

Information Processing using
Liquid State Machines based on

Spiking Neurons

Teză destinată obŃinerii

titlului ştiinŃific de doctor inginer
la

Universitatea “Politehnica” din Timişoara
în domeniul Inginerie Electronica si Telecomunicatii

de către

ing. Radu Mirsu

Conducător ştiinŃific: prof.univ.dr.ing. Virgil Tiponut
ReferenŃi ştiinŃifici: prof.univ.dr.ing. Dorian Cojocaru
 prof.univ.dr.ing. Gavril Toderean
 prof.univ.dr.ing. Ivan Bogdanov

Ziua susŃinerii tezei: 26.11.2011

BUPT

 2

Seriile Teze de doctorat ale UPT sunt:

1. Automatică 7. Inginerie Electronică şi TelecomunicaŃii
2. Chimie 8. Inginerie Industrială
3. Energetică 9. Inginerie Mecanică
4. Ingineria Chimică 10. ŞtiinŃa Calculatoarelor
5. Inginerie Civilă 11. ŞtiinŃa şi Ingineria Materialelor
6. Inginerie Electrică

Universitatea „Politehnica” din Timişoara a iniŃiat seriile de mai sus în scopul
diseminării expertizei, cunoştinŃelor şi rezultatelor cercetărilor întreprinse în cadrul
şcolii doctorale a universităŃii. Seriile conŃin, potrivit H.B.Ex.S Nr. 14 / 14.07.2006,
tezele de doctorat susŃinute în universitate începând cu 1 octombrie 2006.

Copyright © Editura Politehnica – Timişoara, 2011

Această publicaŃie este supusă prevederilor legii dreptului de autor. Multiplicarea
acestei publicaŃii, în mod integral sau în parte, traducerea, tipărirea, reutilizarea
ilustraŃiilor, expunerea, radiodifuzarea, reproducerea pe microfilme sau în orice altă
formă este permisă numai cu respectarea prevederilor Legii române a dreptului de
autor în vigoare şi permisiunea pentru utilizare obŃinută în scris din partea
UniversităŃii „Politehnica” din Timişoara. Toate încălcările acestor drepturi vor fi
penalizate potrivit Legii române a drepturilor de autor.

România, 300159 Timişoara, Bd. Republicii 9,
tel. 0256 403823, fax. 0256 403221

e-mail: editura@edipol.upt.ro

BUPT

Acknowledgements

 This doctoral thesis was supported in part by POSDRU/6/1.5/S/13 strategic
grant, ID6998, financed from European Social Fund "Investing in people" in the
Human Resources Development Operational Programme 2007-2013.

This work was partially supported by the following grants:
 “Noi metode de analiză şi recunoaştere a expresiei faciale”, Program PNII,
IDEI, Proiecte de cercetare exploratorie, cod 945/2008, finantat de Unitatea
Executivă pentru FinanŃarea ÎnvăŃământului Superior şi a Cercetării StiinŃifice
Universitare (UEFISCSU), Nr. Contract: 599/19.01.2009.
 “Research on Emotional Facial Expression recognition in Complicated
Environment”, Program PNII, CAPACITATI, Modul III, proiecte de cercetare
bilaterale, România-China, 39-5/2008, finantat de Autoritatea NaŃională pentru
Cercetare ŞtiinŃifică (ANCS), Nr. Contract: 222/15.04.2009

I would like to thank my advisor, Prof. Dr. Eng. Virgil Tiponut, for the
countless advices and work hours that he has put into this research. He has been a
great colleague and friend showing optimism and high morale when needed most. I
also would like to thank Prof. Dr. Eng. Catalin Caleanu with whom I have
collaborated at GPU programming and Gabor filtering tasks.

I also owe my gratitude to the Applied Electronics Department Director,
Prof. Dr. Eng Ivan Bogdanov, to Electronics and Telecommunications Faculty Dean,
Prof. Dr. Eng. Marius Otesteanu, and to my fellow colleagues, PhD Candidates:
Sebastian, George, Zoltan, Robert, Daniel and Mihai.

Special thanks to the PhD committee, Prof. Dr. Eng Dorian Cojocaru
University of Craiova, Prof. Dr. Eng. Gavril Toderean, Technical University of Cluj-
Napoca and Prof. Dr. Eng Ivan Bogdanov, Politehnica University of Timisoara for
their evaluations and suggestions regarding the thesis.

I would like to thank my loving wife Betina, my parents and my sister Adina
for their never ending understanding, patience and support.

Timişoara, November 2011 Radu Mirsu

BUPT

 4

This doctoral thesis was supported in part by POSDRU/6/1.5/S/13 strategic grant,
ID6998, financed from European Social Fund "Investing in people" in the Human
Resources Development Operational Programme 2007-2013.

Mirsu, Radu

Information Processing using Liquid State Machine based
on Spiking Neurons

Teze de doctorat ale UPT, Seria 7, Nr. 41, Editura Politehnica,
2011, 120 pagini, 64 figuri, 7 tabele.

ISSN: 1842-7014

ISBN: 978-606-554-376-8

Cuvinte cheie: spiking neural networks, Liquid State Machines,
liquid computing, Gabor filtering, dynamic neurons, neural
modelling, neurons on GPU, parallel processing

Rezumat,
Spiking neural networks are introduced as the third generation of
neural models. They are dynamic models that potentially have
much more processing power than classic neural networks. This
thesis presents a novel approach to perform Gabor filtering using
Liquid State Machines based on Spiking Neurons. The Liquid
State Machine is a powerful architecture that is capable of
performing universal computations without being trained on
specific data. It is the job of special readout units to interpret the
computation results and map them on specific target functions.
In addition, the thesis presents tools that allow fast simulating of
large neural networks by running the simulation in parallel on a
GPU.

BUPT

 5

CONTENTS

Acknoledgements... 3
Abstract.. 4
Contents... 5
List of Figures.. 8

1. Introduction.. 11
1.1. Research Motivation .. 11
1.2. State of the art ... 13
1.3. Thesis Outline ... 16

2. Spiking Neural Networks.. 19
2.1 Synapses .. 21
2.2 Dynamic Synapses ... 21

2.2.1. Depressing Synapse .. 22
2.2.2. Synapse Delay .. 23
2.2.3. Facilitating Synapse... 24
2.2.4. Recursive Model for Dynamic Synapse 25

2.3. Spiking Neuron Models... 26
2.3.1. The Biological Neuron .. 26
2.3.1.1. Spike Generation .. 28
2.3.1.2. Refractory Period ... 28
2.3.2. Integrate and Fire Neuron .. 29
2.3.3. Integrate and Fire with Burst Neuron ... 31
2.3.4. Integrate and Fire with Adaptation Neuron 33
2.3.5. Resonate and Fire Neuron .. 34

2.4. Coding with Spikes .. 35
2.4.1. Spiking Neuron as Context Detector .. 36
2.4.2. Content Addressable Memory with Spiking Neural Networks 38
2.4.2.1. Choosing Spike Contexts ... 38

3. Modelling and Simulation ... 41
3.1. Model Objects ... 41

3.1.1. Network Object ... 41
3.1.2. Layer Object ... 42
3.1.3. Neuron Object... 43

3.2. Model Functions .. 44
3.2.1. Simulation Functions.. 44
3.2.2. Vizualisation Functions ... 44
3.2.2.1. Vizualising Neural Time Traces ... 45
3.2.2.2. Vizualising Neural Spike Rates.. 45
3.2.2.3. Vizualising Neural Synchrony ... 45

3.3. Parallelizing the Model ... 47

BUPT

 6

3.3.1. Choosing the Number of Slaves... 48
3.3.2. Results... 49

4. GPU Accelerated Model for Spiking Neural Networks 53
4.1. General Purpose GPU Computing... 53

4.1.1. Early GPU Computing... 54
4.1.2. NVIDIAs CUDA Architecture .. 55
4.1.3. Simple CUDA Example ... 55

4.2. Spiking Neural Network CUDA Model.. 57
4.2.1. Model Architecture... 57
4.2.2 Delay Line Implementation .. 58
4.2.3. Moving Objects between Host Computer and Device GPU 61
4.2.4. Simulating the Model ... 63
4.2.5. Simulation Results... 65

4.3. Improved CUDA Model ... 66
4.3.1. Minimizing the number of branches ... 66
4.3.2. Merging Kernels .. 67
4.3.3. Using Shared Memory .. 70
4.3.4. Overlapping Computation and Data Transfer............................... 71
4.3.5. Using Constant Memory and Texture Memory 73
4.3.6. Simulation Results... 74

5. Liquid State Machine And Liquid Computing 75
5.1. Introduction ... 75
5.2. Liquid State Machine Architecture.. 75

5.2.1. Recurrent Liquid Medium.. 76
5.2.2. The Read-Out Units ... 77

5.3. Liquid States. Separation Property... 78
5.4. The Parallel Perceptron Readout Unit.
The p-Delta Learning Algorithm .. 79
5.4.1. The Parallel Perceptron .. 79
5.4.2. The Single Perceptron Delta Rule... 80
5.4.3. The Parallel Perceptron p-Delta Rule .. 80
5.4.4. Adaptive Learning Rate .. 81
5.4.5. Greedy vs. Not Greedy... 82
5.4.6. Adaptive Noise Margin Control .. 85

5.5. The Feedforward Readout Unit. Backpropagation 88

6. Gabor Filtering using Liquid State Machines

 and Spiking Neurons ... 91
6.1. Introduction ... 91
6.2. Gabor Filtering.. 91
6.3. Filtering with Liquid State Machines ... 91

6.3.1. Input Signals .. 91
6.3.2. Spike Generator with Shifting Phase .. 97
6.3.3. Estimating Gabor Coefficients with Liquid State Machine..............100
6.3.3.1. Approximation Accuracy ...101
6.3.3.2 Approximation Speed ..102
6.3.3.3. LSM Performance...103

BUPT

 7

7. Conclusions and Contributions ...105
7.1. Conclusions ...105

7.1.1. Spiking Neural Networks ...105
7.1.2. MATALB simulation framework ...105
7.1.3. Parallel MATLAB framework and GPU accelerated framework........105
7.1.4. Liquid State Machines and p-Delta Learning Rule........................106
7.1.5 Extracting Gabor Coefficients from images using Liquid State
 Machines based on Spiking Neurons ..106

7.2. Future Work ..107
7.3. Theoretical Contributions...108
7.4. Practical Contributions ..109
7.5. Publications List ...110

Refferences ...112

BUPT

 8

LIST OF FIGURES

Fig. 1.1. Parallel Implementations for simulating Spiking Neural Networks
Fig. 2.1. Second Generation Neural Networks
Fig. 2.2. Biological Neural Network
Fig. 2.3. Biological Synapse
Fig. 2.4. Synapse Dynamic functionality
Fig. 2.5. Hodgkin-Huxley Neuron Model
Fig. 2.6. Activation and inactivation variables
Fig. 2.7. Functioning of the Neuron. Generating spikes
Fig. 2.8. Integrate and fire neuron model
Fig. 2.9. Calcium Current Effect
Fig. 2.10. Adaptation Mechanism
Fig. 2.11. R&F Neuron Membrane Potential
Fig. 2.12. Spatial-temporal spike sequences. Complete and incomplete spike

contexts
Fig. 2.13. Context size influence on performance.
Fig. 3.1. Model architecture
Fig. 3.2. Network and Layer Objects
Fig. 3.3. Updating the network state
Fig. 3.4. Neuron Object
Fig. 3.5. Network spiking activity object
Fig. 3.6. Visualization of spiking and potential traces
Fig. 3.7. Visualization of the average spike rate as image
Fig. 3.8. Visualizing Neural Synchrony
Fig. 3.9. Distributed Model on a network of Computers
Fig. 3.10. Master-Slave Interaction
Fig. 3.11. Non-Linear simulation time as a function of the number of neurons
Fig. 4.1. CPU vs. GPU evolution
Fig. 4.2. OpenGL graphics processing pipeline.
Fig. 4.3. Simple CUDA parallel program
Fig. 4.4. Kernel Launch
Fig. 4.5. MATLAB-CUDA C interfacing
Fig. 4.6. Spiking Neural Network Architecture
Fig. 4.7. Delay Line Functionality
Fig. 4.8. Incomplete Object transfer
Fig. 4.9. BasicObject Class
Fig. 4.10. Spiking Neural Network Simulation Flow
Fig. 4.11. GPU architecture
Fig. 4.12. Merging Kernels
Fig. 4.13. Two versions for implementing the delay line inside shared memory
Fig. 4.14. Overlapping computation and data transfer
Fig. 5.1. Liquid State Machine architecture
Fig. 5.2. Liquid State Machine implemented by a recurrent Spiking Neural Network
Fig. 5.3 Parallel Perceptron Readout Unit
Fig. 5.4. Multi-Layer Feedforward Readout Unit

