed as follows: 
 

• Transfer internal arrays with cudaMemcpy 
• Save original values for all host pointers 
• Transfer main object with cudaMemcpy (Host Object pointers are falsely 

overwritten. Host object cannot be used until pointes are restored)* 
• Restore values for all host pointers (Host object is ready to be used again). 

 

 
 

Fig.4.8. Incomplete Object transfer 
 

The above paragraph describes how to transfer an object that contains an 
internal array. However, when a project uses a complex hierarchy of classes, where 
objects include sub-objects, the above steps cannot be applied directly. Therefore, it 
is desired to create a standardized mechanism that allows transfer of objects from 
host to device regardless of the number of class layers and the arrangement of child 
classes within parent classes. We propose the introduction of the BasicObject class 
for this purpose.  

The BasicObject class contains all the necessary methods, memory address 
maps and control variables that facilitate the correct transfer of the object itself and 
all its internal sub-objects. All classes used in a CUDA project inherit the 
BasicObject class hence benefit from all the transfer methods. However, in order 
for the transfer methods to work, the new class needs a suitable constructor that 
correctly initializes the memory address maps and the control variables. Figure 4.9 
presents the concept described above. It can be seen that the BasicObject class 
does not contain the memory maps and control variables explicitly. Instead, it 
contains a pointer to an external structure that contains them. This is useful 
because it avoids transferring this information to the device (where it is not needed; 
both transfers host-device/device-host are performed by the host) and so it saves 
device memory space. The BasicObject class is also described in [64]. 
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4.2.4. Simulating the Model 
 
All actions are initiated by the host CPU. Figure 4.10 presents the flow of 

actions during the simulation of the Spiking Neural Network. For a clearer 
representation the figure uses the following abbreviations (SpikingNeuralNetwork 
= SNN, InputSource = IS, ActivityRecorder = AR). The host starts by creating / 
initializing the necessary objects and also by allocating the necessary device 
memory. Next, the objects are transferred from host to device by using the transfer 
methods inherited from the BasicObject class. The simulation starts with a 
sequence of kernel launches initiated by the host. 

The host continues by launching the “Propagate Synapse” kernel. This 
kernel operates on the SpikingNeuralNetwork object. It has the task to read the 
synapse information and propagate (or not) a spike between a source Neuron and 
a target Neuron object. The Synapse object amplifies the spike with the specified 
gain and places the spike in the DelayLine of the Neuron object at a position given 
by the delay value.    
 

 
Fig.4.9. BasicObject Class 

 
One possible problem with this approach is when two or more synapses 

targeting the same neuron try to execute propagation at the same time. Adding 
spikes to the delay line involves addition that needs to be performed atomically. One 
possible solution is to perform an atomic lock on the DelayLine object memory 
space before calling the propagation method. This way the hardware serializes the 
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conflicting threads. Instead of using atomic operations which are slow, the thread 
conflict was solved by pre-processing the model on the host and by arranging it 
such that a thread conflict never occurs. The pre-processing to the model reads the 
array of synapses and re-arranges them such that adjacent synapses in the array 
can form large groups where the targeted neuron is not repeated. This way the host 
can launch “Synapse Propagation” kernels on one group at a time avoiding thread 
conflicts and thus performing software serialization between groups. Obviously this 
leads to performance decrease. On the other hand, if the problem had been solved 
by using atomic hardware locks the decrease in performance would have also been 
present. This is because even though the threads are launched at the same time the 
hardware serializes execution to assure atomicity. 
 

 
Fig.4.10. Spiking Neural Network Simulation Flow 

 
Next, the host launches the “Inject Input” kernel. This reads input signals 

from the InputSource object and injects them as membrane potential at the 
appropriate locations inside the SpikingNeuralNetwork object. The number of 
threads is equal to the number of locations where input signals need to be injected. 
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This is specified by the InputSource object. The “Compute Neurons” kernel 
computes the new membrane potential and output of all neurons. The number of 
threads is equal to the number of neurons.  The “Record Activity” kernel reads the 
current spiking state (the output of all neurons) of the SpikingNeuralNetwork 
object and stores it as network spiking activity inside the ActivityRecorder object. 
The “Tick” kernel advances the simulation time. All the above kernel launches are 
performed iteratively for all simulation time steps. 

 
4.2.5. Simulation Results 

 
Before comparing simulation times of the MATLAB and CUDA models it is 

imperative to assure that the output of the two models is the same. This comparison 
is done independently for each simulation time step. Two output vectors are built 
containing the neuron membrane potentials of the two models. The error between 
the outputs is considered to be the norm of the difference vector. The maximum 
error ever found is 3.46*10-6. This small error is present because floating point 
operations are not associative due to rounding of intermediate results. This means 
that the order in which operations are performed matters. Obviously, this order 
cannot be guaranteed in a parallel thread-based system. Nevertheless, the output of 
the serial MATLAB model also depends on the order in which the network objects 
are picked for execution. Changing this order would also result in an error of the 
same magnitude. Anyway, in most applications where the system needs to be 
robust and insensitive to noise of significantly higher magnitude this error can be 
considered negligible.  

Table 4.2 presents the simulation times for various network sizes. Shown 
times are an average from 100 simulations performed on different networks 
generated with the same parameters.   

 
Table 4.2. Achieved Speedups 

MATLAB Model 

Simulation Time 

CUDA Model 

Simulation Time 
SNN Size 

Average 

(s) 

Relative

Std (%) 

Average 

(s) 

Relative 

Std (%) 

Speed-

up 

5x5x5 0.42 0.43 0.05 9.63 x8.3 

6x6x6 1.18 0.24 0.09 8.45 x13.6 

7x7x7 2.87 0.15 0.14 7.61 x21.0 

8x8x8 6.29 0.18 0.21 6.29 x30.9 

9x9x9 12.58 0.18 0.29 6.16 x42.4 

10x10x10 23.47 0.18 0.43 7.91 x54.9 

11x11x11 41.34 0.16 0.57 5.48 x72.9 

12x12x12 69.48 0.19 0.75 6.21 x92.1 

13x13x13 111.91 0.13 0.94 2.61 x119.5 

14x14x14 173.71 0.18 1.15 2.51 x150.6 
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It is worth noticing that the relative standard deviation is a lot larger in the 
case of the CUDA model (max 9.63%). The MATLAB model has a very small 
standard deviation (max. 0.43%). This is because the efficiency of the simulator is 
constant (one neuron at a time) regardless of the particular network synaptic 
connectivity. Still, a small deviation is present due to the multitasking nature of the 
operating system. On the other hand the CUDA simulator is always trying to exploit 
parallelism as well as possible. The efficiency of the simulator varies and depends on 
the exact network synaptic connectivity and amount of available parallelism. 
Therefore, the simulation time will vary significantly from one network to another. 
The standard deviation tends to decrease for large networks (down to 2.51%). This 
is because the synaptic diversity averages out for larger networks. 

The speedups achieved by the CUDA model are great for all network sizes. 
However, it is the larger networks that allow the GPU to make use of its stunning 
computational power. When the network is large, the groups of synapses that can 
be processed in parallel are also large (see section 4.2.4) keeping all execution units 
busy. On the other hand, if the network is small, the groups of synapses that can be 
processed in parallel are small, leaving some of the execution units idle during the 
simulation of one group. 

 
4.3. Improved CUDA Model 

 
Explaining further improvements requires a deeper understanding of the 

GPU hardware [60], [61]. Figure 4.11 presents the GPU architecture. The GPU 
contains several Stream Multiprocessors (SMs). Each SM has eight Stream 
Processors cores (SPs)5, one multi-threaded instruction unit and on-chip shared 
memory.  

 
4.3.1. Minimizing the number of branches 
 
Because there is only one instruction unit, each multiprocessor operates 

similarly to a SIMD6 architecture. This means that all processors inside the same 
multiprocessor execute the same instruction on different data. Nevertheless, 
paragraph 4.1.3 states that each thread can branch independently based on 
conditions generated by its thread index. This property is particularly important for 

                                                 
5 Stream processing is a computer programming paradigm, related to SIMD (single 
instruction, multiple data), that allows some applications to more easily exploit a 
limited form of parallel processing. Such applications can use multiple computational 
units, such as the FPUs on a GPU or FPGAs, without explicitly managing allocation, 
synchronization, or communication among those units. The stream processing 
paradigm simplifies parallel software and hardware by restricting the parallel 
computation that can be performed. Given a set of data (a stream), a series of 
operations (kernel functions) are applied to each element in the stream. Uniform 
streaming, where one kernel function is applied to all elements in the stream, is 
typical.  
6 SIMD is a type of multiprocessor architecture in which there is a single instruction 
cycle, but multiple sets of operands may be fetched to multiple processing units and 
may be operated upon simultaneously within a single instruction cycle. Acronym for 
single-instruction-stream, multiple-data-stream. 
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this project when implementing the logic of the neuron DelayLine. In order for this 
to be possible the CUDA architecture deviates slightly from the SIMD architecture. 
Let’s assume that a group of threads is running on the same multiprocessor. 
Whenever the code reaches a branch, the group is divided into two sub-groups each 
following a different execution path. Because the instruction unit can only dispatch a 
single instruction at a time, the two execution paths are serialized and so one sub-
group will be pending while the other is executing. When the two execution paths 
have completed, the threads converge back to the same execution path. 

This type of architecture allows the user to program freely without having 
restrictions regarding the control flow of a group of threads. However, when the 
code has a lot of diverging branches, the hardware serializes execution and 
resources are not used efficiently. With this thought in mind the application was 
programmed such that it avoids using any unnecessary branches. 
 

 
Fig.4.11. GPU architecture 

 
4.3.2. Merging Kernels 

 
Threads can be grouped into blocks with up to 512 threads per block and up 

to 64K blocks for each kernel launch. Having two ways of organizing parallelism 
(blocks and threads) creates control over the way the workload is distributed inside 
the GPU. When a kernel is launched it is assured that all threads in the same block 
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will be executed inside the same SM. This allows the threads in the same block to: 
communicate (fast), synchronize and quickly switch register context when toggling 
the active thread.  

Figure 4.12a presents a simplified version of the simulation flow shown in 
figure 4.10. The “Propagate Synapse” and “Inject Input” kernels are drawn is 
parallel. This symbolizes that the two kernels can be launched in any order. The 
three synchronization barriers are important because they assure that the different 
parts of the neural network remain synchronized during the simulation. For 
example, it is important that no neuron is simulated before all synapses have 
finished propagation. Otherwise, some data dependencies might be violated. 
Implementing the three synchronization barriers shown from figure 4.12a is done 
easily, as a consequence of the fact that the host launches the kernels in order and 
it synchronizes the launch of the new kernel with the termination of the previous 
one (synchronization is performed by the host).  However, this approach has two 
major disadvantages. The first one is that very many kernels are launched during 
one simulation. Every kernel launch has an overhead time of around 3us. This is the 
time necessary for initiating the kernel execution and depends very little on the 
number of parameters passed to the kernel. Additionally, the overhead time does 
not depend on the amount of computation performed by the kernel. 