BUPT

 9

Fig. 5.5. PDelta Convergence histogram
Fig. 5.6. Distribution of weight activity (“greedy” approach)
Fig. 5.7. Distribution of weight activity (“not greedy” approach)
Fig. 5.8. Convergence Rate
Fig. 5.9. K Control Rule
Fig. 5.10. Average margin during training
Fig. 5.11. Margin learning rate mlr during training
Fig. 6.1. 2D Gabor Filter Kernel
Fig. 6.2. Time-Multiplexing the Input Signals
Fig. 6.3. Pixel Multiplexing Circuit
Fig. 6.4. Membrane Potential of R&F Neuron
Fig. 6.5. Activation of R&F Neurons
Fig. 6.6. Optimization of m1 and m2 synaptic connections
Fig. 6.7. Linearized Rate-Code
Fig. 6.8. Shifting Phase Spike Trains
Fig. 6.9. Shifting Phase Circuit 1
Fig. 6.10. Selective Firing Window
Fig. 6.11. Shifting Phase Circuit 2
Fig. 6.12. Spiking Activity of Liquid Medium
Fig. 6.13. Estimating Gabor Coefficients
Fig. 6.14. Computing the Approximation Error

BUPT

Introduction - 1 10

BUPT

1.1 Research Motivation 11

1. INTRODUCTION

1.1. Research Motivation

Networks based on spiking neurons are thought to be the third generation of
neural networks. This classification is done by Maass in [1] as follows:

• Generation 1. Binary networks built from perceptrons that are able

to perform simple classifications and compute digital functions
• Generation 2. Networks with real-numbered outputs that could be

used as universal approximators to any degree of precision.
• Generation 3. Spiking neural networks (SNN).

In contrast with previous generations, spiking neural networks return to
models that resemble the biological neuron, and capture its dynamic spiking
functionality. Even though the mathematical model for a biological neuron is an old
discovery [2], it was left aside for decades because its complexity led to
computationally overwhelming problems. Recently, with the continuously growing
processing power of computers, researchers are returning to spiking models in order
to find solutions to problems that were not solved by previous generations of neural
networks. Some of the disadvantages of the classical models are presented in the
following paragraphs. These combined with the numerous advantages of the new
spiking models represented a strong motivation for embracing this research track.

In case of older models it was assumed that the intricate details of the
neuron behavior are irrelevant to information processing. If biological neurons used
simple techniques to encode information, like rate coding, modeling by using an
activation function would be sufficient. However, recent research shows that it is
very likely that the dynamic behavior of the spiking neurons (tonic or phasic spiking,
bursting, spike frequency adaptation, spike latency, sub-threshold oscillations,
resonance, integration and coincidence, rebound spikes or bursts, bistability or
threshold variations) plays an important part in information processing [81], [83].
These behaviors are well presented in [3]. Also, none of these behaviors were
achievable by the older generations of neural networks.

Several mechanisms are present at synapse level. Observations made in [4]
show that a synapse can adjust its strength depending on the timing between the
presynaptic spike and the postsynaptic spike. This way, two neurons that are both
firing within a short time interval can lock and fire in synchrony, thus creating a
natural implementation of Hebbian learning. This property requires that the neuron
model is spiking.

Research in the field of neuropsychology is continuously unveiling
information regarding the technique used by the brain to code and process
information. These discoveries, most often, are incompatible with the older neural
models and cannot be applied directly because there is not a direct relationship
between the biological observations and the elements of the model. In the case of
spiking neural networks this discrepancy is eliminated.

BUPT

Introduction - 1 12

 Spiking neural networks have another property that the traditional models
do not. Since the spiking models are dynamic time-based models they can oscillate
and can exhibit resonant behavior. In [5], [6] a spiking neural network achieves
signal multiplexing by using resonate and fire neurons that are able to lock and
synchronize with specific spike frequencies. In [7], Izhihevich introduces another
interesting property of spiking neurons called “polychrony” different from
“synchrony”. If synchrony refers to a group if neurons firing at the same time (or
within a small time window), polychrony refers to a group of neurons that fire in the
same order and with the same relative timing. This property is also referred to as
temporal grouping in papers like [8], [9], [10], [11], [12], and seems to play a
crucial part in how the central nervous system performs computations. Polychrony is
possible due to the synapse propagation delays which cause the spiking network to
generate spatial-temporal spike sequences when stimulated. The complex dynamics
of an intricately connected network could lead to a potentially unlimited set of spike
sequences. Therefore, a spiking neural network could implement a memory that has
a storing capacity significantly bigger than its number of synapses.
 Oscillation and synchrony are properties that are considered to play an
important part in image segmentation and object binding [13], [14]. Csibra and
Davis [13] observe a close relationship between object binding and 40Hz (gamma
band) oscillations evident in the brain of an 8 months infant. This is the same age
when the behavior of the child start to exhibit perception of spatially separated
visual features. Oscillations can also play an important role in short term memory
according to Jensen in [15] and [16]. Here it is demonstrated that oscillations in the
alpha band (9 to 12Hz) have an increasing peak that related to the number of items
retained by the short term memory.
 Spiking neural networks are obviously an improvement compared to the
more traditional models. Backing up this statement is the fact that spiking networks
are able to perform all tasks and exhibit all behaviors present at the first generation
and the second generation of networks. In addition, the above paragraph describes
new behaviors that are new and are very promising from the information processing
perspective. Also, these models are much more similar to the biological neurons.
This fact is encouraging because nature has repeatedly proven to be the ultimate
designer. Because all good things come with a price, spiking neural models have
their own disadvantages:

• The complexities of the individual neuron and also the large size of the
networks that need to be simulated require huge amounts of computational
resources. This is even more critical when several simulations need to be
performed during an optimization. The limited speed of the simulator was
also the first big challenge of this thesis. A satisfactory solution to this
problem was to use a GPU to accelerate the simulation in hardware. Of
course, regardless of the simulation platform, there will always be a
compromise between the sizes of the network, the complexity of the
individual neuron, the duration of the simulation and the step size of the
solver.

• Spiking neural networks are systems with extremely complex dynamic
behavior. The major difficulty in understanding how this behavior can
process information. Investigating the functionality of the network by using
rigorous mathematical tools that could directly pinpoint the solution to the
problem is improbable. More likely to be successful are evolutionary
techniques that allow the system to evolve on its own.

BUPT

1.1 Research Motivation 13

• Because these models are relatively new there is a shortage of knowledge,
algorithms or tools that serve the utilization of such networks.

• The spiking neural networks are very successful in the real world. However,
it should be always kept in mind that the brain has around 30 billion
neurons and each neuron is served by several thousands of synapses. These
figures that are beyond any present simulation capabilities. It is unclear if
similar performances can be obtained using a reduced size spiking neural
network even for significantly simpler applications.

 1.2. State of the Art

 There is a continuous struggle to find new architectures and solutions to
designing a biologically inspired neural network that is computationally powerful. It
is the research area where several adjacent study fields collide (i.e. computer
science, neuroscience, biophysics, and machine learning). In [17] Jaeger and Maass
present that there are currently two approaches when trying to design a biologically
inspired neural network. The first method, the bottom-up way, investigates the
structure and the dynamic functionality of the brain by observation. Then it uses
mathematical tools to try and capture dynamical patterns and special behaviors that
are believed to be significant to information processing. The method is called
bottom-up because it deduces the method and flow of the computation by
examining the functioning of the hardware. Alternately, we can use the top-down
method. In this case we start from known computing techniques and design sub-
modules of biologically inspired networks, each suitable for solving a part of the
computational task. In contrast to the bottom-up method, the top-down approach
fits the hardware to the method. Obviously, the top-down method has a higher
chance of deviating from the actual biological architecture.
 This thesis focuses on a new type of architecture called Liquid State Machine
(LSM) introduced by Maass, Natschlaeger and Markram in [18]. It is a new design
that adopts the principle of reservoir computing. In parallel, but independently, a
similar architecture called Echo State Networks (ESN) was developed by Jaeger
[19], [86]. The two models are similar in principle but were designed with different
applications in mind. Liquid State Machines tend to be general and are formulated
within the mathematical frameworks of dynamical systems theory and filtering
theory. Because the model aims towards a biologically plausible implementation it is
restricted to having spiking neurons as computational units that preserve the
characteristics of the biological neuron and operate well under noisy conditions. On
the other hand, the echo state networks are a particular case of LSM and so the
theory applies. However, ESNs are designed to have a higher performance on
particular engineering applications that use noiseless artificial neural networks as
computing units.
 There are several directions of research regarding LSMs and ESNs. The
following paragraphs try to determine the most important research tracks and
present some state of the art methods and results.
 For example, Yamazaki and Tanaka [20] try to find a direct correspondence
between the cerebellum and a liquid state machine. In fact they find evidence that
the granular layer behaves as a liquid medium (reservoir), while the Purkinje cells
which receive signals from the granular layer act as readout units. In [21], different
forms of network plasticity are analyzed in an attempt to determine how they affect
the dynamic behavior of recurrent spiking neural networks. The paper studies spike
timing dependent plasticity (STDP) which is responsible for adapting synaptic

BUPT

Introduction - 1 14

strength, and intrinsic plasticity (IP) which is responsible for adapting the excitability
of individual neurons. The interaction between the two forms of plasticity maintains
the homeostasis of neural activity and stabilizes the LSM.

Joshi [22] demonstrates that a liquid state machine can also be used as a
multi-tasking computing machine, where the computations related to all tasks are
being performed in parallel by the same liquid medium. It is the duty of several
readout units to map the liquid neural activity to the task specific output functions.
It is very important to notice that unlike other parallel machines that dedicate
separate resources to different tasks, the liquid state machine performs a unified
computation of multiple tasks where the same neurons can participate at different
tasks at the same time. In [22] it is also shown that the readout units can send
feedback of their activity in order to tune up the activity of the liquid medium. The
paper also presents an application with good results where a liquid state machine is
used at driving electrical motors. In [23], Legenstein and Maass try to determine
which properties of the recurrent circuits of spiking neurons are relevant for their
computational performance. They also find to methods of analyzing the
computational capabilities of spiking neural networks.

Echo state networks are also well used in speech recognition applications as
demonstrated by Skowronski and Harris [24]. Here a speech classifier that can
recognize words from a small vocabulary is designed by combining an ESN and a
state machine. The new classifier outperforms the Hidden Markow Models in regimes
of low signal to noise ratios. Article [25] also presents an application with speech
recognition that uses spiking neurons arranged in an architecture called “mus-
silicium”. The system contained approximately one thousand spiking neurons and
was able to recognize ten spoken words regardless of the speaking speed. The mus-
silicium however, is not biologically inspired. Instead, it uses spiking neurons in an
architecture that is built on more deterministic rules inspired from signal processing
and computer science.

In [26], Verstraeten and Schrauwen use a liquid state machine that is
trained to perform isolated word recognition. Several techniques for encoding the
input signals are tested. The encoding represents a bridge between the actual
recorded signals and the liquid state machine. Surprising and also encouraging is
the fact that the liquid state machine performs best when the model of the inner ear
is used at encoding the vocal signals. This result increases the confidence that the
liquid state machine is indeed biologically plausible. Another speech/audio
application if presented in [33].