If the kernel does not do a lot of computation the overhead time can 
represent a significant fraction out of the total simulation time. For example, if a 10s 
simulation is run with a 1ms time step the total amount of overhead time is 
10s*103(time steps/s)*4(kernels/time step)*3us (overhead time/kernel) = 0.12s, 
which in this case can represent up to 30% of the entire simulation time. The 
second disadvantage comes from the inability to efficiently use shared memory. 
Because the GPU global memory is not cached, the shared memory is an alternative 
to accelerate data access. Each SM inside the GPU has 16KB of fast memory that is 
visible to and can be shared by all threads of the same block. The shared memory 
can be as fast as a processor register as long as a bank conflict is not present during 
the simultaneous accesses of different threads. Anyway, the intended purpose of 
shared memory is that at the beginning of a kernel each thread copies the 
necessary data from global memory to shared memory. During the execution of the 
kernel, all intermediary results are stored inside the shared memory. The final 
results are copied to global memory only at the end of the kernel. This way, the 
shared memory works like a software managed cache; it is the responsibility of the 
programmer to assure data coherency between threads of different blocks. The 
lifetime of a variable declared as shared is only as long as the duration of the 
kernel. This makes the model presented in figure 4.12a very inefficient because it is 
necessary to store intermediary results in global memory between kernels.  

We propose a second approach to organizing the simulation depicted in 
figure 4.12b. In this case all kernels, and also the main time loop are merged 
together into a single kernel. This way, the kernel launch overhead time is 
eliminated. More importantly, shared memory can be exploited very efficiently. 
However, because the simulation is no longer divided into kernels, the host can not 
control and synchronize the simulation anymore. Once the kernel is launched, it is 
the job of the GPU to synchronize threads. First, the model was slightly reorganized 
such that it needs fewer synchronization barriers. In the original simulator (4.11a), 
the kernels dedicate individual threads for the processing of each synapse, input 
injection and neuron respectively. Alternately, in figure 4.12b, each thread 
processes everything that is related to the functioning of one neuron. 
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The kernel has two internal loops that process serially all synapses and input 
signals targeting one neuron. Therefore, once the execution reaches the “Evaluate 
Neuron” stage it is assured that the previous stages have completed. It is not 
important that the processing of other synapses or other input signals in the neural 
network might not completed yet, since they do not influence the functioning of this 
neuron during the current time step. The introduction of two loops inside the kernel 
does not impact the efficiency of parallel processing if the number of neurons is 
large enough to fully load the resources of the GPU.  

Unfortunately, the synchronization barrier at the end of the simulation time 
step cannot be avoided. The hardware offers a synchronization instruction, but it is 
only able to synchronize threads of the same block. This is because the threads of 
the same block will be executed on the same SM. The only way to use this hardware 
synchronization is to put all threads into the same block, but that would waste GPU 
resources since only one SM would be used. An alternative, which allows 
synchronizing all threads, is to use a software implemented barrier described by the 
following steps:  
 

• Synchronize all threads in each block. 
• First thread of each block atomically increments counter variable that 

resides in global memory. 
• First thread of each block waits in loop until counter reaches the total 

number of blocks. 
• Synchronize all threads in each block. 

 

 
a) Original Simulation Framework       b) Simulation Framework with Merged Kernels 
 

Fig.4.12. Merging Kernels 
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The synchronization is done in two steps. First, all threads in each block are 
synchronized. Second, each block delegates a thread to communicate globally and 
synchronize blocks. Because the counter is a shared resource, it needs to be 
incremented atomically (serialized by hardware) in order to eliminate race 
conditions and miscounting.  Also, because atomic operations are slow and because 
writing to global memory is slow in general, the two step approach presented above 
is much better than synchronizing all threads globally.  

However, there is a trick to this approach. When a kernel is launched the 
blocks are enumerated and distributed evenly to the SMs of the GPU. After counting 
the necessary resources for the execution of each block, it is decided how many 
blocks can be launched in parallel on each SM. If the SM cannot accommodate all its 
designated blocks at the same time, the remaining blocks wait in a queue until a 
running block finishes execution and resources are freed. Note that a block does not 
suspend execution if it is not doing anything (waiting in a loop). This can lead to a 
dangerous situation where the counter condition is never achieved. This is because 
inactive blocks wait in a queue for the active blocks to complete execution. At the 
same time, the active blocks never complete execution because they wait for a 
condition that needs all blocks to be active. One way to solve the situation is to set 
the number of blocks equal to the number of SMs which in the case of the GT9800 
GPU (employed in this paper) is 14. Afterwards, the number of threads in each block 
can be computed in order to have a total number of threads equal or higher to the 
number of neurons in the neural network. 
 

4.3.3. Using Shared Memory 
 

As presented in the previous paragraph, shared memory is a powerful tool 
to speed up memory access. Merging all kernels into a single one makes shared 
memory even more appealing because variables will be present in shared memory 
during the entire simulation without having to load/store them from/to global 
memory. Because the shared memory is a limited and precious resource it is 
important to see what to store in there and what not. A statistical analysis of how 
memory is accessed during a simulation reveals that almost 80% of all accesses are 
performed to the data delay line of the neurons. The number of accesses to this 
data structure is not constant and depends on the contents of the delay lines during 
the simulation. However, in all situations, they dominate the overall amount of 
accesses, making the data DelayLine objects the best candidates to occupy shared 
memory. The next best candidate is the neuron output variable which is responsible 
for about 14% of all accesses. This variable, however, is not suitable for shared 
memory because it needs to be broadcasted globally at the end of each simulation 
time step. This is because the model has no restrictions regarding the connectivity 
of the network, and so synapses can connect neurons that run on threads residing 
in different blocks on the GPU. Accesses to other variables are less significant in 
number. Therefore, in our implementation the data DelayLine are the only objects 
that are stored in shared memory.  

In order to have a higher bandwidth, shared memory is divided into 16 
banks that can be accessed simultaneously as long as there is no bank conflict (two 
threads accessing memory locations of the same bank). The shared memory space 
is organized such that consecutive addresses are found in consecutive memory 
banks rather than the same bank. This is because in most CUDA programs 
successive threads access consecutive memory addresses. With this argument in 
mind, we propose two ways to organize the data DelayLine class. 
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Consider that TN is the number of threads running in the same block (and 
also on the same SM) and that DS is the size of each DelayLine buffer. Therefore, a 
total space of TNxDSx8 bytes needs to be allocated in shared memory for each 
block. 8 bytes are needed for each entry of the delay line because two 32bit words 
need to be stored (one float word for the spike amplitude; one unsigned integer for 
the spike timestamp). The size of the delay line DS is constant and is set at the 
beginning of the application. For example, if a network of 2000 neurons must be 
simulated, the computing grid will have 14 blocks x 143 threads. Given the 
maximum of 16KB of shared memory per block the maximum delay size DS is 14 
(143x14x8B = 15.64KB). The limit of the delay line size would not be present when 
using global memory. However, it is a compromise worth taking because the speed 
improvement is significant and it is rarely the situation when more than 5 entries in 
the DelayLine buffer are needed. Anyway, if a neuron receives a spike and its delay 
line is already full, the spike that has the largest timestamp is eliminated.  

Figure 4.13 shows two ways of storing the delay lines in memory. For 
simplicity, the figure only shows 4 neurons (threads) and each has a delay line of 
size 6. In the upper part of the figure the DelayLine entries of different neurons are 
interleaved. In the lower part of the figure all entries of the same neuron are 
grouped. In the upper part, banks conflicts are eliminated naturally because the 
threads access simultaneous consecutive addresses thus distinct banks. In the lower 
part, bank conflicts are eliminated if DS%16 is odd. For this implementation the first 
approach was preferred because no restrictions are imposed on DS. 

 

 
Fig.4.13. Two versions for implementing the delay line inside shared memory 

 
4.3.4. Overlapping Computation and Data Transfer 
 
The simulator records traces of the neural activity for all neurons. At the end 

of the simulation two sets of traces are available: one binary set for the neuron 
outputs and one floating point set for the neuron membrane potential. This data 
needs to be copied from the device memory to the host computer memory in order 
for it to be available to the host main application (unless the application continues 
on the GPU). If the neural network is large and/or if the simulation length is large 
the amount of data that needs to be transferred is significant and can add up to tens 
or even hundreds of MB. There are situations when the host application only 
requires the neuron binary spiking traces and not the neuron membrane potentials. 
If so, the amount of data that needs to be transferred is significantly reduced. 
Anyway, in order to reduce overall application time, NVIDIA offers hardware 
mechanisms that allow overlapping of computation and data transfer. This enables 
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the user to transfer available simulation results while new results are being 
computed.   

The NVIDIA architecture is organized as a stream processor. When the host 
computer expects the GPU to perform a certain task it places a request for this task 
in a queue called stream (usually a task is either a kernel launch or a memory 
transfer operation). The host continues to execute the host program until another 
GPU specific instruction is met. At this point, the host checks if the GPU has 
completed the previous action. If true, it sends a new request, else it waits for the 
GPU to finish. This is called synchronous operation mode, in the sense that the host 
is always synchronized to the GPU. It is worth mentioning that in this operation 
mode only one stream is used and that stream will only contain one action in its 
queue, since no new task can be sent to the GPU until the previous one is finished. 
Another type of operation mode is asynchronous. In this mode, the host does not 
need to synchronize to the GPU until a specific synchronization instruction is 
reached. This way the host application can send several tasks to the device without 
actually waiting for them to complete. Also, the host can place the tasks on distinct 
streams.  

Figure 4.14 shows how this procedure allows overlapping of computation 
and data transfer. Consider that the simulator presented in paragraph 4.3.2 (figure 
4.12b) breaks the simulation into N sequential parts and launches N consecutive 
kernels. This is useful because as soon as the first kernel finishes execution the 
hardware starts to transfer the results from the first kernel while the second kernel 
computes. The streams in figure 4.14 are conceptual and only exist from the 
programmer’s point of view. In hardware, the tasks are sent to the actual engines in 
the same order they are inserted by the host into streams. Additionally, the 
hardware has an inter-engine mechanism which assures that all tasks coming from 
the same stream are performed in the same order as specified by the stream. For 
example, task CPY0 will start after task SIM0 is completed even though they are 
performed by different engines.   
 

 
Fig.4.14. Overlapping computation and data transfer 
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As presented in paragraph 4.3.2 launching a kernel produces about 3us of 
overhead time, regardless of the amount of computation inside the kernel. 
Therefore, splitting the simulation into N segments, and so launching N kernels 
instead of one, adds a penalty time equal to N*KLT, where KLT is the kernel launch 
time. At the same time, the transfer time required to send the results back to the 
host TRT reduces to its Nth fraction. Because the penalty increases linearly while the 
transfer time decreases non-linearly it is optimal to increase N as long as the rate of 
decrease for the transfer time is higher than KLT (4.5).    

 

( )11 +∗
=

+
−≤

NN

TRT

N

TRT

N

TRT
KLT    (4.5) 

 
Because N is usually a large number (over 100) eq. (4.5) is approximated 

well by the next relation. 
 