Another field where liquid state machines and echo state networks are
applied is grammar and language learning. Tong presents in [27] an application that
uses an echo state network to learn grammatical structure. The results are
comparable to those obtained by the existing Elman networks. The advantage over
the Elman networks is simpler design rules and simpler training algorithms. The
Elman networks, which are also recurrent, were able learn internal data
representations that were sensitive to linguistic processes by adjusting the synapses
of the recurrent connections during a training algorithm. ESNs, like liquid state
machines, have a fixed recurrent medium that does not need to be trained. Training
occurs only at readout level and is much simpler.

Currently liquid state machines and echo state networks have proven
immense potential in several research fields targeting a wide range of applications.
As expected some of these applications were more successful at using liquid state
machines than others. Consequently, another research track arose that tries to
determine what parameters of the liquid medium (reservoir) are most significant for

BUPT

1.2 - State of the art 15

performance and if these parameters are specific to particular applications. Haykin
and Xue [28] present a modified version of echo state network that uses lateral
inhibition to improve the richness of the liquid medium dynamics. In [29], the
authors present a method for quantifying the richness of the liquid medium
dynamics by evaluating the entropy of the echo states. In [30], Dedual and Ozturk
present a modified version of the readout units called MACE that is able achieve
higher specificity in pattern recognition applications.
 The last part of this paragraph is dedicated to implementation and
simulation techniques. Currently, there’s no single simulation framework that can be
considered standard for simulating spiking neural networks. Because the model is
computationally demanding one of the biggest issues when choosing or designing a
simulation framework is to accelerate it as much as possible. As it will be seen in the
following chapters the model is very parallel and so the major trend in SNN
simulation is to use a framework that runs on multi-core or GPU parallel
architectures. Chapters 3 and 4 present two approaches to parallelize the model,
one using a distributed architecture and another using a GPU. In [31] Bhuiyan,
Pallipuram and Smith, compare the speed-ups obtained by four parallel
architectures: IBM PS3, AMD Opteron, Intel Xeon and NVIDIA GPU [41]. The results
of their study are presented in figure 1.1. The speedups obtained with the GPU
architecture are very similar to those presented in chapter 4. The numbers,
however, cannot be compared directly because the speedup was measured by
benchmarking different processors.

Fig. 1.1. Parallel Implementations for simulating Spiking Neural Networks

The left graph in figure 1.1 corresponds to simulations where each individual

neuron uses the Izhikevich model, while the right graph contains results of
simulations that use the Huxley-Hodgkin (HH) neuron model. It is very interesting
to see that the speedup differs significantly between the two graphs and also the
ranking of the four architectures is not the same (i.e. GPU is worst for the Izhikevich
model and best for the HH model). The reason is that each architecture has a
specific flop/byte (computation/transfer) ratio that makes it most efficient. A CPU
core dedicates a lot of chip area to data caching and less to computation. On the
other hand a GPU has a huge number of execution units and almost no data
caching. The PS3, Opteron and Xeon are somewhere in between. In conclusion, the
GPU outperforms the other architectures when the flop/byte ratio is high. This is the
case of the HH neuron model that is very computationally demanding (flop/byte =
6.02 [31]). In the case of the Izhikevich model the flop/byte ratio is 0.65 [31] and

BUPT

Introduction - 1 16

so the GPU is outperformed by the other architectures due to lack of caches. Also
worth noticing is the fact that when the size of the neural network is very high the
speedups obtained by the Xeon and Opteron also drop down and almost equal the
speedup of the GPU. This is because the size of the cache becomes insufficient for
the size of the network and so the cache’s miss rate increases dramatically.

In conclusion a parallel implementation of a spiking neural network is
appealing and can achieve substantial improvement of the simulation speed. The
simulation performed in this thesis use models that are similar to the Izhikevich
model rather than the Hodgkin-Huxley model. Therefore, the GPU implementation is
not necessarily the fastest. Nevertheless, it was chosen due to its accessibility and
reduced cost. The speedup obtained by the GPU implementation was sufficient to
serve all tasks involving this thesis.

1.3. Thesis Outline

 The thesis is organized on seven chapters as follows:

• Chapter 2 introduces some basic knowledge about the structure of the biological

neuron equipped with dynamic synapses. Several dynamic behaviors are studied
and four mathematical models are chosen to be most significant: the integrate
and fire neuron, the integrate and fire with adaptation neuron, the integrate and
fire with burst neuron, and the resonate and fire neuron. The chapter concludes
by presenting some spike coding techniques and the ability of a spiking neuron
to act as a context detector and implement a content addressable memory.

• Chapter 3 presents a MATLAB simulation framework that was designed to easily
implement and simulate a spiking neural network of desired architecture. The
tool also contains functions for result analysis and visualization. The second part
of the chapter presents a modification of the framework that allows parallel
simulation on several computers connected by a network. The approach proves
that the neural network model has a lot of parallelism to be exploited and also
offers some improvement in terms of simulation speed. However, the
improvement is not satisfactory because of the high communication time
between computing units. Consequently, alternative parallel implementations
are further searched.

• Chapter 4 presents a parallel implementation that uses a graphics processor to
hardware accelerate the simulation. The GPU is designed and optimized to be
very efficient on parallel processing and so the implementation of the neural
network model is inherently promising. The simulation framework is redesigned
such that it suits better the hardware design of the GPU. Throughout the
chapter several difficulties are presented and also their solutions. In the second
part of the chapter three additional improvements are presented that further
accelerate the simulation. The chapter concludes by presenting a benchmark
that compares the GPU model to the MATLAB model and also to a C++ model. A
communication interface between CUDA C and MATLAB is also provided by
means of MATLAB MEX files.

• Chapter 5 presents the Liquid State Machine computing architecture as a
potential solution to information processing using spiking neurons. The chapter
presents the design rules of the network and also its potential advantages and
disadvantages. In the second part of the chapter two alternatives for
implementing the readout units are presented (parallel perceptron and the
multi-layer feedforward network), accompanied by appropriate training

BUPT

1.2 - State of the art 17

algorithms (p-Delta learning rule and backpropagation). Additionally, three
improvements are made to the p-Delta rule that increase the convergence rate
and convergence speed.

• Chapter 6 presents an application that uses a Liquid State Machine based on
spiking neurons to extract Gabor coefficients from fiducial points of an image.
The pre-processing of the input signals is also done by means of spiking neural
networks, yielding three variants for the input signal.

• Chapter 7 presents the theoretical and practical contributions brought by the
thesis, the conclusions and future work.

BUPT

Spiking Neural Networks - 2 18

BUPT

 19

2. SPIKING NEURAL NETWORKS

In [1], spiking neural networks (SNN) are presented to be the third

generation of neural models. The first generation of neural networks is based on
McCulloch-Pitts neurons, also called perceptrons. Interconnecting the neurons in
various ways yielded a wide variety of networks like: multi-layer perceptrons,
Hopfield Networks, or Bolzmann machines. All networks using perceptrons had a
digital output and were useful at classification or modeling digital functions.

The second generation of neural networks uses activation functions in order
to obtain a continuously varying output. Some of the most significant networks of
this type are: feed-forward sigmoid networks, recurrent networks, and radial basis
function networks. This type of networks can model both digital functions and
functions with analog input/output. The biological neurons generate spikes rather
than analog outputs. However, the second generation of neural networks is
biologically plausible assuming that the biological neurons code information using
the frequency of the spike train rather than the inter-spike timing relationships. This
is present in the higher cortical areas of the brain where neurons adjust their firing
rate slowly and so are able to carry frequency information. Another advantage of
the continuous activation functions is the possibility to use gradient based training
algorithms. Figure 2.1 presents three types of the second generation neural
networks.

Fig. 2.1. Second Generation Neural Networks

However, some areas of the cortex perform tasks that require fast

computations. In such cases frequency coding is questionable and it is more likely
that inter-spike timing is used to encode information [45], [48], [51], [52]. The

BUPT

Spiking Neural Networks - 2 20

third generation of neural networks tries to accommodate this new requirement. The
new model has a “spiking” output that is very similar to the biological neurons. In
addition, spiking networks still offer all the features present at the second
generation of networks. Figure 2.2 presents the structure of a biological neural
network.

Fig. 2.2 Biological Neural Network

The most important parts of a biological neuron are: the neuron cell (the

computational unit), the dendrites (the inputs of the neuron), and the axon (the
output of the neuron). The bridge between an axon and a dendrite is called synapse.
Spikes (also called action potentials) propagate along the axon of the source
neuron, cross the synapse and reach the target neuron via its dendrite. When a
spike crosses a synapse, the shape, the timing and also the amplitude of the spike
is influenced by dynamic properties of the synapse. In reality spikes do not actually
cross a synapse. They simply trigger a pre-synaptic mechanism that generates a
new post-synaptic spike. Therefore, synapses are active elements. The rest of this
chapter presents some physical and chemical mechanisms that are present in
biological synapses and neuron cells. It does a mathematical description of the
neuron functionality and introduces four simplified models for spiking neurons and
dynamic synapses that are suitable for simulation. The models manage to remain
simple enough and still capture the main characteristics of the biological neuron.
Model simplicity is the key of this project in order to be able to simulate large
networks

BUPT

2.1. Synapses 21

 2.1. Synapses

A synapse is an active functional unit that connects two neurons. Most often
it lies at the junction of an axon and a dendrite, but other types of connections are
also possible: axon-cell body, axon-axon or dendrite-dendrite. In older neural
models synapses are static signal pathways that can only be used at weighing
signals, hence the name “static synapses”. This simplification comes from the
assumption that neural processes are slow and that only firing rates are used at
coding information rather than exact spike timing or network dynamics. In reality,
the biological synapse, besides being a signal transducer, is a very powerful non-
linear signal pre-processor that has a complex dynamic behavior [50], [53].

2.2. Dynamic Synapses

This sub-paragraph briefly presents the functioning of the biological synapse
and introduces a simplified biologically inspired model called dynamic synapse.
Figure 2.3 presents the structure of a biological synapse. In the left and right parts
of the figure the pre-synaptic axon and the post-synaptic dendrite are depicted.
Spikes arriving along the axon of the pre-synaptic neuron are also called action
potentials. When an action potential reaches the terminal of the axon it raises the
voltage locally causing calcium ion channels to open. This produces an influx of
calcium ions that causes the vesicles of neurotransmitters to break and the release
the neurotransmitters into the synaptic cleft. On the other side of the synapse,
neurotransmitters bind with receptors triggering several ligand-gated ion channels.

Fig 2.3. Biological Synapse

As a result, the membrane potential of the post-synaptic neuron is raised.

Eventually, the neurotransmitters brake loose from the receptors causing the
channels to close and stopping the increase of the membrane potential. Some of the
free neurotransmitters are removed from the synaptic cleft by the reuptake pumps

BUPT

Spiking Neural Networks - 2 22

which send them back to the axon terminal. Here the neurotransmitters are
repacked into vesicles and are ready to be used again.

The strength of the synapse is considered to be the impact of one pre-
synaptic spike on the membrane potential of the post-synaptic neuron. This is
analog to the weight of the static synapse. In contrast with the static synapse, the
biological synapse does not have a constant strength, as it varies over time as an
effect of several synapse internal mechanisms.

2.2.1. Depressing Synapse

Because neurotransmitters are the triggering factors for post-synaptic

potentials they are considered to be the primary resources for this event. The
amplitude of the post-synaptic potential depends on several factors like: quantity of
released neurotransmitters, number of receptors, and the ability of each activated
receptor to produce post-synaptic current. After a pre-synaptic action potential
arrives a fraction of the available neurotransmitters are released. If another action
potential arrives shortly after the first one, the quantity of available
neurotransmitters (resources) might not be as high as for the first one. This is
because the synapse did not have enough time to recover from the previous spike.