KLT

TRT
N <     (4.6) 

 
4.3.5. Using Constant Memory and Texture Memory 
 

As presented in figure 4.11 the GPU is equipped with two special types of 
memory spaces: the constant memory and the texture memory. Both types of 
memory are cached and can provide further improvement to memory access speed. 
As already mentioned, the GPU does not dedicate many transistors to complicated 
memory management and sophisticated data caching. Therefore, the constant 
memory and texture memory caches must be simple. The simplicity is assured by 
the fact that both memory spaces are restricted to being read-only. This way, the 
coherency of cached data is assured implicitly and significant hardware can be 
excluded from the cache. The only data in the Spiking Neural Network model that is 
constant is the synapse information and the general neural network parameters. 
The neural network parameters are few and it is easier to store them in shared 
memory which is faster than the caches. Because of its large size the synapse 
information cannot be stored in shared memory and so constant memory or texture 
memory can represent an alternative (Synapse data size = 16B x number of 
synapses; up to hundreds of MB).  

The efficiency of caching depends drastically on the cache hit rate. 
Therefore, the address access pattern that results during the execution of an 
application is very important and determines the efficiency of the cache. In general, 
if some data is read and cached, it needs to be read again at least a few more times 
before it is evicted from the cache. Examining the memory access pattern for this 
application reveals that using the cache will be inefficient. During each simulation 
time step the data stored by a synapse is required only once. In addition, all 
synapse information is required during each simulation time step. Because the 
cache is only 64KB and cannot store the entire synapse data, each synapse is stored 
and then is evicted from the cache before it is needed again.  

Consequently, for this application the cache cannot be exploited so the 
synapse information is stored in global memory. The improvements described in 
paragraph 4.3 are also found in [65].       
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4.3.6. Simulation Results 
 

Table 4.3 presents the achieved speedups for different neural network sizes. 
The GPU simulator is benchmarked against a simulator written in C++. Note that 
the C++ simulator is inherently faster than the original MATLAB simulator. The C++ 
model is run on a system with the following configuration: Intel Core i7 CPU at 2.67 
GHz, 4GB DDR3 RAM, 64bit Windows 7. The CUDA C model is run on a NVIDIA 
GeForce GT9800 GPU with the following specifications: 

 
• CUDA Cores 112 (14 Multiprocessors x 8 Stream Processors) 
• Graphics Clock 600Mhz 
• Processor Clock 1500Mhz 
• Memory Size 1GB 
• Memory Clock 900Mhz 
• Memory Bandwidth 57.6 GB/sec 
 

 The speedup is calculated as the ratio of the C++ simulation time and the 
CUDA C simulation time. There are four versions of CUDA implementations: V1 is 
the CUDA model presented in figure 4.12a without any of the additional 
improvements; V2 is the CUDA model presented in figure 4.12b where the kernel 
overhead time eliminated; V3 is V2 with the delay lines implemented in shared 
memory; V4 is V3 with the overlap of computation and data transfer. The simulation 
times used at computing the speedups are estimated by averaging the results of 
100 simulations performed on different networks of the same size and with the 
same number of synaptic connections.   
 
Table 4.3. Achieved Speedups 

Speedup Network Size 

V1 V2 V3 V4 

8x8x8 x1.19 x1.42 x2.41 x2.44 
9x9x9 x1.43 x1.66 x2.91 x2.98 

10x10x10 x1.86 x2.14 x3.83 x4.01 
11x11x11 x2.45 x2.60 x4.56 x4.96 
12x12x12 x2.87 x3.25 x5.49 x6.14 
13x13x13 x3.38 x3.76 x6.02 x6.84 
14x14x14 x3.72 x4.08 x6.14 x7.12 
15x15x15 x4.05 x4.39 x6.22 x7.23 

 
It can be noticed that in general larger networks have greater speedups. 

This is because for larger networks, more computational workload allows the CUDA 
model to better exploit parallelism and more efficiently utilize its resources. On the 
other hand the simulation time of the C++ model scales linearly with the amount of 
computations. 
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5. LIQUID STATE MACHINE AND LIQUID 
COMPUTING 

 
 

5.1. Introduction 
 
 The concept of “Liquid State Machine” or “Liquid Computing” was introduced 
by Wolfgang Maass in [18], [73], and [74]. The idea behind the concept comes from 
a basic observation that a liquid medium (i.e. a pond of water) disturbed by a 
stimulus (i.e. a stone) will produce a sequence of unstable states that are stimulus 
specific. A trained independent observer should be able to extract all significant 
features of the stimulus by examining the trajectory of transitory states of the liquid 
medium. The approach offers an advantage, if and only if, the observer is able to 
extract more features by examining the liquid medium than by examining the 
stimulus directly. This is potentially possible when the liquid medium is complex 
enough to produce information analysis and feature decomposition.  

The theory can be generalized from an actual “liquid medium” to any 
recurrent medium having any physical support [70], [78], [80], [84], [85]. This 
project uses a “liquid medium” implemented within a recurrent neural network of 
spiking neurons. The authors of [18] also suggest that an implementation with 
spiking neurons is very suitable and also biologically plausible. Even though it is 
strictly symbolic this thesis continues to refer to the recurrent medium as “liquid 
medium”. 

 
5.2. Liquid State Machine Architecture 
 
The architecture of a Liquid State Machine is presented in figure 5.1. Two 

major sections can be depicted: the Recurrent Liquid Medium and the Read-out 
Units. 
 

 
 

Fig.5.1. Liquid State Machine architecture 
 

The liquid medium is task independent and has multiple random connections 
between units. The input stimulus is injected inside the liquid medium and produces 
a stimulus dependent sequence of unstable states. On the other hand the read-out 
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units are task dependent and need to be trained in order to read, interpret and 
convert the current liquid state into a desired output. 

 
5.2.1. Recurrent Liquid Medium 
 
The liquid medium behaves like a time invariant filter7 than has fading 

memory8. It is implemented by a recurrent spiking neural network. Neurons are 
distributed along several bi-dimensional layers [82]. Each individual neuron can 
choose from the four neuron models presented in chapter two: “integrate and fire” 
(I&F), “integrate and fire with burst” (I&FB), “integrate and fire with adaptation” 
(I&FA) and “resonate and fire” (R&F) [72].  

Neurons inside the liquid medium are connected via dynamic synapses 
having the model presented in 2.2.4. The probability of a synaptic connection to 
exist between neuron A and neuron B is given in eq. (5.1). 

 

( ) λ

),( BAD

eCDP
−

∗=     (5.1) 

 

• D is the Euclidian distance between neuron A and neuron B 
• λ is the density of connections 
• C is a scaling constant. 

 
In this configuration neurons are connected to several other neurons that are 

placed in its immediate neighborhood. The chance of connection decreases as the 
neurons are further away. Some neurons are inhibitory. This means that their spikes 
will have a negative effect upon the membrane potential of the neuron that is 
receiving the spike. The amount of inhibitory neurons is determined by the 

                                                 
7
 A filter F is called time invariant if any temporal shift of the input function u(×) by 
some amount t0 causes a temporal shift of the output function y = Fu by the same 
amount t0, i.e., (Fu

t0) (t) = (Fu)(t + t0)  for all t, t0 Є R, where u
t0(t) = u(t + t0) . 

Note that if U is closed under temporal shifts, then a time invariant filter F:Un 
→ (RR)k can be identified uniquely by the values y(0) = (Fu)(0) of its output 
functions y(×) at time 0. 
8
 Fading memory (Boyd at al., 1985) is a continuity property of filters F which 
demands that for any input function u(×) Є Un the output (Fu)(0) can be 
approximated by the outputs (Fv)(0) for any other input functions v(×) Є Un that 
approximate u(×) on a sufficiently long time interval [-T,0]. Formally one defines 
that F:Un → (RR)k  has fading memory if for every u Є Un and every ε > 0 there 
exist δ > 0 and T > 0 so that ||(Fv)(0) - (Fu)(0)|| < ε for all v Є Un with ||u(t) - 
v(t)|| < δ for all t Є [-T,0]. Informally a filter F has fading memory if the most 
significant bits of its current output value (Fu)(0) depend just on the most 
significant bits of the values of its input function u(×) from some finite time window 
[-T,0] into the past. Thus, in order to compute the most significant bits of (Fu)(0) it 
is not necessary to know the precise value of the input function u(s) for any time s , 
and it is also not necessary to know anything about the values of u(×) for more 
than a finite time interval back into the past. Note that a filter that has fading 
memory is automatically causal. 
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percentage parameter INH. Figure 5.2 presents a Liquid Medium created in MATLAB 
that has the following parameters: 

• Network topology: 4x4x6 (96 neurons) 
• Percentage of inhibitory neurons: 30% (drawn in red) 
• Synapse probability parameters: C = 1, λ = 0.8 
For clarity, the figure shows the synaptic connections of only one neuron. Blue 

connections are excitatory while red connections are inhibitory (coming from 
inhibitory neurons). 

 

 
Fig.5.2. Liquid State Machine implemented by a recurrent Spiking Neural Network 

 
5.2.2. The Read-Out Units 
 

The Read-Out Units are implemented either by parallel perceptrons or by 
multilayer feedforward networks.  A parallel perceptron is a group of N single 
McCulloch-Pitts perceptrons that are fed with the same input P (figure 5.3). The 
output of the parallel perceptron Y is produced by a squashing function S that 
counts the number of active neurons and maps this number onto a real number, as 
shown in equation (5.2), where i is the number of perceptrons and yi is the output 
of each single perceptron. 

 

 
Fig. 5.3 Parallel Perceptron Readout Unit 
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Alternatively, the readout units can be implemented by a multi-layer 

feedforward neural network as presented in figure 5.4 [44]. In this case the 
activation function is the sigmoid function. Paragraphs 5.4 and 5.5 present the p-
Delta training rule and the backpropagation algorithm, which are useful for training 
the parallel perceptron and the feedforward network. In addition three 
improvements of the p-Delta rule are also presented.   
 
 

 
 

Fig. 5.4. Multi-Layer Feedforward Readout Unit 
 

5.3. Liquid States. Separation Property 
 

 When the input signals are injected some neurons will start to fire spikes at 
different frequencies. These spikes propagate via the recurrent synapses and force 
other neurons to fire new spikes. The result is a complex spike activity propagating 
back and forth inside the liquid medium. 

The spike pattern produced by an input stream should be input specific and 
should help at classifying the input. In order to quantify this ability [18] introduces a 
useful macroscopic property called separation property SP. This property allows 
comparison of how different are the spike patterns produced by the liquid medium 
when injected with two different input streams. A high separation property means 
an easy classification task for the read-out units. The following paragraphs present 
how the separation property is computed. 

The spike pattern produced by the liquid medium when injected with an 
input stream is considered to be a sequence of states called liquid states (one liquid 
state for every time instance). Basically, a liquid state is a vector that has the 
dimension equal to the number of neurons inside the liquid medium, holding “1” if 
the neuron fires (at that time instance) or “0” if the neuron rests. The liquid states 
are produced by sampling the spike activity along time. In order to study if one 
spike pattern is different from another spike pattern both “non-temporal” and 
“temporal” differences/similarities need to be taken into account. Performing a 
“non-temporal” comparison can be done by simply computing the Euclidian distance 
between the two liquid states. However, computing the separation property as the 
time average of these distances is insufficient. This approach would loose any 
“temporal” relationships between spikes and also would result in a macroscopic 
property that is “time-noise” intolerant (if some spikes slightly change their time 
positions SP is high even though spike patterns are still very similar).  
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In order that the SP makes both “non-temporal” and “temporal” 
comparisons each spike from the spike activity is replaced with a decaying 
exponential. This is done by performing a convolution operation between the spike 
activity and a decaying exponential. This way, every liquid state holds information 
about current spikes but also about past spikes (note that “time-noise” has little 
impact with this approach). After the convolution operation is performed the spike 
activity is sampled to produce the set of liquid states. SP is computed as the 
absolute difference between the liquid states. Further information about improving 
the separation property can be found in [71]. 
 