Equations (2.1), (2.2) and (2.3) model this process. X, Y and Z are functions
of time that represent: resources available on the pre-synaptic side (waiting neuro-
transmitters), active resources on the post-synaptic side (released neuro-
transmitters), and recoverable resources (that can be pumped back to the axon
terminal). All variables x, y and z are fractions where 1 represents the maximum
level of resources the synapse can provide.

() ()
spSEsp

rec

ttUtx
z

t

x
−−=

∂

∂
δ

τ
 (2.1)

() ()
spSEsp

in

ttUtx
y

t

y
−+−=

∂

∂
δ

τ
 (2.2)

recin

zy

t

z

ττ
−=

∂

∂
 (2.3)

Because the shape and energy of the pre-synaptic spike is not important

and does not influence the functioning of the synapse or the shape of the post-
synaptic potential, it is modeled by a Dirac pulse δ that occurs at the time of the
spike tsp. When a spike is received, a fraction USE (utilization of synapse efficacy) of
the available resources is released (second term of eq. 2.1). At the same time, the
same quantity of resources is received on the post-synaptic side (second term of eq.
2.2). As soon as the released resources bind with the receptors the post-synaptic
membrane potential starts to increase at a rate proportional to the amount of active
resources (eq. 2.4).

() () ()∫=⇒∗=
∂

∂
t

dttyAtVtyA
t

V

0

 (2.4)

BUPT

2.2. Dynamic Synapses 23

Constant A is a scaling constant and represents the static efficacy (weight)
of the synapse. The first term of eq. 2.2 represents the rate at which the resource-
receptor binds break apart. The time constant τin controls how fast resources
become inactive. All inactive resources are in fact recoverable resources and so Z
increases with the same rate (first term of eq. 2.3). The first term of eq. 2.1 and
second term of eq. 2.3 show the rate at which resources are recovered (pumped
from post-synaptic to pre-synaptic side).

Figure 2.4 presents the dynamic functionality of a biologic synapse and the
variation of resource quantities (neurotransmitters) over time. It is considered that
the first pre-synaptic spike of the sequence occurs at a moment when all resources
have had time to recover and are available for use (x = 1, y = 0, z = 0). It can be
noticed that the first spike generates a maximum amount of active resources. This
is controlled by the value of USE, which in this case is 0.5. The next three spikes
have a smaller effect because there is not enough time for the resources to recover.
Notice that the resources activated by the 2nd, 3rd and 4th spikes are similar in
amount due to the fact that the period between these spikes is roughly the same.
This leads to the conclusion that the efficacy of the dynamic synapse is frequency
dependent. Literature shows that this mechanism is present and very useful in
biological neural networks because it stabilizes and prevents saturation of the
network.

Fig. 2.4. Synapse Dynamic functionality

2.2.2. Synapse Delay

This sub-paragraph introduces a simplification to the synapse model in eq.

2.1, 2.2 and 2.3. As presented in 2.2.1 when a spike is received a certain amount of
resources activate. Until these resources inactivate, they produce a current
proportional to their amount causing the post-synaptic membrane potential to rise.
We simplify the model by considering that resources activate and then inactivate

BUPT

Spiking Neural Networks - 2 24

instantaneously, reducing τin to zero. Doing so, they trigger their entire associated
energy at once, causing the membrane potential to rise as a step function. The
simplification causes the membrane potential to rise faster and can potentially lead
to a post-synaptic neuron that fires a spike prematurely. In compensation, we
introduce a delay between the time when the pre-synaptic spike arrives and the
time when the resources activate. This delay is equal to the time the membrane
potential would need to rise to the K fraction of its final value (eq. 2.5). D0 is a
delay that accounts for all other delays that could potentially appear in a biological
neuron (flight time of pre-synaptic spike across the axon length). The model
described by equations 2.1, 2.2, 2.3 changes to the model in 2.6, 2.7 and 2.8. N is
the total number of pre-synaptic spikes.

() 01ln DKD in +−−= τ (2.5)

() ()spSEsp

rec

ttUtx
z

t

x
−−=

∂

∂
δ

τ
 (2.6)

() () ()∑
=

−−=
N

n

spnspnSE DtttxUty
1

δ (2.7)

() ()DttUtx
z

t

z
spSEsp

rec

−−+−=
∂

∂
δ

τ
 (2.8)

2.2.3. Facilitating Synapse

In the previous paragraphs USE is constant and controls the amount of

resources that become active as the result of a pre-synaptic spike. In reality, USE is
not constant and is affected by the past activity of the synapse. A model of this
mechanism as presented in equation 2.9. When a pre-synaptic spike is received the
increased voltage inside the axon terminal causes the calcium channels to open. The
fraction of channels that open (out of the total number of available channels) is
represented by USE. After opening, the channels close at a rate given by τfacil (first
term in eq.2.9). If a new pre-synaptic spike is received, a fraction USE of the closed
channels (1 - uSE) open additionally to the channels that are already open (uSE).
Therefore, the number of channels that open is higher than USE and is equivalent to
the instantaneous value of uSE. This type of synapse is called to be facilitating. A
spike will increase the efficacy of the synapse if the subsequent spikes arrive in a
time window comparable to τfacil. The depressing and facilitating mechanisms are
contradictory but have different dynamics and time constants. Therefore, adjusting
the τrec and τfacil can change significantly the behavior of the dynamic synapse.
Additional information about the processing power of synapses can be found in [46]
and [49].

() ()
spSESE

facil

SESE ttuU
u

t

u
−−+−=

∂

∂
δ

τ
1 (2.9)

BUPT

2.2. Dynamic Synapses 25

2.2.4. Recursive Model for Dynamic Synapse

The dynamic synapse can be modeled globally by a gain G and a delay D.

The synapse is dynamic because the gain is not constant and depends on an internal
synapse state [x uSE]. At each moment the gain is controlled by the state variable
as shown in equation 2.10. Superscript index n is a discrete time index associated
with the nth pre-synaptic spike.

nn

SE

n
xuAG ∗∗= (2.10)

Equations 2.6 and 2.9 can be transformed from differential into recursive

expressions that allows us to compute the state variable at the time of the (n+1)th
spike based on the state variable at the time of the nth spike. Equation 2.11
describes the computation of xn+1 based on xn and uSE

n. ∆tn
n+1 is the time interval

between the consecutive pre-synaptic spikes. In a similar way equation 2.9 can be
rewritten as a recursive expression in 2.12, where USE is the utilization of synaptic
efficacy in static conditions (low frequency spike trains compared to 1/ τfacil).

() ⇒






 ∆−
−+−+−=−

+
+

444444 3444444 21
321

eredre

rec

n

nn

SE

nn

activated

n

SE

nnn t
uxxuxxx

cov

1

1 exp11
τ

()
rec

n

nn

SE

nnn t
uxxx

τ

1

1 exp11
+

+ ∆−
−−+= (2.11)

()
facil

n

n

SE

n

SESE

n

SE

t
UuUu

τ

1

1 exp1
+

+ ∆−
−+= (2.12)

A useful property of the above model is that whenever the pre-synaptic

spike train has a steady frequency, the synapse state [x uSE] stabilizes at a constant
value that is dependent on the frequency of the spike train. This is a useful property
that is used in the following chapters at building the spiking neural network
simulation framework. Equations 2.13 and 2.14 compute the synapse state when
the frequency of the spike train is steady and equal to fsp.

()
recsp

SE

recsp

f
u

f
x

τ

τ

1
exp11

1
exp1

−
−−

−
−

= (2.13)

()
facilsp

SE

SE

SE

f
U

U
u

τ

1
exp11

−
−−

= (2.14)

BUPT

Spiking Neural Networks - 2 26

2.3. Spiking Neurons Models

 Synapses transmit action potentials between pairs of neurons. When a
neuron receives a post-synaptic spike its membrane potential is changed and in
some cases the neuron generates an action potential. There are several models that
simulate the mechanisms governing the functioning of a neuron cell. The most
elaborate model is the Hodgkin-Huxley neuron which was developed after studying
the giant squid neuron. Due to limited computing resources, several other simplified
models have been later developed. These models try to preserve the aspects of
neuron functionality that are believed to be significant to information processing.
This thesis presents and uses four different models for spiking neurons. In order to
justify the simplified models the next sub-paragraph introduces the functionality of
the biological neuron as presented by Hodgkin-Huxley.

 2.3. 1. The Biological Neuron

Like all cells the neuron has a cell membrane that separates it from the
extra-cellular space. The interior of the cell is connected to the exterior by a series
of ion pumps and voltage-controlled ion channels. Sodium, potassium and calcium
ions are most important in the functioning of the neuron. The active pumps create a
flux of ions between the interior and exterior of the neuron cell, thus creating a
difference in ion concentration. Sodium is pumped out of the cell while potassium is
pumped into the cell. The difference in concentration produces a voltage across the
cell membrane called Nernst potential. This voltage opens the voltage-controlled ion
channels and produces a flux of ions that is opposite to the pump flux, thus
balancing the process. If only sodium was present the equilibrium is at about
+50mV across the cell membrane. In the case of potassium equilibrium sets in at
around -77mV. With both types of ions present, the equilibrium potential was
experimentally determined around -65mV. At this voltage, sodium ions flow into the
cell while potassium ion flow out of the cell (via the ion channels). On the other
side, the ion pumps balance the process by pumping the ions back. The equilibrium
voltage is called resting potential. This is the potential across the neuron membrane
if the neuron is not disturbed by an external stimulus for a sufficiently long period of
time. Figure 2.5 presents the Hodgkin-Huxley neuron model. The capacitor
represents the neuron membrane that serves as an insulator between the inside and
outside of the neuron cell. The two batteries represent the equilibrium potentials
generated by the sodium and potassium ion flows. The ion channels are modeled by
variable resistors that are controlled by the voltage across the membrane. The
circuit is stimulated by an external current that represents the post-synaptic
current.

Despite its apparent simplicity the model can have a very complex behavior.
This is because the dependence of the channel conductance on the membrane
potential is very dynamic and highly non-linear. Furthermore, combining two or
more channels with different parameters can lead vast range of dynamic behaviors
for the neuron model. Equation 2.15 describes the functionality of the model, where
the sum is across all existing ion channels (Na and K in this case). Equation 2.16
sums the components of the sodium and potassium currents respectively. Gn is the
maximum conductance of the channel. This conductance is modulated by the
dynamic variables m and h which are called activating and inactivating variables.
Parameters p and q are constants and are specific to the ion channel. In the case of

BUPT

2.3. Spiking Neuron Models 27

the Hodgkin-Huxley neuron the parameters were experimentally determined (pNa=3,
qNa=1, pK=4, qK=0). Because qK is zero the potassium channel has no inactivation
variable.

Fig. 2.5 Hodgkin-Huxley Neuron Model

() ()∑ +−=
∂

∂

n

synn tItI
t

u
C (2.15)

 () ()K

q

K

p

KKNa

q

Na

p

NaNaKNa EuhmgEuhmgII KKNaNa −+−=+ (2.16)

 The activation and inactivation variables m and h are voltage dependent and
also time dependent, therefore they have a dynamic behavior. Figure 2.6 shows an
example of how these variables behave. The left picture represents the static value
of the variable. The right picture shows the time constant of the variable.

()
())(

1
0 uxx

ut

x
−−=

∂

∂

τ
 (2.17)

a) Stationary Values b) Time constants

Fig. 2.6 Activation and inactivation variables

C

Isyn

Na K

+
+ -
-

EK ENa

BUPT

Spiking Neural Networks - 2 28

 During the transitory regime, variable x changes asymptotically towards the
new stationary value x0(u) with time constant τ(u) (eq.2.17). Note that both the
stationary value and the time constant are voltage dependent. It is important to
notice that the m and h variables model biological mechanisms that activate and de-
activate the ion channels independently. Therefore, the variables are also
independent; they can change with different time constants; and their effect is
multiplicative since any of the variables can annihilate the effect of the other.

2.3.1.1. Spike Generation

 When no external stimulus is present the neuron settles at resting potential.
This means that the activating and inactivating variables have just the right value to
keep the Na and K ion channels open at the levels required for equilibrium. If an
external synaptic current is injected the potential across the membrane potential
rises. As an effect all variables m and h also rise for both Na and K. Notice that the
activating variable mNa of the Na channel has a time constant that is significantly
smaller than the rest. This means that this variable will rise a lot faster that the
other. It also means that the Na ion channel will open first allowing an influx of Na
ions inside the cell. This causes an additional increase in membrane potential which
in turn opens the Na channel even more. Therefore, a temporary positive feedback
appears.

If the external stimulus is weak and initial increase in membrane potential is
also small. This places the mNa variable at a position on the graph where the
sensitivity of the variable is small with respect to voltage variations. Consequently,
the positive feedback created by the Na channel is small and is unable to de-
stabilize the neuron. This corresponds to the situation presented in figure 2.7a.
Having larger time constants it takes some time until the inactivating variable hNa of
the Na channel and the activating variable mK of the K channel rise. However, when
that happens two effects can be seen. First, the Na channel is closed by its
inactivating variable. Second, the K channel is opened producing an ex-flux of K ions
out of the cell. This produces a decrease in the membrane potential. Because of the
high time constant of the K channel there is a certain delay until the channel
manages to close. This creates a negative overshoot of membrane potential.

If the external stimulus is strong it will produce a higher membrane
potential and will bring the Na channel in a state where it is more sensitive to
potential variations (upper part of the graph). This creates a stronger positive
feedback. If the membrane potential is sufficiently high (reaches a threshold), the
positive feedback is sufficiently large to sustain itself. This opens the Na channel to
maximum allowing a massive in-flux on Na ions inside the neuron and leading to the
generation of an action potential. This is shown in figure 2.7b. At such high values
of the membrane potential the time constants of the hNa and mK decrease
significantly allowing quick inactivation on the Na channel and activation of the K
channel. The high value of the membrane potential opens the K channel more than
in the situation when an action potential is not generated. The result is a
significantly stronger negative overshoot called refractory period.

2.3.1.2. Refractory Period

During the refractory period the neuron is less sensitive to incoming stimuli.
This means that a stimulus that would generate an action potential if the neuron is
in resting state might not generate an action potential if the neuron is in refractory
state. The effect of a refractory period is not just a shift towards a more negative
potential (an increased distance to the threshold). In addition, during the refractory

BUPT

2.3. Spiking Neuron Models 29

period the overall conductance of the neuron membrane is reduced because very
many ion channels are opened immediately after the action potential. This increased
conductance allows the charge that is brought by the external stimulus to drain
quickly and so diminishes the impact of the stimulus upon the membrane potential
during the succeeding time window. This is depicted in figure 2.7c. There is a
sequence of four spikes during the refractory period following the action potential.
All spikes carry the same amount of energy and raise the membrane potential
equally. However, the potential brought by the first spike diminishes a lot faster
than the potential brought by the following spikes. This is because the refractory
effect is more profound then. During the refractory period the chance that a group
of spikes triggers an action potential is reduced. The same group of spikes might
easily trigger an action potential if the neuron was at resting potential. In addition, if
the group of spikes merged into a single spike that carries the cumulated energy it
might trigger an action potential even if the neuron is in refractory period.

a) Low Stimulus. No Action Potential b) High Stimulus. Action Potential

c) Pre-Synaptic Spikes during refractory period

Fig. 2.7. Functioning of the Neuron. Generating spikes

2.3. 2. Integrate and Fire Neuron

 The integrate-and-fire neuron model (I&F) is the simplest model inspired
from the Hodgkin-Huxley neuron. The I&F neuron is shown in figure 2.8 and is
modeled by equation 2.18 or 2.19 (differential form). The synapses are constructed

BUPT

Spiking Neural Networks - 2 30

from a gain block and a delay block. The gain block is either a simple constant gain
or can be built as a state machine modeled by equation 2.10, 2.11 and 2.12. It can
be seen that the neuron cell is represented by a lossy integrator which is the
equivalent of the capacitor. The resting potential of the neuron is zero. All post-
synaptic spikes are added and accumulated by the integrator as membrane
potential. If the potential reaches threshold ϑ the integrator resets to its resting
potential and an action potential is generated at the output. If the threshold is not
reached and no new post-synaptic spikes arrive the integrator leaks to its resting
potential with loss factor K. Two possibilities are proposed for modeling the
refractory period. In figure 2.8 it is implemented by a switch controlled by a timing
circuit. This prevents the neuron to accumulate any potential during the refractory
period and so no new action potentials can be generated during this period.

Another method would be to reset the integrator at a value lower than its
resting potential. This approach is similar to what the biological neuron does, and
decreases the probability that a new action potential is generated during the
refractory period. However, this model is linear while the biological neuron is highly
non-linear and has a significantly higher probability to generate a new action
potential during the refractory period. For this reason and also from experimental
results the discontinuous switch controlled model (fig. 2.8) is preferred.

Fig. 2.8. Integrate and fire neuron model

() () ()∫∑
=

∗−−∗=
t

ti

K

k

iikiiki tplosskDtuGtp
1

_ () Thtpi ≤ (2.18)

() 0=tpi
, tti = () Thtpi ≥

()

()tplosskI
t

tp
isyn

i ∗−=
∂

∂
_ (2.19)

The leakage current models the effect produced by the potassium currents

which tend to bring the neuron at resting potential if the post-synaptic stimulus is
not sufficient to trigger an action potential. The main advantage of this model is its
simplicity, requiring a reduced number of floating-point operations for simulating
one neuron. This advantage can be important if very large networks need to be
simulated. As a tradeoff, the model does not have adaptation or bursting abilities.

+ ∫

G
D K

G
D

-

Reset

TH

ϑ

Synapse

Synapse

Refractory
Period

BUPT

2.3. Spiking Neuron Models 31

2.3.3. Integrate and Fire with Burst Neuron

A burst is a sequence of action potentials generated at very short time

intervals. The first action potential is triggered by the same mechanisms of a non-
bursting neuron. The remaining spikes of the sequences are triggered by a self-
sustained mechanism and do not need any synaptic stimulus. The biological
explanation for such functionality stands in the existence of the calcium ion channel
which was mentioned in paragraph 2.3.1. Like the sodium current, the calcium
current is also from the outside towards the inside of the neuron cell, thus raises the
membrane potential. The mathematical model of the calcium current is given by
equation 2.16 and so is the same as that of sodium or potassium. Additionally, the
shape of the activating and inactivating variables m and h is also similar. The
distinctive characteristic of the calcium ion current is that the curves of the
activating and inactivating variables are shifted left towards the negative area of the
membrane potential. This is the reason why this current is also called “low-threshold
calcium current”. At resting potential the mCa variable is fully activated while the hCa
variable is fully inactivated. Therefore, the calcium channel is closed as an effect of
the hCa variable. The sodium channel is also closed at resting potential as an effect
of the mNa variable. Even if the sodium channel and calcium channel are in the same
state, closed, each has a different reason for it: the sodium channel is not-activated,
while the calcium channel is in-activated. If for any reason the membrane potential
decreases below the resting potential the inactivating variable hCa will start to rise
and the calcium channel will open. The membrane potential can go below the
resting potential either as the result of an inhibitory synaptic current or an after-
spike negative overshoot (due to potassium currents).

Figure 2.9 shows an example the neuron is stimulated with an inhibitory
synaptic current. The inhibitory current is removed (at time 600ms) the membrane
potential starts to increase, mCa starts to increase and hCa starts to decrease.
Because hCa has a large time constant and does not decrease immediately the
activating variable mCa opens the calcium channel. As a result the membrane
potential is increases and might cause a sodium channel to open and generate an
action potential. After the first action potential, if the hCa still has not had time to
decrease, the calcium current is still on and causes a new action potential. Several
such action potentials can be generated in a burst. The number of action potentials
is given by the time window allowed by the time constant of the hCa variable. Once
the calcium channel closes the mechanism cannot be triggered until the membrane
potential is again sufficiently low.

The I&FB neuron is a simplified model that tries to capture the functionality
described above. Equations 2.20 and 2.21 implement the model. The first two terms
of eq.2.20 are the same as for the I&F neuron. Additionally, there is a third term
related to the calcium current. The term pCa is smaller than the resting potential and
sets the potential level where the calcium channel starts to open (mCa and hCa
curves cross). Equation 2.21 shows that whenever the potential is below pCa the
calcium current increases and when the potential is above pCa the calcium current
decreases. In the case of the biological neuron, both the m and h variables influence
the calcium channel at the same time. For simplicity, this model considers that the
calcium current increases as effect of the m variable and that the current decreases
as effect of the h variable. Consequently, the τm time constant controls the rate at

BUPT

Spiking Neural Networks - 2 32

which the calcium current increases while the τh controls the rate at which the
current decreases.

a) Membrane potential during burst b) Activating/inactivating variables

 during burst

Fig. 2.9. Calcium Current Effect

Function H of eq. 2.20 is the Heaviside function. Its purpose is to disable the

calcium current when the potential is below pCa. In the case of the biological neuron
a membrane potential below pCa prepares the calcium channel to open by raising
the level of hCa. However, the channel is closed because of the mCa variable and
remains so until the membrane potential is above pCa. Because in a similar situation
the model described in eq. 2.20 and 2.21 has an increasing current, the current
needs to be shunted artificially until the membrane potential is above pCa. This is
achieved by the H function.

The calcium current influences the neuron at small potentials above the
resting potential. It generally helps at producing sodium current and does not
trigger the action potential itself. For this purpose, the calcium current term in eq.
2.20 is modulated by a term that represents the distance between the membrane
potential and the reference potential pT.

()()ppppHIKpI
t

p
TCaCasyn −−+−=

∂

∂
 (2.20)













<
−

>−

=
∂

∂

Ca

m

CaCa

Ca

h

Ca

Ca

Ca

pp
II

pp
I

I

t

I

,

,

max

max

τ

τ
 (2.21)

 If parameter pCa is set at a level that is reached by the membrane potential
during the refractory period and also if parameters ICa

max and τm are sufficiently
large, any sodium generated action potential can trigger a burst. For this case the
refractory period cannot be modeled by a switched as described in 2.3.2. The
duration of the burst can be controlled by parameter τh.

BUPT

2.3. Spiking Neuron Models 33

2.3. 4. Integrate and Fire with Adaptation Neuron

Adaptation is a neuron property to adjust its sensitivity to incoming stimulus

in order to prevent over excitation and output saturation. The biological neuron is
able to adapt by combining two special ion currents. The first current is called “high-
threshold calcium current”. This current is very similar to the low-threshold calcium
current presented in the previous paragraph. The difference is that this current
activates only at high values of the membrane potential, particularly during the
generation of action potentials. The high threshold calcium current has two roles:
firstly, it produces an additional boost to the membrane potential during the action
potential; secondly, and more important for the adaptation mechanism, it
temporarily increases the calcium concentration inside the neuron cell immediately
after the action potential.

In addition, a new type of potassium current is present. It differs from the
regular K currents by the fact that it flows through a calcium dependent-voltage
independent potassium channel. Consequently, this channel opens when the calcium
concentration is high regardless of the potential across the neuron membrane. This
dependence law is shown in equation 2.22, where Ca2+ is the calcium concentration
and c is a parameter.