5.4. The Parallel Perceptron Readout Unit. The p-Delta 
Learning Algorithm. 
 

 The read-out units are trained using the “p-Delta” learning rule. The 
algorithm was introduced by Peter Auer in [66] as a direct solution to designing the 
readout units of a Liquid State Machine [18]. In general, the learning rule can be 
used for training any parallel perceptron regardless of the application. The original 
algorithm was developed assuming that it will be applied to a system implemented 
exclusively in hardware. For such a system, the communication between individual 
neurons and the control unit can be a major difficulty. Therefore, the algorithm had 
one important constraint, simplicity.  

The following paragraphs present the original algorithm and also an 
improved version. It introduces a few modifications that make the algorithm faster, 
more stable and with a higher noise margin. However, the changes complicate the 
algorithm making it less suitable for a hardware implementation. Currently, our 
team is using a software model for the spiking neural network and is not aiming 
towards a software independent implementation. This allows a more complicated 
algorithm to be easily implemented.  

As presented in 5.2.2 the read-out units can be implemented by parallel 
perceptrons. The following paragraphs present the concept more thoroughly. 
 
 5.4.1. The Parallel Perceptron 
 

 A single perceptron, as introduced by McCulloch-Pitts, is a gate that 
computes an averaged sum of all inputs. If the sum is greater than the threshold TH 
the perceptron outputs “1” otherwise “0”. Mathematically, this is written as in 
equation (5.3). 
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where w is the synaptic weight vector and p is the input.  
 

The perceptron model can be easily implemented by a spiking neuron [32], 
[34] if p is considered to be the rate of the spike train. The output is “1” when the 
neuron fires and “0” otherwise. As already mentioned a parallel perceptron is a 
group of N single perceptrons that are fed with the same input P. The output of the 
parallel perceptron Y is produced by a squashing function S that counts the number 
of active neurons and maps this number onto a real number. The squashing function 
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S can be any monotonous continuous function. However, for the presentation of the 
training algorithm the linear function in equation 5.4 was used. 

 

( ) minminmax)( YYY
N

n
nS +−∗=    (5.4) 

 
where Ymax, Ymin are the boundaries of the output range and n is number of active 
neurons. 

The “p-Delta” algorithm can be efficiently used for training a parallel 
perceptron to map a set of given input data p to a desired target output t. 
 

5.4.2. The Single Perceptron Delta Rule 
 

This is the simplest learning rule that can be applied to a single perceptron. 
Let p, y and t be the input, output and target data respectively. If the output y is ‘0’ 
and the target t is ‘1’ it means that the dot product wp is too small in comparison to 
the desired threshold TH. In order for the dot product to increase, the weight vector 
w needs to move toward the data vector p; hence the angle between the two 
vectors will decrease. If the output y is ‘1’ and the target t is ‘0’ it means that the 
dot product wp is too large and so the weight vector needs to move away from the 
data vector. If the output y matches the target t no change is done. The rule can be 
mathematically expressed by eq. (5.5). 
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   (5.5) 

 
where λ is the learning rate. 
 

5.4.3. The Parallel Perceptron p-Delta Rule 
 

In theory the approximation error of the parallel perceptron can be as small 
as half the size of the quantization step. Therefore, the algorithm could theoretically 
set the desired accuracy ε to the value given by eq. (5.4), where Ymin and Ymax are 
the same as in equation (5.4). 
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However, reaching this error level is not guaranteed. This is because the 

algorithm can get stuck in a local error minimum and so it will not find the global 
minimum that satisfies eq. (5.4). Therefore, from now on it is considered that the 
accuracy ε is set by the user application and that the number of neurons N is 
sufficient for the accuracy constraint to be met. Given the input data p, the output 
of the parallel perceptron Y(p) is computed with eq. (5.2). If the weights of the 
parallel perceptron are correct the output should be as close to the target t as 
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constrained by ε. This is expressed in eq. (5.5). 
 

( ) ε<− tpY     (5.5) 

 
If the output is greater than the target it means that too many neurons are 

active and so the weights of “some” of the active neurons should move away from 
the data. If the output is too small compared to the target, too few neurons are 
active and so “some” of the inactive neurons should move their weights towards the 
data. The term “some” is flexible and represents the answer to the question: “how 
many and which neurons should be chosen for weight modification?” The authors of 
[66] suggest that all active neurons should be updated if the output is greater than 
the target and also that all inactive neurons should be updated if the output is 
smaller than the target. This approach does not offer a great convergence speed or 
stability. However, it minimizes communication between neuron units if a hardware 
implementation is preferred. In [66] it is also suggested that the stability and 
convergence speed could be improved if only a few neurons (or one [67]) are 
chosen for weight modification. Those neurons should be the ones that have a dot 
product wp that is closest to the threshold. This approach on the other hand 
increases communication as the neuron units would need to broadcast their dot 
product to the central unit.  

Because we use a software implementation of the spiking neural network 
model, communication bandwidth is not a constraint. Therefore, during each 
training iteration, the weights of only one neuron are updated. This neuron is 
considered “winner”. A neuron is declared winner if it has a dot product wp that is 
closest to the threshold and also if is on right side of the threshold. Therefore, the 
learning rule can be mathematically expressed by equation (5.6). 
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where: 

• λ is the learning rate  
• η is the normalization rate 
• k  is the winning neuron 
• i =1….N   

 
The middle term, containing the norm of the weight vector is a correction 

that is performed for each neuron on all iterations. This correction preserves the 
angle of the weight but brings the length of the vector to unit length. This is 
important because the dot product wp represents the angle between the two vectors 
only if the lengths of the vectors remains roughly the same. 
 

5.4.4. Adaptive Learning Rate 
 

The first modification to the original algorithm is the introduction of an 
adaptive learning rate. The learning rate is recomputed at each iteration as in eq. 
(5.7). 
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The learning rate starts from a maximum value λmax and then decreases as 

the parallel perceptron starts to approximate the data well. 
 

5.4.5. Greedy vs. Not Greedy 
 

The second modification to the algorithm is the implementation of a 
conscience mechanism. A statistical study was done to see how fast the algorithm 
converges. The algorithm is considered to have converged when the parallel 
perceptron approximates the target with an error smaller than ε for every data point 
in the training set. 10000 simulations were performed for every data point p and 
target t. The target t is the result of a randomly chosen linear function that takes p 
as input variable. Each simulation starts with different initial weights for the 
neurons, records the number of epochs that the algorithm needs to converge and 
places it in a convergence histogram. Such a histogram is presented in figure 5.5. It 
is seen that most trials converge in less than 400 epochs (aprox. 56.7%).  Some 
trials converge in more than 400 epochs but it is most likely that their convergence 
is caused by chaotic effects and therefore is unreliable. Because the convergence 
percentage is not very high it was interesting to see what prevents some of the 
trainings from converging. 
 

 
Fig. 5.5. PDelta Convergence histogram 

 
 An activity monitor variable was attached to each neuron forming the 
parallel perceptron. The activity variable counts the number of times the weight of a 
neuron is updated during the current epoch. Then, it divides the count to the total 
number of updates performed during the epoch for all of the neurons. After the 
epoch is finalized the activity variable reflects a percentage of how often was a 
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neuron declared winner. Figure 5.6 plots the activity traces for all the neurons 
during a trial that did not converge (each neuron is plotted in a different color). It is 
seen that initially several neurons have their weights updated. However, at some 
point, only one neuron is chosen exclusively for weight modification. This “greedy” 
behavior occurs when a neuron reaches a region that is densely populated with data 
and no other neuron is in the same region. 
 

 
Fig. 5.6. Distribution of weight activity (“greedy” approach) 

 
In order for the minimum error to be reached it is required that several 

neurons are present in this region such that the quantization is smoother. Unluckily, 
no other neuron is close enough to the data and so the single isolated neuron will 
always win the competition preventing other neurons to approach the region.  In 
order to avoid this greedy behavior a conscience mechanism is inserted in the 
scoring function that is responsible for selecting the winner neuron. The scoring 
function calculates two scores: a proximity score PS and an activity score AS. Both 
scores are sub-unitary and reflect the probability of a neuron to be declared winner. 
The proximity score ranks the neurons based on dot product comparison. PS will be 
1 for the neuron with a dot product that is closest to the threshold TH and 0 for the 
neuron that is furthest away. The activity score is computed by monitoring the 
activity trace of each neuron i inside a window of given size WS. The activity score 
AS is computed at any time t as shown in eq. (5.8). 
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The overall score is the product of the two scores PS and AS. The neuron 
with the highest overall score is declared winner. A neuron weight activity trace for 
the “not greedy” approach is presented in figure 5.7.  
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Fig.5.7. Distribution of weight activity (“not greedy” approach) 

 
It is seen that in this case no neuron dominates as all neurons change 

weights throughout the epochs of the algorithm. It is seen that with this approach 
the algorithm converges a lot faster (140 epochs). In order to graphically compare 
the “greedy” and “not greedy” methods a similar histogram as the one in figure 5.5 
was computed. Figure 5.8 plots the cumulated sums of several such histograms. 
 

 
Fig.5.8. Convergence Rate 

 
The blue trace represents the cumulated sum of the “greedy” histogram in 

figure 5.5. The other traces are cumulated sums of histograms obtained with the 
“not greedy” approach for several values of the window size WS. It is seen that the 

BUPT



5.4 – The Parallel Perceptron Readout Unit. The p-Delta Learning Algorithm 85 

size of the averaging window WS does not significantly influence the convergence 
speed of the algorithm. However, it is also seen that the “not greedy” approach 
converges a lot faster than the “greedy” approach and also that the number of un-
converged trials is significantly reduced. The same data is numerically available in 
table 5.1. 

 
Table 5.1. Greedy vs. Not Greedy Convergence Statistics 

Converge under x epochs Method 

100ep 200ep 400ep 

Never 

converge 

Greedy 6.21% 26.94% 56.13% 36.89% 

Not Greedy 17.56% 63.38% 93.12% 0.53% 

 
5.4.6. Adaptive Noise Margin Control 
 

The algorithm stops when the error of the parallel perceptron is below the 
desired accuracy ε. This happens when for any data point in the training set all 
neurons will have a suitable dot product wp relative to the threshold TH. The 
problem with this approach is that some of the neurons could have a dot product wp 
that is very close to the threshold. In this case, any noise affecting the data can flip 
one of the neurons thus causing an undesired change at the output of the squashing 
function. More details on the necessity of a high noise margin can be found in [68], 
[69]. 

The original algorithm presents a solution to this problem by inserting a 
mechanism that produces a reasonable amount of noise margin between the 
thresholds and the wp products of all neurons for any data point. This is done by 
adding another term in the learning process as presented in equation (5.9). This 
applies only when the output is within the desired accuracy but the dot product wp 
is closer to the threshold TH than a specified margin M. In this case the weight 
vector W is moved towards or away from the data with the margin learning rate mlr 
such that the noise margin is increased. 
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The only problem with this idea is the constant learning rate mlr and the 

constant margin M. Choosing a margin beforehand can be tricky because the 
maximum obtainable margin is dependent on the distribution of the data within the 
input space. Also, a learning rate that is too big can lead to instability and also to 
the inability to reach the maximum margin even though this margin might has been 
guessed or computed beforehand. As a solution to this problem our approach 
introduces an adaptable learning rate mlr and an adaptable margin level M.  