() []() 001.0,01.0,min,1 2 ==−−=
∂

∂ + βαβα Cacmm
t

m
 (2.22)

If an isolated action potential occurs the calcium concentration rises but the

calcium dependent potassium channel does not have sufficient time to open. On the
other hand, figure 2.10b shows that whenever several action potentials occur during
a short interval of time, the persistent high calcium concentration allow the
potassium channels to open. As a result, the outward potassium current acts as an
inhibition current. Figure 2.10a shows that the frequency of action potentials
decreases even if the input stimulus is constant, exhibiting a mechanism of
adaptation against over stimulation.

a) Membrane potential during adaptation b) Calcium concentration and

 activation variable of potassium channel

Fig. 2.10. Adaptation Mechanism

BUPT

Spiking Neural Networks - 2 34

()ppIKpI
t

p Ca

K

Ca

Ksyn −+−=
∂

∂
 (2.23)

()
Ca

K

Ca

KspkK
Ca

K
ItI

t

I

τ

δ −
=

∂

∂
max

 (2.24)

2.3. 5. Resonate and Fire Neuron

Resonate and fire (R&F) neurons exhibit sub-threshold oscillations when an

action potential is not generated. This type of behavior makes the neuron sensitive
to the exact timing of the pre-synaptic spikes and therefore requires an excitatory
spike train that resonates with its internal frequency in order to generate an action
potential. Many biological neurons also exhibit such behaviors. To explain such
functionality we return to the biological model containing a sodium channel and a
potassium channel. When the neuron is stimulated the sodium channel opens and
the membrane potential rises. If the increase is not enough to trigger an action
potential, the sodium channel inactivates and the potassium channel opens causing
the membrane potential to decrease. However, the membrane potential does not
decrease to the same extent as it would in the case of an action potential. The low
potential inactivates the potassium channel and “de-inactivates” the sodium channel
causing the membrane potential to rise again. After a few such damped oscillations
the membrane comes to a stop at the resting potential. When an action potential is
generated, the low membrane potential during the refractory period shuts down the
sodium channel completely and so an oscillation does not occur.

The easiest way to model an R&F neuron is to represent the membrane
potential as a complex number p, where the real part is the current component and
the imaginary part is the voltage component. Equation 2.25 models the variations of
membrane potential for an R&F neuron. Parameter b is negative and represents the
attraction to the rest state. ω is the internal frequency of the neuron. Parameter a is
introduced to modulate the amplitude and phase of the synaptic current. However,
in most cases it is a real number and therefore cannot shift the phase of the
membrane potential.

()pjbaI
t

p
syn ω++=

∂

∂
 () Thp <Im (2.25)

jThp = or 0=p () Thp ≥Im (2.26)

Whenever the voltage component (Im(p)) exceeds the threshold the

membrane potential is brought back to an initial reset state and the neuron output
generates an action potential. The reset state is either zero, which is analog to the
resting state of the previous models, or can be any complex number (i.e. jTh). In
the latter case the neuron continues to oscillate starting from the amplitude and
phase given by the reset state.

Figure 2.11 plots the membrane potential of a R&F neuron when it is
stimulated with four different spike trains. In 2.11a the three spikes are grouped
and arrive within a short interval of time. This boosts the membrane potential above
the threshold and triggers an output action potential. The action potential is
represented by the solid round marker. In this case the reset state is j*TH.

BUPT

2.3. Spiking Neuron Models 35

In 2.11b the spikes are out of phase relative to the oscillation of the
membrane potential. It can be seen that the third input spike actually lowers the
amplitude of the oscillation and therefore diminishes the probability of an action
potential. In 2.11c the third input spike has a timing that is not close together with
the first and second spike. Even so, because the timing of the third spike has
roughly the same phase relative to the phase of the oscillation an action potential is
generated. In figure 2.11d the second spike is out of phase with the other spikes.
However, because the spike is inhibitory, it is able to trigger an action potential.

Additional information about neuron models can be found in [47]

Fig. 2.11. R&F Neuron Membrane Potential

2.4. Coding with Spikes

One of the most difficult problems involving processing with neural networks

is finding an efficient method to represent and code information. Several approaches
have been tried each of them having advantages and disadvantages [32], [34]. For
example, some neural network models use a continuous variable as output even
though the biological counterpart generates spikes. This approach is based on the
assumption that the information is coded entirely in the rate of the spike train.
Hence, time-averaging along the signal reduces it to a continuous variable.

Another method, which is presented in this paragraph, is coding by using
spatial-temporal spike sequences. Such a sequence codes information in the relative
timing between spikes and also in the identity of the neuron that generates the
spike. Figure 2.12 presents an example of a spatial-temporal spike sequence
generated by three neurons.

BUPT

Spiking Neural Networks - 2 36

The complete description of such a spike sequence is done by specifying the
timing of each individual spike relative to the remaining spikes of the sequence.
Such a set of time delays is called the “context” of the spike. There are two types of
contexts as they include all the spikes of the sequence or just a partial subset.
Figure 2.12 presents the two types of contexts and calls them complete contexts
and incomplete contexts respectively. The number of spikes that comprises each
context is referred to as “context size”.

Consequently, a network that generates a spatial-temporal spike sequence
needs to be comprised of several context detectors each of them being responsible
for generating a spike if and only if the appropriate context has occurred. The next
section presents a method of implementing a context detector by using an I&F
spiking neuron. Further details concerning this coding scheme can be found in [25],
[35], [36], [37] and [38].

a) Spike sequence b) Complete Context c) Incomplete Context

Fig. 2.12. Spatial-temporal spike sequences. Complete and incomplete spike

contexts

2.4.1. Spiking Neuron as Context Detector

Every context contains a set of delays that correspond to the relative

timings between spikes. If these delay values are programmed in the delay blocks of
the neural synapses the occurrence of a certain context causes several spikes to be
synchronized at the input of the neuron. This event can be easily detected if the
neuron uses a large loss factor combined with appropriate synapse and threshold
values. This is because the large loss factor does not allow the neuron potential to
exceed the threshold unless all of the expected spikes arrive at the same time or
within a very short time interval.

The value of the loss factor offers a mechanism that allows us to introduce a
certain tolerance to the exactness with which the context needs to be reproduced in
order to be detected. This means that if the context is similar but not identical to
the context used during training the spikes will not be fully synchronized. However,
if the loss factor is not too large a small de-synchronization is allowed and the
context is still recognized. On the other hand if the loss factor is too small confusion
between contexts can occur. The remaining of this section presents an analytical
approach of how to compute a loss factor when a certain time tolerance is desired.

BUPT

2.4. Coding with Spikes 37

The tolerance is denoted by symbol t∆ and represents the time delay between the
first and the last of the N received spikes comprising a context.

The charging of the lossy integrator is given by formula (2.27), where S is
the gain of the synapse and k is the loss factor. After receiving N-1 spikes the
potential accumulated by the integrator reaches level A1 (2.28). The amplitude of
each spike is 1 and the width is W. It is important that the neuron is not triggered
after receiving the first N-1 spikes and therefore the condition A1 ≤ Th must be
satisfied. This leads to a restriction imposed on the synapse gain (2.29). Until the
last spike is received at time t∆ the integrator discharges from level A1 to level A2
(2.30). The last spike charges the integrator to level A3 (2.31).

()kt
e

k

NS
tu

−−= 1)((2.27)

() ()kW

e
k

SN
A

−−
−

= 1
1

1
 (2.28)

()()kW
eN

kTh
S

−−−
≤

11
max

 (2.29)

)(

12

Wtk
eAA

−− ∆= (2.30)

()⇒−+= −− kWkW
e

k

S
eAA 123 () ()[]∆−− −+−= ktkW eNe

k

S
A 1113 (2.31)

In order for the context to be detected it is necessary that level A3 exceeds

threshold Th. Equation (2.31) shows that the highest value for k is achieved when
S=Smax. Substitution of (2.29) in (2.31) and regrouping leads to condition (2.32).
Equation (2.32) shows that when a high tolerance is desired the loss factor k needs
to be decreased. When the size of the context N is large it is difficult to obtain a
high time tolerance due to the excessively small loss factor. Theoretically, when N

goes to infinitely the tolerance will need to be zero because 0
1

2
ln →

−

−

N

N
.

Having defined how a single neuron can implement a context detector, the
next section will present how a spiking neural network can implement a content
addressable memory and also why this is useful.

() ()[]∆−− −+−< ktkW
eNe

k

S
Th 111 (2.32)

()
⇒

−

−
>⇒>

−

−+
∆

∆
−

−

1

2
1

1

11

N

N
e

N

eN kt
kt

1

2
ln

1

−

−
−<

∆ N

N

t
k (2.33)

BUPT

Spiking Neural Networks - 2 38

2.4.2. Content Addressable Memory with Spiking Neural Networks

Content addressable memories are different from conventional memories

because of the addressing method they use. Rather than using an address as
reference to a certain memory cell content addressable memories retrieve a
memorized item by specifying an incomplete or noise affected version of the item
itself. This approach is similar to the human brain functionality which remembers
learned data when being stimulated with some similar or incomplete data.

Implementing a content addressable memory that stores spatial-temporal
spike sequences can be useful in feature classification applications. Assuming that
such a spike sequence is used for coding information, the sequence can be stored in
a content addressable memory and then be used as the class prototype vector.
Once the memory is addressed with a new spike sequence it will retrieve the
prototype sequence that is most similar, hence classification is performed.
Configuring a spiking neural network as a content addressable memory is done in
three steps:

• A neuron is allocated for every spike in the sequence.
• For every spike (neuron) a context is chosen assuming that a context size

has been pre-determined. A procedure to choose a context and also a
context size is proposed in section 2.4.2.1.

• According to each context, synapse gains and delays can be programmed. If
tolerance is desired an appropriate neural loss factor can be computed with
formula (2.33).

The functionality is as follows: a new spike sequence is used to stimulate

the network. If this sequence is similar to the sequence that is stored in the network
some spikes might create appropriate contexts causing some of the missing spikes
also to be generated. These new spikes will lead to new contexts and so after a few
iterations all the missing spikes of the sequence will be added. A detailed description
about the capacity of a content addressable memory implemented by a spiking
neural network is found in [25]. The next section investigates how different
parameters influence the ability of a network to successfully recall a stored spike
sequence.

2.4.2.1. Choosing Spike Contexts

The previous paragraph defined the performance of a content addressable
memory as the ability to completely reproduce a stored spike sequence from a
partial sub-sequence. For evaluation purposes, we create a performance variable.
The variable represents the ratio of the spikes that are correctly reproduced by the
memory and the total number of spikes in the sequence. Ideally, after the initial
sub-sequence is externally fed, the network adds all of the missing spikes. In
practice however, due to several recursive dependencies some contexts are never
completed and thus some spikes are not generated. This leads to other several
incomplete contexts and so the network fails to self-lock on the entire spike
sequence. Two factors that have significant influence on the network performance
are the size of the contexts and the number of spikes used for initial excitation.
When a large number of spikes are used for excitation the chance of a recursive
dependency to appear is small. On the other hand a large value for context size
increases this chance.

BUPT

2.4. Coding with Spikes 39

When designing a network a compromise needs to be made with respect to
the size of the context. This is because a context that is too large will most likely
lead to the inability of the spike sequence to complete. A context that is too small
will solve that problem but will reduce the robustness of the design because small
contexts can falsely occur due to noise. The rest of the section will study the
dependence of the network performance on the size of the context. The experiment
generates a random sequence consisting of 100 spikes which is memorized in a
neural network. The excitation of the network is done with partial sequences
consisting of 50 spikes that are randomly picked out of the initial sequence. In this
analysis every context is constructed from spikes picked out of the sequence
according to a uniform spatial-temporal distribution. For every possible size of the
context a statistical evaluation of performance is done by averaging the
performance of 30 simulations.

Figure 2.13 presents the results of the analysis by plotting a family of curves
parameterized by parameter C. The parameter models a degree of permissiveness
that allows the algorithm to consider that a context is completed even if only a
majority of the expected spikes have occurred. For example, if the size of the
context is 10 and C is 2 than the context detector will activate if 8, 9 or 10 spikes of
the context have occurred. The neuron context detector presented in section 2.4.1
can have this characteristic if the synapses are set to a value higher than Smax that
is given in formula (2.29).

All the curves in the graph show that at some point when the context size is
too large the performance drops as recursive dependencies start to appear. As
expected, a larger value for C destroys some of these dependencies and so allows
designs to perform well for larger contexts.

Fig. 2.13. Context size influence on performance.

An interesting observation can be made by examining individual

performance markers rather than the average performance curve. It can be seen
that curves having a larger value for C do not have markers distributed around the
average as mostly expected. In this case the average is obtained from groups of

BUPT

Spiking Neural Networks - 2 40

points having either high performance or low performance, the average being
determined by the number of points in each group. This type of behavior can be
explained by examining the reason why performance drops. As stated before,
performance decreases when some spikes do not occur due to incompletion of the
contexts they depend on. This phenomenon is present when a recursive dependency
occurs, meaning that a spike is never generated due to a linked dependency on
itself. When C is small these dependencies can be present in small groups (even in
pairs for C=0). Therefore, small groups of spikes fail to be generated causing the
performance to be decreased only by a small percentage and so allowing markers to
be distributed around the average. When C is large, the permissiveness of the
context detector breaks the dependencies that appear in small groups allowing the
performance to be high even for larger values for the context size. In this case, the
performance decreases only as an effect of large group dependencies. This causes a
sudden performance loss as several spikes fail to be generated together. Additional
information on this topic can be found in [39].

Other ways of evaluating performance are presented in [25]. While our
study presents the dependence of performance on the context size, [25] assumes a
fixed context size and analyzes the ability of the network to store multiple spike
sequences (capacity study) and to reject pattern noise.

BUPT

3.1 – Model Objects 41

3. MODELING AND SIMULATION

In order to investigate the functionality of a spiking neural network, a
simulation environment is required. Tools for processing and visualizing results are
also needed. Such an environment is MATLAB [57], which preferred by most
scientists due to its vast library of functions and toolboxes which are oriented
towards scientific modeling and experimentation. Unfortunately, MATLAB does not
include a toolbox that is suited for simulation of spiking neural networks. Therefore,
one had to be developed. This chapter presents a MATLAB framework, designed by
our research team, which can be used to simulate spiking neural networks [55]. It
also describes some functions that are useful for processing and visualizing results.

3.1. Model Objects

 The model is organized on objects of different hierarchical standings. This
approach allows a direct association between software modules and actual parts of
the network architecture, easing the task of extracting and interpreting simulation
results. Figure 3.1 presents how the objects are organized.

Fig.3.1. Model architecture

3.1.1. Network Object

The highest hierarchy object is the network object. It includes the entire
network architecture, specifically all network parameters and all sub-objects. Figure
3.2a presents the contents of a network object. The network is volumetric, is
organized on layers and each layer has a bi-dimensional topology. In this case the
dimensions of the network are 3x5x5. An important variable of the network object is
the layer array. The array has several entries, each being filled by one layer object.
Other variables memorize network constants such as the membrane loss factor and
neuron threshold. In order to create a network object function “createNetwork” is
used.

BUPT

Modeling and Simulation - 3 42

3.1.2. Layer Object

The content of the layer object is presented in figure 3.2b. Some
parameters like topology, loss factor and threshold are stored redundantly and are
the same as found in the network object. The model is intended to be general and
allows connections between any pair of layers. In practice, however, only some of
these connections are valid and the rest are zero. For this reason every layer object
contains a variable called connectivity vector. It is a Boolean map that shows which
layers are connected to the current layer. This is useful because the simulator will
examine this vector and will skip propagating spikes between layers with null
connections, decreasing simulation time significantly. In this example the
connectivity vector holds only zeros as the network has not been initialized.

The simulator, as it will be described later, is a time based solver. The
output of the simulation is the spike activity of the network. Each spike is
represented by a Boolean value coding the presence or the absence of the spike.
Variable “state” of the layer object holds the spike activity of the layer at the current
time instant. The variable is a matrix of the same size as the layer topology. Every
entry in this matrix corresponds to the output of one individual neuron. This means
that building the spike trace of one neuron is done by recording the value of one
matrix entry at every time instant of the simulation.

a) Network object b) Layer object

Fig. 3.2. Network and Layer Objects

 The layer object contains a secondary state variable named “nextState”. The
reason why two state variables are needed comes from the functional difference
that exists between a biological neural system and a computer system. All the
neurons of the biological system operate in parallel while the computer code is
executed sequentially. This means that any change in the output of one neuron will
affect the simulation of the next neuron. This is incorrect since normally the two
neurons are performing in parallel. In order to preserve the parallel functionality of
the network two state variables are used. All neurons read signals from the “state”
variable while their outputs write signals into the “nextState” variable. The
framework considers time to remain unchanged until all the neurons are simulated.
When the “nextState” variable is complete the simulator swaps the two variables
and time is advanced. This technique is shown in figure 3.3. The “neuronArray”

BUPT

3.1 – Model Objects 43

variable is an array with the same topology as the layer object. This array holds all
the neuron objects.

3.1.3. Neuron Object

 Each neuron object contains the mathematical model of an individual neuron
together with the current neuron state and other parameters. Every individual
neuron can use one of the four proposed models: I&F, I&FB, I&FA or R&F. Spikes
coming from neuron k to neuron i cross a synapse which produces gain Gik and
delay Dik. Both static and dynamic synapses can be used. Detailed information about
the neuron and synapse models is found in chapter 2.

Fig.3.3. Updating the network state

The neuron object is depicted in figure 3.4. The “potential” variable holds
the neuron potential that is computed according to the neuron model. The
parameters and internal states of Gik and Dik are stored in the “synapseMatrix” and
“delayMatrix” variables.

Fig.3.4. Neuron Object

Spikes propagate between neurons with different delays. This means that in

order to compute the spike influence on current potentials a history of the spike
activity of the neural network needs to be recorded. This history needs to be at least

STATE REGISTER

Next State

State

Clock

Neuron
Model

BUPT

Modeling and Simulation - 3 44

as long as the largest delay value. The simulation framework is organized such that
each neuron keeps track of all the spikes that will affect its potential at some time in
the future. This is done by placing a “dataDelayLine” vector in each neuron object.
When a neuron object is simulated the framework solver computes all the post-
synaptic spikes produced by all the synapses associated to this neuron. This is done
by using the model of the synapse. The post-synaptic spikes are then placed into
the dataDelayLine vector at a position given by the delay value of each synapse. At
each simulation time step the delay line is shifted and the first entry is used for
computing the new neuron potential.

The output of each neuron is Boolean and represents the spiking activity of
the neuron. Every neuron output is mapped on the “state” variable of the layer
object.

 3.2. Model Functions

3.2.1. Simulation Functions

Simulating a network is done by calling function “simulateNetwork”. The

function has two input variables. The first input variable is the network object. The
second variable is the simulation duration in seconds. The simulation is performed
by calling repetitively subroutines like “advanceTime”, updateNeuron” and
“computeNextState”. The function returns two objects as output. One output object
is the post-simulation network. Therefore, a comparison between the internal state
of the initial network object and the final network object can show the influence that
the external stimuli has had on the network within the time span of the simulation.
The second output object is an activity object. During the simulation, time traces of
the neural outputs and membrane potentials are recorded. These traces are
organized in multidimensional vectors that are stored inside the activity object. The
activity object is very useful because it holds data that completely characterizes the
behavior of the network during the simulation. An instance of such an object is
shown in figure 3.5. The neural activity has the same topology as the network that
generated it. Several other functions are offered for creating and initializing new
objects and also for uploading stimuli and adapting synapses.

Fig.3.5. Network spiking activity object

3.2.2 Visualization Functions

The activity object contains the time traces recorded from the membrane

potentials and neural outputs. Most often, the easiest way to interpret this data is
by visualization.

BUPT

3.2 – Model Functions 45

3.2.2.1. Visualizing Neural Time Traces

The most straightforward way to visualize is by plotting the actual time
traces. For this purpose function “displayActivity” can be used. The function accepts
several variables which influence the display mode. The first variable for this
function is the activity object that supplies the data. The second variable will specify
the number of the neural layer that will be plotted. If this variable is omitted all
layers will be plotted in several distinct windows. The third variable is a string that
will select between displaying the neural spiking output activity or the membrane
potentials. Figure 3.6 shows the output of this function for both cases. The fourth
variable is optional and allows visualization of a sub-region of the neural array.

Visualization of the time traces is not very useful when it comes to the
interpretation of the data because not very many neurons can be fitted clearly into a
single window. However, the function described above can be very useful during the
debugging period of a project. Subtle effects created by different network
parameters can be spotted on the time traces and so several problems can be
avoided or fixed.

a) Layer spiking output b) Layer membrane potential

Fig. 3.6. Visualization of spiking and potential traces

3.2.2.2. Visualizing Neural Spike Rates

When the neural array is large visualizing by plotting time traces can be
very difficult or even impossible. For this purpose the function “displayRate” was
developed. This function computes the rate of the spike train for each neuron and
then maps these rates onto a black-white image. This permits easy visualization of
large arrays. The function’s input variables allow selecting the time at which the
average rate is computed and also the size of the averaging window. Figure 3.7
shows the output of this function. Figure 3.7a displays the image that is fed to the
network as input stimuli. The image only presents a snapshot of the input stimuli
which will continuously change during the simulation as an effect of the time-
varying white noise. Figure 3.7b presents the rate-image of a spiking neural
network that uses an I&F neuron model. The low-filtering effect of the neuron is
seen in the fact that the noise is eliminated from the image.

3.2.2.3. Visualizing Neural Synchrony

 Another important aspect in neural activity analysis is neural synchrony. For
example, at image processing and shape recognition, neural synchrony can be used

BUPT

Modeling and Simulation - 3 46

in the segmentation stage. Observations among biological systems have led to the
idea that neurons processing pixels belonging to the same object tend to fire at the
similar rates and also in synchrony.

a) Noisy image b) Average spike rate

Fig. 3.7. Visualization of the average spike rate as image

If neurons are stimulated by the pixels of an image they will fire spike trains
that rate-code the pixel information. The neurons that are connected to pixels
belonging to the same object will fire at the close rates. This is based on the
assumption that the two pixels that are sourcing the neurons will have similar
values. However, due to different initial conditions or system noise, these neurons
will fall out of phase. Synchrony can still be achieved by using lateral connections in
the proximity of each neuron. This way, spikes generated by one neuron can force
neurons that are almost ready to fire to generate a spike ahead of time and thus
inducing synchrony. Additional information on neural synchrony can be found in
[43], [54] and [58]. For the purpose of visualizing neural synchrony function
“displaySynchrony” was developed. The function expects three variables as input.
The first one is the neural activity object that is supposed to be analyzed. The
second one is the time value at which synchrony is evaluated. The third variable is
a synchrony threshold.

The function uses a fraction variable to denote how well two neurons are
synchronized with 0 meaning completely out of phase and 1 meaning fully
synchronized. Assuming that the neurons are firing at the same rate full de-
synchronization occurs when the time distance between spikes is half of the period.
The function builds a map of synchrony between each neuron and its neighbors.
Then, by comparing the synchrony levels with the synchrony threshold, decides
whether the two neurons are sufficiently synchronous to be considered as belonging
to the same object. This way segmentation is performed. Lastly, the function maps
groups of synchronized neurons to different colors and plots the result. Figure 3.8a,
3.8b and 3.8c presents the output of this function at different times during the
simulation.

The activity object was obtained by simulating a network model similar to
the one described above that was sourced with a grey scale image comprising of
three objects, each at a different grey level. It can be observed that initially the
neurons are unsynchronized and so the image is segmented into large number of
objects. At 100ms large groups of neurons become synchronized. After 160ms all
neurons of the same object are fully synchronized (above the synchrony threshold
which in this case was 0.8).

BUPT

3.3 – Parallelizing the Model 47

3.3. Parallelizing the Model

The major drawback for this approach is that the neural network is
simulated by running the model of each neuron serially on the same processing unit.
Because of this, the simulation time can become very large or even unacceptable in
some cases. However, it is worth noticing that the model of the neural network is
parallel and that the simulation of any neuron is fully independent of the results
produced by the simulation of any other neuron during the same simulation time
step. In order to simulate a neuron the following information needs to be known:

• The input stimuli
• The current network state
• The neuron’s own internal state: membrane potential and content of the

data delay line.

a) T= 30ms b) T = 100ms c) T = 160ms

Fig. 3.8. Visualizing Neural Synchrony

All this information is available at the beginning of every simulation time
step and remains unchanged during the simulation time step. Consequently, the
neuron can be simulated by any processing unit, in parallel with all the other
neurons, provided that the above information is known at the beginning of each
simulation time step. Therefore the simulation framework was broken apart and
distributed in a computer network as shown in figure 3.9.