The margin level M is recomputed at each iteration as being the P% 
percentile of all margin levels for all neurons. Values for P between 5% and 20% 
have proven to work very well. This approach guarantees that the margin constraint 
M is not higher than what the p-perceptron can obtain considering the given data. It 
also assures that the algorithm adapts and increases the constraint M once the 
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average margin increases. This leads the algorithm towards obtaining the highest 
possible margin even though the margin is not known beforehand.   

Several attempts were made until an appropriate control rule for adapting 
the learning rate mlr was found. The first attempt was to increase the learning rate 
whenever the derivative of the average margin is high. This meant that the current 
average margin is still significantly small compared to the maximum margin so 
faster changes can be done. Whenever the derivative of the average margin is small 
or negative the learning rate mlr is decreased because the maximum margin is close 
or already reached. The problem with this method is that predicting the approach to 
the maximum margin by monitoring changes in the average margin can lead to a 
late prediction. If the learning rate is very high at this point the algorithm can 
become temporally unstable and loose whatever progress accumulated.  

The second attempt tried to fix this problem by setting positive and negative 
boundaries for the learning rate. This assured that the algorithm will not get out of 
control. Unfortunately the boundaries were also data dependent and could only be 
set experimentally. 

The third approach was more successful. At each step of the algorithm, the 
learning rate mlr is modified according to equation (5.10). K is a percentage with 
range -1 to 1 given by eq. (5.11), where ∆m is the changes of the average margin 
during the last training epoch. 

 
mlrKmlr ∗+⇐ )1(              (5.10) 

 
BmAK +∆∗=              (5.11) 

 
A normal learning regime is one where the margin increase ∆m is equal to 

an estimated increase ∆mest. In this case mlr should be constant hence K should be 
zero. ∆mest is computed with eq. (5.12). In practice, ∆m will not equal ∆mest but will 
randomly move inside a small interval around it. This will create small opposite 
changes in mlr that will average down to zero. 

 

A

B
mest −=∆              (5.12) 

 
Whenever ∆m is constantly larger than ∆mest it is considered that the 

learning process allows a faster increase of the margin. Because in this case K is 
constantly positive the learning rate mlr will increase. In order to avoid an excessive 
increase of the learning rate the algorithm enters an adaptive regime where the 
estimated value ∆mest is reevaluated with eq. (5.13). This moves ∆mest towards the 
new average value of ∆m. This is graphically shown in figure 5.9. 
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Whenever ∆m is constantly smaller than ∆mest the algorithm adapts in the 

opposite direction. Figures 5.10 and 5.11 give the values of the average margin and 
of mlr respectively over the epochs. Please note that the margin enhancement 
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mechanism is inhibited until the mean square error of the parallel perceptron 
reaches the desired accuracy level. This can be seen in the fact that until epoch 70 
the average margin changes randomly as a result of the error minimizing learning. 

 

 
Fig.5.9. K Control Rule 

 
It is seen that as the margin approaches its maximum value, the learning 

rate mlr decreases. The margin reaches its maximum value some time before epoch 
150. It is seen that until this point the learning rate mlr is sufficiently small such 
that any additional changes do not make the learning process unstable or loose any 
of the gained progress. 

 

 
Fig.5.10. Average margin during training 

 
The value for A was experimentally set to 2 and it reflects the sensitivity of 

K over ∆m. The initial value for the learning rate mlr was also set experimentally. 
Anyway, it is preferred to have a very small value for mlr at the beginning of 
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training in order to avoid instability. The algorithm will quickly adapt mlr to a proper 
level. 

 

 
Fig.5.11. Margin learning rate mlr during training 

 

5.5. The Feedforward Readout Unit. Backpropagation. 
 
The structure of the multi-layer feedforward readout unit is presented in 

figure 5.4. The input of the readout unit is the state of the liquid medium. Because 
the spiking activity of the liquid medium is filtered, the resulting state will be a 
vector containing real numbers. Like all feedforward neural networks the readout 
unit is able to map the input vector to the desired output function. The 
backpropagation learning algorithm is used for training the readout unit. Equation 
5.14 shows the recursive relation between the outputs of two successive neural 
layers. Index m is the number of the layer and has values between 1 and M. The 
equation is written by examining the network in figure 5.4  

 

( )mmmmm baWfa += −1              (5.14) 

 
Consider that the following input-output training pairs are available (pq, tq) 

with q=1 to Q, where Q is the size of training set. For each input pq the output of 
the network aq can be calculated using eq. 5.14 and the error of the network is 
calculated as the mean square error MSE in eq. 5.15. It is considered that pq, aq and 
tq are vectors. Index k in eq. 5.15 represents the kth training iteration.  

 

( ) ( ) ( )qqTqq atatkF −−=              (5.15) 

 
The weights W and biases b of the neural network are adjusted such that 

the error function F is minimized. This is done by using the gradient decent 
technique presented in eq. 5.16. Indexes i and j denote a connection between 
neuron i of the mth layer and neuron j of the (m-1)th layer. It is seen that weight 
changes are inverse proportional to the derivative. Additionally, the changes are 
modulated by learning rate lr which controls the speed and stability of the 
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algorithm. This method guarantees that at each iteration k the error is decreased. 
However, it does not guarantee that error will ever reach its global minimum.  
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The biggest difficulty of the algorithm is to compute the partial derivatives in 

eq. 5.16. This is because the error function F is indirectly related to weight values of 
different layers. Equation 5.17 decomposes the derivative of 5.16 into a product 
where Si

m represents the sensitivity of the error function F relative to the net output 
ni
m of the mth layer.  
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Equation 5.18 groups all sensitivities of layer m into a single sensitivity 

vector Sm. The sensitivity vector can also be expressed recursively as a function of 
the sensitivity vector of the next layer. This is shown in equation 5.19.  
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It is seen that the sensitivity vector also depends on the Jacobian matrix 

shown in eq. 5.20 
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Each element of the Jacobian can be calculated by substituting in eq. 5.14. 

This transforms eq. 5.19 to eq. 5.21, where ( )m
nF&  is given by eq. 5.22. This 

relation allows computing the sensitivities on all layers starting from the last layer 
and advancing towards the first layer of the network (hence the name 
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backpropagation). The sensitivities of the last layer can be easily computed because 
the error function depends directly on the net output of the last layer. Matrix 

function ( )m
nF&  can also be computed by evaluating all derivatives of the activation 

functions for the values of nm produced by the input data pq. 
 

( )( ) 11 ++= mTmmmm
SWnFS &              (5.21) 
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A few additional improvements can be made to backpropagation. For 

example, eq. 5.23 displays a training rule that uses momentum. At each training 
iteration the weights are updated as a combination of two terms. The first term is 
calculated according to eq. 5.16 of backpropagation. The second term equals the 
weight updates performed during the previous training iteration. This assures that 
the weights update has inertia (momentum) and has a tendency to preserve its 
dynamic trajectory. The advantage of having momentum is that the training is less 
likely to get stuck in a local error minimum. As a result, the algorithm allows a 
temporary increase of the error function. Another improvement is using an adaptive 
learning rate.   

   

( ) ( ) ( ) ( )11 −∆+∆−=∆ kkk
mm

backprop

m
WWW λλ                    (5.23) 

 
The readout units can also be implemented by spiking neurons instead of 

classic logsig neurons. In this case, an alternative to backpropagation in presented 
in [75], [76] and [77]. 

BUPT



6.3 – Filtering with Liquid State Machines 91 

 
 
 

6. GABOR FILTERING USING LIQUID STATE 
MACHINES AND SPIKING NEURONS 

 
 

6.1. Introduction 
 

Recent studies of the visual cortex have revealed the existence of 
specialized cells that are selective to particular frequencies and orientations. The 
discoveries of Hubel and Wiesel revealed significant information regarding the 
functioning of these cells. It is generally accepted that their functionality is 
successfully approximated by 2D Gabor wavelets, which are also tuned to specific 
orientations and frequencies.  

Because face detection and recognition is a task that is easily performed by 
the brain, biologically inspired approaches like Gabor filtering are very appealing to 
researchers because of their potential. Presently, several face recognition systems 
using Gabor filtering have very good recognition rates proving that the approach is 
very promising [92], [93], [95] and [96].  

 
6.2. Gabor Filtering 
 
The Gabor filter was first introduced by Denis Gabor in [88] as joint entropy, 

minimizing frequency sensitive filter. It was later extended to two dimensions by 
Daugman [89], a modification that is also biologically motivating [90]. The kernel of 
the Gabor filter is shown in eq. 6.1. It is a 2D harmonic oscillation, composed of a 
sinusoidal plane wave of a particular frequency and orientation, restricted by a 
Gaussian envelope.  
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Figure 6.1a presents the surface representation for the absolute value of the 

Gabor filter. The contour of the Gabor surface can be depicted in 6.1b for 4 distinct 
orientations of the wave plane. Further information in Gabor filtering can be found in 
[91] and [94]. 

 
6.3. Filtering with Liquid State Machines 

 
6.3.1. Input Signals 
 
The input information is represented by raw pixel data. We have used two 

methods to feed the signals to the Liquid State Machine. The first method sends the 
pixel data directly to the liquid medium. Each pixel signal, represented as an analog 
current, can source a liquid neuron directly. Alternately, a layer of integrate and fire 
neurons can be interposed between the pixel signals and the liquid medium. In this 
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case the new layer rate-codes the pixel signals and sources the liquid medium with 
spike trains rather than analog signals. 

 

 
a) Surface Representation  b) Contour Representation 

 
Fig. 6.1. 2D Gabor Filter Kernel 

 
The disadvantage of this approach is the high number of input signals 

associated with larger input images. If we assume that one liquid neuron cannot be 
sourced by more than one input signal, the number of liquid neurons needs to be at 
least as large as the number of pixels in the input image. Moreover, if most of the 
liquid neurons are sourced by input data, the liquid medium might become 
saturated and might not have any free resources to perform any useful 
computation.  This means that the size of the liquid medium must be at least a few 
times larger that the size of the input image. Another disadvantage is that in this 
case the input signals are static, fact that is more or less inconsistent with the 
dynamic behavior of the LSM.   

The second method uses time-multiplexing in order to reduce the number of 
input signals. Figure 6.2 presents the architecture that was used. The left-side figure 
shows an image column circuit. It is constructed from a set of pixel circuits each 
connected to an individual pixel. All pixel circuits have a shared control signal called 
“phase shift signal”. The control signal contains a pair of spike trains that have a 
constant phase shift relative to each other. The first spike train has a constant 
frequency and is considered to be the reference signal. The second spike train has a 
frequency that is either slightly smaller or higher, and so the phase of the second 
spike train shifts constantly relative to that of the first spike train. Each pixel circuit 
is sensitive to a unique phase difference. Whenever this phase difference occurs, the 
pixel circuit activates and generates its own spike train that is proportional to the 
input pixel. Otherwise the pixel circuit remains inactive. An I&F neuron combines all 
signals into a single output. The I&F neuron has a threshold that is sufficiently low 
such that the neuron generates a spike whenever it receives a spike. The speed of 
the phase shift determines the frequency of the time-multiplexing and also how 
much time is dedicated to each channel. 

 Several column circuits are combined into a set in order to cover the entire 
space of the input image. Figure 6.2 (right) shows this design. Each column circuit 
multiplexes the pixels from an image column. The width of a column circuit equals 
the number of rows in the image. Alternately, the image can be transposed in order 
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to do a sweep along the rows. The number of signals that are sent to the LSM is 
reduced to the number of columns (or rows). 

 

 
Fig. 6.2. Time-Multiplexing the Input Signals  

 
One possible drawback of this method could be the fact that the LSM does 

not have access to the entire amount of information at the same time. However, the 
concept of liquid computing is based on the idea that the liquid medium is able to 
store past information in its high dimensional internal state. This means that if the 
frequency of the multiplexing is not too low, the LSM should be able to do 
computations on the entire image even though it has access to only part of the 
information at a time. 

Figure 6.3 shows the circuit that performs the actual multiplexing (the pixel 
circuit PC).  Central to this circuits is the resonate and fire neuron (R&F). Figure 6.4 
(right) shows how the membrane potential of the R&F neuron is affected by the 
spikes of the phase shift signal. Initially, the membrane potential is in resting state 
which is zero. Consider that the reference spike occurs at time tsp1 and the variable 
phase spike occurs at tsp2. The membrane potential is represented in the complex 
plane by z(t). At tsp1 z changes from zero to S, where S is the strength of the input 
synapse of the R&F neuron. The membrane potential starts to oscillate according to 
(6.2), where ωRF is the pulsation of the oscillation. Because the R&F neuron was 
resting before the first spike we can consider tsp1 = 0. 

 

( ) ( ) ( )tiSiStz RFωϕ expexp ==    (6.2) 

 
As presented in chapter 2, the timing of the second spike relative to the 

phase of the oscillation determines whether the membrane potential reaches the 
threshold or not. The neuron is most sensitive to spikes occurring at times when ωt 
is a multiple of 2pi. Therefore, as presented in figure 6.4 (left) and by equation 6.3, 
the pulsation ωRF of the R&F neuron should be set such that the timing of the 
second spike tsp2 synchronizes with the phase of the oscillation at 2kpi. 

PC 
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Fig. 6.3. Pixel Multiplexing Circuit 

 
In addition, the threshold of the neuron should be set such that the R&F 

neuron is still sensitive to spikes that occur during a time window of ∆tsp2 centered 
on tsp2. Equation 6.4 can be written by examining the geometry of figure 6.4 (right). 
It shows how to calculate the threshold TH in order for the membrane potential z to 
exceed the threshold if the phase of the second spike is in range ±φ around 2pi.  
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Equations 6.3 and 6.5 design an R&F neuron that is sensitive to a pair of 

spikes that have a specific timing difference of tsp2± ∆tsp2/2. The phase difference of 
the two control spike trains shifts constantly and so at same point the second spike 
will be inside the time window of the R&F neuron (fig. 6.5).   

Note that it is assumed that the R&F neuron has a resting membrane 
potential before receiving the reference spike. It is the job of neuron I&F1 to assure 
that this happens. The threshold of this neuron is set such that it generates a spike 
for every three spikes that it receives. Its output is inhibitory and serves as a reset 
mechanism that brings the membrane potential of the R&F neuron to zero.  

Note that the R&F does not fire a spike immediately after receiving the 
second control spike at tsp2, even if the timing of the spike is correct. It continues to 
oscillate for a short time (less than pi/2) until the membrane potential exceeds the 
threshold (also seen in fig. 6.5). If neuron I&F1 triggered the reset after two spikes 
instead of three it would risk bringing the R&F neuron to resting potential 
prematurely, preventing it from reaching the threshold. This is fixed by triggering 
the reset after three spikes and slightly delaying the control signal for the R&F 
neuron. This way, when the third control spike (a reference spike) reaches the R&F 
neuron it would have already caused neuron I&F1 to trigger the reset.  
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Fig. 6.4. Membrane Potential of R&F Neuron 
 

Neuron I&F2 integrates the pixel signal and then generates an output spike 
train that rate-codes the pixel information. The threshold and loss factor of I&F2 are 
set high, and so the neuron is unable to reach the threshold with just the pixel 
signal at the input.  When neuron I&F2 also receives spikes from neuron R&F its 
energy is boosted and the neuron starts to fire. This is equivalent with temporarily 
lowering the threshold. The period of the output spike train To is a function of the 
pixel P as shown in eq. 6.6 and 6.7. The value B is the average energy value 
produced by the boosting spike train. Note that the output of the resonate and fire 
neuron R&F is not used directly as a booster signal. Instead, an integrate and fire 
with burst I&FB is interposed between neurons R&F and I&F2. The reason is the 
following: in order for the boosting spike train to be well approximated by its 
average value B, its period needs to be much smaller than the operating time 
constants of neuron I&F2.  Neuron I&FB has the duty to generate a burst of spikes 
for every spike generated by neuron R&F. This avoids a situation where the pixel 
circuit operates at a frequency a lot higher than that of the Liquid State Machine. 
The concept is also depicted in figure 6.5. 
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Equation 6.6 gives the period-pixel dependency and therefore defines the 

rate-code. It can be noticed that the code is not linear. This is not necessarily a 
problem but we would prefer to have a linear coding rather than a logarithmic one.  
Neuron I&F3 has the duty to linearize the transfer function as much as possible. The 
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neuron is fed by the pixel signal P via a static synapse connection m1 and also by a 
constant signal K. 

 
Fig. 6.5. Activation of R&F Neurons 

 
The output of I&F3 is sent to neuron I&F2 via the synaptic connection m2. 

The expected functionality of the circuit is the following. For high values of P the 
rate code generated by neuron I&F2 is almost linear. Therefore, we want neuron 
I&F3 to have little or no influence in I&F2. This is achieved by making connection 
m1 inhibitory. For low values of P the inhibition of m1 is small and neuron I&F3 
activates and starts firing. The average value of the spike train generated by I&F3 
partially compensates the non-linearity of I&F2. The values of m1 and m2 are 
subject to optimization. Figure 6.6 shows the performance contour obtained for the 
scoring function in eq. 6.8. As expected, the best performance is obtained for a 
negative connection m1 and a positive connection m2.  

 

 
Fig.6.6. Optimization of m1 and m2 synaptic connections 
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The scoring function in eq. 6.8 is a ratio of the range of the output period T 
and the mean square error between function T and its linear approximation 

T (linear regression). This way we seek a transfer function that is as linear as 
possible and that also preserves the output dynamic range. Figure 6.7 shows the 
results of the optimization. The blue trace represents the original transfer function 
(rate-code) as given by eq. 6.6. The green trace is its linear approximation obtained 
with linear regression. The dashed red trace is the corrected transfer function. This 
transfer function is obtained for the optimal pair (m1, m2) and is the most linear 
transfer function achievable with this architecture. Of course, adding additional 
correction neurons could improve the linearity.      

 

 
Fig.6.7. Linearized Rate-Code   

 
 

6.3.2. Spike Generator with Shifting Phase 
 
As presented in the previous paragraph the resonator circuit requires two 

control spike trains that have a shifting phase difference. Figure 6.8 depicts such 
signals. The first spike train has a steady period T. The second spike train has an 
initial phase difference and also a period that is roughly higher than T. Therefore the 
second spike train has a phase that will constantly shift away from the phase of the 
first spike train. The minimum and maximum phase differences are given by the 
phase shift control window. When the phase of the second spike train reaches the 
end of the phase shift window its period is decreased and so the process is reversed.  
The continuously changing time difference between the two spike trains can be used 
to activate selectively the resonate and fire neurons. Figures 6.9 and 6.11 show two 
I&F neural circuit implementations that generate the signals described above. The 
implementation shown in figure 6.9 has more neurons. However, the functionality of 
each neuron is simpler and more biologically plausible compared to figure 6.11.  
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Fig. 6.8. Shifting Phase Spike Trains 

 
Neurons 1, 2, 3 and 4 integrate the same analog stimulus and therefore 

generate spike trains that have the same frequency. The initial membrane potentials 
of the four neurons are evenly spread in their dynamic range and so there’s a T/4 
phase shift between spikes. Neurons 1 and 2 are responsible for generating the odd 
spikes of the first and second spike train respectively. Neurons 3 and 4 generate the 
even spikes. Neurons 5, 6, 7 and 8 are gate neurons. This means that they have a 
sufficiently low threshold that they fire a spike whenever they receive a spike, as 
long as there is no inhibition signal.  

Neurons 9, 10, 11 and 12 are I&F neurons that have a very high loss factor. 
Their threshold is set such that two input spikes are able trigger the neuron as long 
as the two spikes both arrive within a given time window. The value of the loss 
factor controls the size of the time window.  Figure 6.10 presents this concept (for 
simplicity the three spikes are abbreviated S1, S2, and S3).  

 
Fig. 6.9. Shifting Phase Circuit 1 
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Initially, the timing of S2 is inside the time window of both neurons 9 and 
11, and would potentially cause both of them to fire. However, because neuron 9 
fires first (it receives S1 and S2; neuron 11 receives S2 and S3), it will send an 
inhibitory spike to neuron 11 forcing it not to fire. As a result, neuron 7 is inhibited 
and is deactivated while neuron 5 remains active. The purpose of neuron 5 is to 
retransmit the spikes of neuron 1 back to neuron 2 as an inhibitory feedback. This 
feedback delays spike S2 and creates the phase shift effect.   

The speed of the phase shift is determined by the strength of the synapse 
that connects neuron 5 and neuron 2. When spike S2 exits the upper time window, 
neuron 9 will stop firing and neuron 11 will start firing (because there is no more 
inhibition). This deactivates neuron 5 and activates neuron 7. As a result the 
negative feedback of neuron 2 is replaced with a positive feedback that accelerates 
spike S2 and gradually decreases the phase difference. When spike S2 re-enters the 
time upper time window neuron 9 is ready to fire again. However, it does not fire 
because now it is inhibited by neuron 11. Finally, neuron 13 combines the four 
signals into a single spike train that is ready to stimulate the R&F neurons of layer 
2. 

 

 
Fig. 6.10. Selective Firing Window 

 
The circuit in figure 6.11 has the same functionality. The difference is that it 

uses a pair of I&F neurons as context detectors (CD). The context detectors are 
used for determining the moments when spike S2 crosses the borders of the phase 
shift window. Because the context detector is sensitive to the timing between spikes 
but also to the order of spikes (S1, S2 is not the same as S2, S1) the spike trains do 
not need to be separated on odd/even channels. Therefore, only 2 neurons are 
needed for generating the two spike trains (neurons 1 and 2).   

When context detector CD1 fires a spike it triggers neuron 5. Because this 
neuron has a positive feedback connection it will keep firing until it is inhibited by 
CD2. Similarly, CD1 inhibits neuron 6. This mechanism toggles activation of gate 
neurons 3 and 4 and creates the phase shift effect as explained for circuit 6.2.  
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Fig. 6.11. Shifting Phase Circuit 2 

 
6.3.3. Estimating Gabor Coefficients with Liquid State Machine 

 
As presented in 6.3.1 there are two types of input signals. The first type, 

which we will call StaticInput, corresponds to the case when the entire image is sent 
to the liquid state machine. The second type, named DynamicInput, is the time-
multiplexed signal. If the multiplexing is done along the columns the signal is called 
DynamicInputX; if the multiplexing is done along the rows the signal is called 
DynamicInputY. The period of the time-multiplexed signal is 1s. This means that it 
takes 1s to completely scan an input image and produce the input signal. After 1s 
the input signal is repeated. It takes at least one period until the entire information 
of the input image is available to the Liquid State Machine. Figure 6.5 presents 
some examples of spiking activity of the liquid medium when it is stimulated by 
input signals.    

We set up 4 readout units that are connected to the liquid medium by static 
synapses. Each readout unit is responsible for estimating the Gabor coefficient 
corresponding to filters with 4 different orientations: 0o, 45o, 90 o and 135 o. All 
filters have the same spatial frequency with wave number k = pi/2. The 
performance of the Liquid State Machine is tested with both types of 
implementations for the readout units: parallel perceptron (PP) and multilayer feed 
forward networks (MLFF).  

In order to train the readout units and then test the Liquid State Machine, 
training and testing data had to be gathered. A set of 30 random images are 
selected for the experiment. For every image, 20 different points are chosen by 
generating their coordinates randomly. A window of 11x11 pixels is centered on 
each random coordinate, thus generating 600 smaller input images. For every input 
image the target Gabor coefficient tG is calculated with eq. (6.1). Because filters 
with 4 different orientations are used, the target data will be 4x1 vectors. 

The input images are converted to input signals according to 6.3.1 which are 
used at stimulating the liquid medium. The spiking activity of the liquid medium is 
recorded and converted to a set of liquid states as presented in 5.3. The liquid 
states are real Nx1 vectors, where N is the number of neurons of the liquid medium, 
and they represent the input of the readout units pL. The (pL tG) data is divided into 
two sets of 400 pairs and 200 pairs used at training and testing accordingly. The 
training algorithm further divides the training set into training and validation. During 
training, the error of the approximation is a vector is considered to be the difference 
between the outputs of the 4 readout units and the target vector tG. Each readout 
unit is trained independently from the others and tries to minimize one component 
of the error vector. 
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Fig. 6.12. Spiking Activity of Liquid Medium 

  
The two types of implementation of the readout units (PP and MLFF) are 

tested separately. After the readout units are trained, the Liquid State Machine is 
tested with images from the testing set. Figure 6.6 presents an example of the 
functionality of a trained LSM. In this case the LSM is stimulated by 10 input 
images, the input being changed every 6 seconds. The red dashed line marks the 
value of the target Gabor coefficient (0o filter). The blue trace is the output of the 
LSM. It is important to notice that the LSM is not able to approximate the Gabor 
coefficient well immediately after the new input image is available.  

A certain amount of time is needed until the LSM manages to process and 
accumulate enough useful information in its liquid states. Additionally, because the 
liquid medium behaves like a filter that retains information, it takes some time until 
the information of the old input image fades away. 

 

 
Fig. 6.13. Estimating Gabor Coefficients 

 
6.3.3.1. Approximation Accuracy 

The approximation error is computed as the absolute difference between the 
output of the readout unit and the actual Gabor coefficient from the target set. 
When stimulated by a new set of input signals, the Liquid State Machine will have a 
higher approximation error at the beginning. Afterwards, if the LSM is able to 
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perform useful computations, the absolute error should have a tendency to decrease 
exhibited by e(t). In order to quantify the approximation accuracy emin of the LSM 
we determine the minimum value e(tm) = min(e(t)) as long as for any moment of 
time t > tm no more than K percent of the error samples e(t) are higher than e(tm). 
In this case tm is considered to be the time required by the LSM to reach its best 
approximation accuracy. A small error can either be the outcome of a good 
approximation or the effect of random noise. The measurement technique presented 
above is insensitive to noise and determines the approximation performance of the 
LSM. An example is presented in figure 6.14. Note that the Gabor coefficients are 
scaled [0 to 1] and so the approximation accuracy emin is expressed in percentages.  

 

 
Fig. 6.14. Computing the Approximation Error 

 
6.3.3.2 Approximation Speed 

As explained in 6.3.3 the LSM requires some time until it can reach its best 
approximation accuracy. This time can also be considered a performance measure in 
addition to approximation accuracy. In order to quantify it, we introduce three 
additional measurements: t10%, t20% and t50%. It is considered that for t>tP%, e(t) 
verifies condition (6.9) for more than its K samples, where K is the same as for emin. 
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While t10%, t20% are meant to measure how fast does the LSM reach its best 

accuracy, t50% measures how fast is the LSM able the fade away the information of 
the previous input image. 
 

6.3.3.3. LSM Performance 

 Table 6.1 presents the performance results for three different LSM networks 
equipped with MLFF readout units. All types of signals (Static, DynamicX and 
DynamicY) are tested. Every group of 3 rows in the table shows the performance 
results of one LSM network. Each LSM has different network parameters that are 
optimized to different performance criteria.  The optimization is performed by using 
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a genetic evolution method [87]. The vector of parameters that is subject to 
optimization is shown in eq. 6.10.  
 

}ParametersSynapseParamtersLSMParametersNeuronParametersNetwork

DIPERINHCkLossTHtopZtopYtopX max

444 8444 7648476444 8444 76
λ (6.10) 

 
The performance criteria for the three optimizations are: emin for LSM1, 0.5* 

t10%  + 0.5* t20%  for LSM 2 and t50% for LSM3. The optimization criterion is also 
underlined by the curly border of the table cell. The numbers shown in table 6.1 are 
computed by averaging the results of 600 simulations performed on 30 different 
LSMs (20 different input stimuli for each LSM). In addition, the performances of the 
4 readout units (one for each angle) are also averaged. All LSMs have the same 
parameter vector (6.10). Nevertheless, because some of the vector components are 
statistical parameters (the LSM parameters), the 30 LSMs are different. 

 
Table 6.1. Feed-Forward Multilayer Readout Unit 
 Signal 

Type 
Best Aprox. 
emin [%] 

Time to e < 
t10% [s] 

Time to e < 
t20% [s] 

Time to e < 
t50% [s] 

Static 8.2% 2.85 2.04 1.06 

DynamicX 6.2% 2.91 1.98 1.10 

LSM 1 

DynamicY 6.8% 2.97 2.03 1.07 

Static 7.8% 2.75 1.94 1.05 

DynamicX 6.5% 2.69 1.89 1.03 

LSM 2 

DynamicY 6.9% 2.65 1.84 1.01 

Static 13.2% 2.92 1.88 0.97 

DynamicX 9.1% 2.88 1.92 0.93 

LSM 3 

DynamicY 9.3% 2.93 1.89 0.89 

 
The first general observation is that all LSMs perform better for the 

DynamicX and DynamicY input signals compared to the Static signal. Secondly, even 
though LSM1 and LSM2 are optimized for different performance criteria, they both 
perform well and similar for both criteria. For LSM3 the approximation accuracy emin 
is up to 5% worst while the t50% is decreased with up to 10%. It is interesting to 
notice that both LSM1 and LSM2 have neuron loss factors kLoss between 0.07 and 
0.12. On the other hand LSM3 has a lost factor between 0.16 and 0.19. The higher 
loss factor gives the LSM the ability to “forget” the old information faster, and so it 
is able to deal better with transitory regimes. 

Table 6.2 presents the approximation accuracy of LSM1 when the network is 
equipped with readout units implemented by a parallel perceptron.  

 
Table 6.2 Parallel Perceptron Readout Unit 

Signal Type Best Aprox. 
emin [%] 

Static 11.5% 
DynamicX 9.2% 
DynamicY 8.9% 
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The parallel perceptron uses enough neurons such that the approximation 
accuracy of the LSM is not limited by the quantization ability of the readout unit. 
Anyway, it can be noticed that the PP readout unit does a poorer approximation of 
the liquid states compared to the MLFF readout unit. However, the training of the PP 
readout unit is a lot quicker because the p-Delta algorithm does not need to 
compute the derivatives of backpropagation. 
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7. CONCLUSIONS AND CONTRIBUTIONS 
 
 

7.1. Conclusions 
  
 This thesis proposes a novel approach to information processing using 
neural networks. The subject is particularly interesting because spiking neural 
networks are used instead of traditional models. These are considered to be the 
third generation of neural networks and are the models most similar to the 
biological neurons. The new spiking models preserve all properties of previous 
models by using the frequencies of the spike trains to encode information.  
  
 7.1.1. Spiking Neural Networks  
 

The first chapter of the thesis presents up-to-date studies regarding the 
potential applicability of spiking neural networks and the motivation to choose such 
models. The second chapter presents the relation between spiking models and the 
biological neuron. The dynamic functionality of the synapse is presented and a 
simplified mathematical model (with variable internal state) is proposed {1}9. An 
important observation is made about the fact that the internal state of the synapse 
converges towards a constant when the pre-synaptic spike train is of constant 
frequency. This observation creates the opportunity for an important simplification 
inside the simulation framework. The simulator divides the neural network into 
areas and monitors the average spike frequency of each area. Afterwards, it uses 
the average frequency to estimate the internal state of the synapses in each area. 
Consequently, the internal state of each synapse must not be recomputed at each 
simulation time step. It will only be updated periodically as a response to average 
frequency changes. The second chapter also studies the structure of the neuron cell. 
First, the functionality of a single ion channel is introduced. Then, several possible 
configurations of ion channels are presented, each leading to a different dynamic 
behavior for the neuron cell. The analysis concludes with a selection of four neuron 
models that are considered to be most useful for simulation purposes {1}.   

The second chapter concludes by analyzing some information encoding 
techniques and also the ability of a spiking neural network to implement a content 
addressable memory with complete and incomplete spike contexts {2}.  
 

7.1.2. MATALB simulation framework 
 
Chapter 3 presents a MATLAB simulation framework for spiking neural 

networks together with all tools necessary for analyzing and visualizing results {7}.  
 

7.1.3. Parallel MATLAB framework and GPU accelerated framework 
 
The parallel implementations performed in the third and fourth chapters 

show that spiking neural networks are ideal candidates for parallel implementations. 

                                                 
9
 {n} associates this conclusion to contribution n in paragraphs 7.3 and 7.4 
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Neural networks in general are structures with an extremely high level of 
parallelism. The first attempt to parallelize the model uses a distributed MATLAB 
model that runs on several computers connected by a network. The attempt is 
successful and proves the potential of a parallel implementation. However, the 
improvement is not satisfactory considering the amount of available computational 
power and the difficulties encountered while setting up the simulator. The second 
attempt to parallelize the model uses a GT9800 NVIDIA GPU. This time the 
implementation is much more successful and achieves significant speed-up. In 
addition, further improvements are made to the model like: minimizing number of 
branches, eliminating unnecessary kernel overhead time by merging kernels, 
improving data access time by storing the data delay line in shared memory, 
reducing the transfer time of result by overlapping computation and data transfer. 
Chapter four concludes with a brief presentation of the MEX interface that connects 
the MATLAB application to the compiled CUDA C simulator.    

 
7.1.4. Liquid State Machines and p-Delta Learning Rule 

 
While the structure of the biological neurons is very well known, the exact 

architecture and computational models of the brain is still a mystery. Chapter five 
presents an architecture called Liquid State Machine that is able to perform dynamic 
data computation without previous knowledge of process or of the data itself. The 
structure of this computing machine is not deterministic and is generated by 
statistical rules. This aspect concludes that such architectures do not need to be 
designed and can easily be built using genetic evolution of their statistical 
parameters. When being stimulated by external signals the Liquid State Machine 
generates an un-stable sequence of states (neural activity) that is stimulus specific. 
A trained read-out unit is used to map the neural activity into a desired output 
function.  

Chapter five also presents two possibilities of implementing the read-out 
units: the parallel perceptron, and the feed forwards sigmoid networks; 
accompanied by suitable training algorithms: the p-Delta rule, and backpropagation. 
In the case of the p-Delta rule chapter five also presents three improvements that 
lead to a better convergence rate and a higher convergence speed: adaptive 
learning rate, not-greedy neuron competition, and a mechanism for adapting the 
noise margin {2}.  The improvements are the result of a thorough investigation of 
the dynamics of the training algorithm. Several scopes were attached to different 
variables that change during training. Analyzing the time traces of these variables 
uncovers the reasons why training fails to converge or does so very slowly.    

 
7.1.5 Extracting Gabor Coefficients from images using Liquid State 

Machines based on Spiking Neurons 
 

The concept of processing information using Liquid State Machines as the 
main computational core is proven by successfully extracting Gabor coefficients from 
images at different fiducial points. The Liquid State Machine manages to 
approximate the Gabor coefficients well without any pre-processing of the pixel 
data.  Both types of readout units (parallel perceptrons and multi-layer networks) 
prove to have similar performances from the error approximation point if view. From 
the computational perspective the parallel perceptron and the p-Delta training 
algorithm is less demanding. The parameters of the Liquid Medium are optimized 
using a genetic optimization. This approach was appealing because it is very likely 
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that the biological networks have evolved in a similar way. In addition, the genetic 
optimization can deal well with the large parameter space and the highly dynamic 
performance function that would be impossible to optimize with gradient methods.  
 

7.2. Future Work 
 
 The ultimate goal of this research is to design a system that can perform 
face recognition by using neural networks exclusively. So far, a good architecture 
(LSM) that can perform universal computation has been chosen. The architecture 
has been implemented to run on a GPU in order to accelerate simulation, and an 
application that estimates Gabor coefficients has been designed using LSM.  

In the future we plan to design subsequent parts of the system that use the 
estimated Gabor coefficients to perform face recognition [109], [110]. Also, we 
desire to use a feedback technique that helps the Gabor estimator at selecting the 
most significant fiducial points of the image rather than using a uniformly spaced 
grid. This technique will use adaptive coordinates for the fiducial points and will 
probably be biologically unfaithful. This is because the brain is able to recognize a 
face in just fractions of a second and it is unlikely that there is enough time to use 
an adaptive method for selecting fiducial points. Alternately, it performs analysis of 
the entire image in parallel and selects the relevant information in subsequent 
processing layers. However, because of our limited computational resources, and 
because we are not necessarily aiming towards a real-time recognition system, an 
adaptive solution will be a good compromise. In fact the performances are predicted 
to be similar with only speed being altered. So far, our research has only restricted 
to face recognition. However, there are several other biometric recognition 
applications that can use the liquid state machine architecture. The remaining of this 
paragraph presents such applications that are possible future research tracks.   

One of the research directions that we are aiming towards is affective 
computing. This differs from face recognition because we are interested in 
classifying the facial expression of a person rather than determining its identity. 
More information about affective computing can be found in [105], [106], [107] and 
[108]. An aspect that is very interesting and that deserves investigation is the 
potential ability of a liquid state machine to unify face recognition and affective 
computing by using a single liquid medium and multiple readout units. This is 
potentially possible because the two applications are similar in terms of input signals 
(Gabor coefficients). Therefore, it is the duty of the liquid medium to decompose the 
information and isolate aspects that are significant to either face recognition or 
affective computing.  

Probably the oldest biometric identification technique is fingerprint 
identification. In [97] Elmir and Zakaria present an application that uses a liquid 
state machine for fingerprint classification. It is very appealing that they also use 
Gabor filtered images to obtain the stimulus for the LSM and so facilitate unification 
with the techniques presented above.     

Another application that we are considering is human gait recognition, which 
is also a biometrical recognition problem [98], [111]. In contrast to the face 
recognition problem where the stimulus is static (or artificially dynamic as in the 
case of the swept input), the human gait analysis inherently comes with dynamic 
signals. This type of stimulus is better fitted to the functioning principle of the liquid 
state machine. The goal for this application is to use key points on the human body 
that form a set that is significant to human movement (i.e. feet, knees, elbows, 
shoulders, center of head). The trajectory of each point will be spike coded in terms 
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of absolute or relative changes of coordinates. The goal of the liquid state machine 
is to analyze the trajectory of each key point and also combine the set of 
movements into a unified gait characteristic. Such an application together with face 
recognition and affective computing can have numerous applications starting from 
human-machine interfaces serving visually impaired people ([99], [100], [101], 
[102], [103], [104]), biometrical identification, automotive or surveillance. 

Another question that remains unanswered is what parameters of the liquid 
state machine architecture are most significant; and also to what aspects of the 
information processing task. So far, parameters have only been improved by means 
of evolutionary methods without having a rigorous understanding of their influence.  

Although simulation speed has been greatly improved by using a GPU there 
is always desire for more. Presently, the achievable network sizes that can be 
simulated in reasonable amounts of time are still by far smaller than the biological 
counterparts. A grid super-computer would be an improved, thus expensive 
solution. Another less expensive approach is to use multiple GPUs, a feature that is 
offered by NVIDIA’s CUDA C. Global memory access time is a bottleneck for a single 
GPU and so combining several GPUs will raise additional communication issues. The 
best guess is that an application will have to be divided into several LSMs that do 
not directly interact; each LSM will run on an individual GPU. It will be the duty of a 
sub-sequent layer (a LSM, readout unit or another type of neural network) to 
combine the neural activities of the multiple LSMs and do a unified analysis. This is 
analog to the brain containing several clusters, each dedicated for a sub-task, 
without being interconnected to the other clusters (obviously a simplification).   
 

7.3. Theoretical Contributions 
  

The theoretical contributions are as follows: 
 
 1) Improved the p-Delta learning algorithm useful at training the parallel 
perceptron. This results in an algorithm that has a significantly higher convergence 
rate, convergence speed and stability. The improvements are:  
 

• An adaptive learning rate  
• A not-greedy competition between neurons. This prevents the 

algorithm from getting stuck due to situations when a single neuron 
wins the competition exclusively. 

• A mechanism for adapting the targeted noise margin and the noise 
margin learning rate. A momentum effect is introduced in the 
adaptation method in order to make it insensitive to noise. This 
offers the advantage that the noise margin (which is data 
dependent) does not need to be pre-computed. 

 
 2) A 4 step thread synchronization procedure was defined. The procedure is 
useful for synchronizing all threads of the application regardless of the block/thread 
design. This contribution is very useful at merging all kernels of the application into 
a single one. 
 3) A study is made regarding the ability of the integrate and fire neuron to 
implement a context detector and a content addressable memory. In addition, an 
analysis is made to determine the relationship between the size of the spike context 
and the ability of a content addressable memory to correctly recall a spike 
sequence.    

BUPT



7.4 – Practical Contributions 109 

4) An analysis was performed and it was determined that the spiking neural 
network simulator is parallelizable.  Additionally, this conclusion is tested with the 
MATLAB parallel model.  
 5) The thesis proposes a novel approach to perform filtering by using a 
Liquid State Machine based on spiking neurons. Gabor coefficients of different 
orientations computed around fiducial points of an image can be accurately 
estimated using the proposed architecture.  
 

 7.4. Practical Contributions 
 

6) Implementation of MATLAB simulation framework useful at simulating 
spiking neural networks. Individual neurons can use one of the following models: 
integrate and fire, integrate and fire with adaptation, integrate and fire with burst, 
and resonate and fire. The model uses dynamic synapses. 

7) Implementation of tools useful at:  
 

• Generating the network and synapse parameters required for 
creating a Liquid State Machine 

• Visualizing the structure, connectivity, neural activity and separation 
property of a Liquid State Machine  

• Visualizing membrane potential traces and spiking traces  
• Visualizing the neural activity of large networks as images by time 

averaging the spike trains  
• Displaying the synchrony between neighboring neurons. 
 

8) Implementation of Parallel MATLAB simulation framework by distributing 
the workload on several computers connected by a network.  

9) Implementation of parallel GPU CUDA model for Spiking Neural Networks. 
The implementation is written in CUDA C and accelerates the model dramatically 
making fast simulation and iterative simulation a reality.  

10) The BasicObject Class was created. This class allows easy transferring of 
objects from host memory to GPU memory. When an object contains internal arrays 
or internal sub-objects a transfer cannot be done by directly using the transfer 
functions provided by CUDA C. The BasicObject Class contains lists of pointers and 
transfer methods necessary for a correct and complete object transfer regardless of 
the object structure. 

 
Several improvements were made to the initial GPU simulation framework. 

Most significant are the following:  
 
11) Minimizing number of branches. The code was developed such that it 

uses as few braches as possible. This prevents the threads from having a divergent 
execution path and the hardware from serializing execution. 

12) Merging kernels.  The reduced number of kernels eliminates the kernel 
launch overhead time. This time can add up to a significant percentage out of the 
total simulation time and therefore the improvement is significant. Merging the 
kernels was possible after rearranging the model such that several synchronization 
barriers were eliminated. 

13) Using the shared memory for storing the Data Delay Lines. Using of 
shared memory was possible after merging all kernels into a single one. The result 
is a significantly reduced data access time. This is because shared memory is on 
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chip and is as fast as register if a bank conflict does not occur. In addition, the 
DataLine objects were organized such that the data access generates as few bank 
conflicts as possible. 

14) The time required for transferring the simulation results back to the host 
was drastically reduced by overlapping computation with data transfer. This is 
possible by using the hardware abilities of the GPU which is a stream processor.  
Also, a study is made to determine the optimal fraction for segmenting the 
computation. This is the fraction at which the time gained from overlapping the data 
transfer equals the overhead time cause by the additional kernel launches.  

15) An analysis was made which determined that using the Constant 
Memory and Texture Memory caches will not improve data access time for the 
Spiking Neural simulator. This is because the address access pattern is uniform and 
causes a low cache hit rate. 

16) A communication interface was build between MATLAB and the compiled 
CUDA C GPU model. The interface makes use of the MATLAB MEX files. This 
interface is particularly important because it allows the user to manipulate and 
visualize GPU simulation results in MATLAB.  
 17) A time-multiplexer has designed using I&F, I&FB and R&F spiking 
neurons. The multiplexer reduces the dimensionality of the input signal.  
 
 Other Contributions: 
 

18) A study was performed regarding the dynamic behavior of different 
biological neurons. In addition, a few spiking neuron models were chosen to be most 
appropriate for simulation. It is believed that the chosen models make the best 
compromise between model complexity and computational demand.  
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