In the original framework, the neuron objects were stored locally inside the
neuron arrays of the layer objects. Now, these arrays are extracted and distributed
on several slave computers. Inside the layer objects, the neuron arrays are replaced
with a neuron distribution map variable. This is necessary so the master computer
can track the location of each neuron.

The master and slave computers communicate through files written on a
shared hard drive space. At the beginning of each simulation time step the master
computer writes a file that contains the current network state and the current input
stimuli. The slave computers wait until the file is available, read it and start
simulating the neurons. All the internal state variables of each neuron are stored by
the neuron objects and therefore are available locally on the slave computers. When
a slave computer finishes the simulation it writes a response file that contains the
output of all neurons. The master computer reads the file and uses the neuron

BUPT

Modeling and Simulation - 3 48

distribution map to build the next state of the neural network. When the next state
is complete it replaces the current state and the simulation time is advanced to the
next time step.

Fig. 3.9. Distributed Model on a network of Computers

3.3.1. Choosing number of slaves

By distributing the workload on several slaves which work in parallel the

time required for simulating the models is reduced proportionally by the number of
slaves. Therefore it is desired to have as many slaves as possible. However, some
time is lost with communication. When more slaves are used, more communication
time is needed. This paragraph studies what is the optimum number of slaves given
that simulation time and communication time are known. Figure 3.10 presents all
the stages that appear during one simulation time step. The master computer starts
by sending the data to the slave computers. This operation takes time Tcomm11. As
soon as the data is sent, the slave computer starts to simulate (which takes time
TS1) and the master sends the data to the second slave (which takes time Tcomm21).
It is assumed that the master computer sends the data to all slave computers
before the first slave finishes simulation. This is true if T1<T2. Otherwise, the master
computer will not be ready to collect the data from the first slave as soon as it will
be ready.

Fig. 3.10. Master-Slave Interaction

11comT 12comT

21comT 22comT

31comT 32comT

1T 2T

1sT

2sT

3sT

MASTER COMPUTER

NETWORK OBJECT
LAYER OBJECTS

NEURON DISTRIBUTION MAP

SLAVE
COMPUTER 1

NEURON
OBJECTS

SLAVE
COMPUTER 2

NEURON
OBJECTS

SLAVE
COMPUTER 3

NEURON
OBJECTS

Input
Stimuli
+
Network
State

Neuron
Outputs

BUPT

3.3 – Parallelizing the Model 49

Let TNP be the time required for simulating the entire network model in a
non-parallel approach. Considering that the slave computers are identical it can be
accepted that the simulating times TS are roughly the same and are equal to TNP/N,
where N is the number of slaves. Therefore, from figure 3.10 the time required for
simulating one time step in a parallel approach TP can be computed with (3.1).

()
N

T
TNT

N

T
TNT NP

comcom

NP

comp +∗+=++∗= 1 (3.1)

()
NT

T
N

T

T

NP

com

NP

p 1
1 +∗+= (3.2)

In order to find the optimal number of slaves it is required to find the

minimum for the ratio in (3.2). This is done in (3.3).

com

NP

NP

com

NP

P

T

T
N

NT

T

T

T

N
=⇒=−=









∂

∂
0

1
2

 (3.3)

Equation (3.3) shows that if communication time is small, a high number of

slaves are desired. Ideally, if communication time is zero, the more slaves are
available the better. In a real situation any number of slaves higher than the one in
(3.3) would increase simulation time. This happens because the communication time
added by an additional slave is always constant while the advantage gained by
distributing some of the workload to the additional slave is diminishing.

3.3.2. Results

The previous paragraph computes an optimal number of slave computers

given some generic simulation time and communication time. In practice, the
simulation time TNP depends on the processing speed (CPU throughput) of the slave
and master computer while the communication time depends on network speed and
hard disk access speed. Some quantitative lab experimentation was performed on
the following equipment:

• INTEL CORE2 QUAD Q6600 2x2.4Ghz
• RAM 4GB
• WINDOWS VISTA 32BIT SP2
• MATLAB 7.7.0 (R2008b)
• NET CARD INTEL 82566DM GIGABIT

First, several non-parallel simulations were performed in order to evaluate

simulation time TNP. Neural networks of different sizes were tested. The results are
shown in Fig. 3.11 and numerically available in table (3.1). Due to the “multi-
tasking” nature of the system, measurement during a single simulation is unreliable.
Therefore, for each size of the neural network 100 simulations were performed and
the simulation time was estimated to be the median value of those measurements.

It is seen that the simulation time does not increase linearly with the
number of neurons. This happens because simulation time depends on the number

BUPT

Modeling and Simulation - 3 50

of neurons and also on the time required for simulating each neuron. In the case of
large neural networks each neuron receives signals from more sources and so the
simulation time of each neuron also depends on the number of neurons.
Consequently, the simulation time depends on the number of neurons in a quadratic
manner. It is expected that the parallelization technique is more efficient for large
neural networks, because in this case the serial simulation time increases
drastically.

Fig. 3.11 Non-Linear simulation time as a function of the number of neurons

Table (3.1) also contains the size of the data packet. Please note that a

larger network means a larger file due to the larger network state variable.
However, a larger file does not mean a higher communication time. This is due to
communication overhead which dominates the transmission (files are very small)
and also due to the un-repeatability of the “multi-tasking” system.

Table 3.1. Simulation Results and optimal number of slaves
Number of

neurons
NPT (seconds) Communication file

size (BYTES)

Optimal

Slave Nr. N

90 0.01 336 0

270 0.07 350 0

450 0.18 361 0

630 0.34 366 2

810 0.55 372 2

990 0.80 378 3

1170 1.13 426 3

1350 1.51 436 4

1530 1.88 443 4

1710 2.37 450 4

1890 2.90 454 5

2070 3.49 493 5

BUPT

3.3 – Parallelizing the Model 51

It sometimes happens that large files require a smaller communication time

than small files. Therefore in order to estimate communication time several
measurements were performed. It resulted that Tcomm is rather constant in the
range 0.11 to 0.14 seconds. The median value of 0.12 seconds was chosen. Table
(3.1) also shows the optimal number of slaves computed with (3.3). When the
optimal number is zero it means that non-parallel computing is faster. This happens
for small neural networks where simulation time is small and adding a single
communication time would increase duration of the simulation. In order to quantify
the improvement we choose the best case situation (2070 neurons).

If N=5 is substituted in (3.2) it yields TP / TNP= 0.4. This means that the
parallel simulation is 2.5 time faster than the non-parallel simulation. Ideally, if
there was no communication, the parallel simulation should be 5 times faster since
there is 5 times more processing power. This shows that much more improvement
can be achieved if communication between computing units is reduced. A possible
option is to use a grid superscalar computer. In this case computing units
communicate by shared RAM memory and so communication time can become
insignificant compared to simulation time. A cheaper and more accessible method is
to use a graphics processing unit GPU as a parallel general purpose processor. This
hardware acceleration technique is presented in chapter 4. Further details of the
parallel MATLAB implementation can be found in [56].

BUPT

GPU Accelerated Model for Spiking Neural Networks - 4 52

BUPT

4.1 – General Purpose GPU Computing 53

4. GPU ACCELERATED MODEL FOR SPIKING
NEURAL NETWORKS

 The previous chapter presents a MATLAB framework useful for simulating
spiking neural networks. It also introduces a set of functions useful for analyzing
and displaying results. The major drawback is simulation speed, which can become
a bottleneck when dealing with large neural networks or when trying to perform
iterative simulation. Iterative simulation is a common situation especially when
trying to perform an optimization of the network parameters. Therefore improving
simulation speed is a critical issue. Chapter three proposes a possible solution to
this problem by parallelizing the model and distributing it among a network of
computers. This approach produces some improvement. However, due to the high
communication time, the performance gain is small compared to the amount of
additional computing power. This chapter presents an alternative solution by
implementing the spiking neural network on a GPU.

4.1. General Purpose GPU Computing

Large scale simulations are often the task of massively parallel cluster
computers. For a long time scientists dealing with complex modeling had to use
such expensive machines in order to obtain simulation results in reasonable
amounts of time. This made large scale parallel computing inaccessible and
uncommon. Recently, CPU producers have started to incorporate several cores in
the same chip growing the amount of computational parallelism. However, it is still
not sufficient for some demanding tasks in modeling and simulation.

Initially, the GPU (Graphics Processing Unit) was introduced as a dedicated
processing unit that dealt with image processing and display related tasks. Because
its target applications differed in nature from the CPUs, the GPU evolved toward a
different type of architecture. It mostly deals with image processing and 3D graphics
rendering which are parallel applications (very often each pixel or vertex can be
processed individually). Therefore, the GPU architecture has several simple
processing units rather than a single complex core. Figure 4.1 shows the processing
throughput of a GPU versus a CPU.

Fig.4.1. CPU vs. GPU evolution

BUPT

GPU Accelerated Model for Spiking Neural Networks - 4 54

The amazing throughput of the GPU is only available when the application is
parallelizable. Otherwise it will only use a single GPU processing unit which is most
likely to be outperformed by a CPU. The ability of a GPU to process in parallel drew
attention to researchers interested in parallel simulations. The main attraction is the
low price and availability of such a device.

4.1.1 Early GPU Computing

The usual GPU processing pipeline is presented in figure 4.2. This type of

architecture is implemented under OpenGL1 or DirectX2 and is accessible via the
regular display driver programs. The programmer is allowed to upload code
fragments inside the VERTEX and PIXEL blocks. These fragments of code are called
“shaders” and will be used at the processing of individual vertices or pixels. At the
time when programmers observed the opportunity of a GPU to perform general
purpose computing rather that graphics dedicated computing the hardware and
software did not offer any explicit support for this matter. Therefore, in order to
perform non-graphic computations the programmer had to “fool” the hardware and
software by wrapping the application as if it were a graphics application. For
example, the application’s input data had to be organized as if it were graphics
data: vertex coordinates, vertex colors, texture maps and many others. The
application’s processing code would be uploaded as vertex or pixel shaders even if
the processing is not graphics related. In the end the frame buffer will contain
processing results rather than images. This approach is successful but is indirect and
requires 3D graphics knowledge. Therefore, even if the GPUs were extremely
powerful and had the parallel computing capability, researchers were reserved
towards using it as a general purpose computing machine.

Fig.4.2. OpenGL graphics processing pipeline.

1
 OpenGL (Open Graphics Library) is a standard specification defining a cross-
language, cross-platform API for writing applications that produce 2D and 3D
computer graphics.
2 Microsoft DirectX is a collection of application programming interfaces (APIs) for
handling tasks related to multimedia, especially game programming and video, on
Microsoft platforms.

BUPT

4.1 – General Purpose GPU Computing 55

4.1.2. NVIDIA’s CUDA3 Architecture

In late 2006 NVIDIA introduced a new computing architecture for its GPUs
called CUDA [59]. The architecture is oriented towards general purpose computing
(GPGPU4) and offers hardware and software support such that it can be used easily
under Visual Studio C++ with only a small set of extensions to the basic
programming language. The new architecture, driver and API allow the programmer
to view the GPU as a parallel computing machine rather than a graphics processing
pipeline [62], [63].

4.1.3. Simple CUDA Example

A simple example is presented in figure 4.3 for the purpose of describing the

CUDA functionality [59].

int main{
int vectorHost[N]; //declares and allocates host vector
InitalizeVector(vectorHost); //initializes host vector
int *vectorDevice; //declares pointer to device vector

cudaMalloc(&vectorDevice, N*sizeof(int)); //allocates device vector

cudaMemcpy(vectorDevice, vectorHost, N*sizeof(int), cudaMemcpyHostToDevice);

 //copies data from host to device
VectorSquare<<<1, N>>>(vectorDevice); //calls kernel

cudaMemcpy(vectorHost, vectorDevice, N*sizeof(int), cudaMemcpyDeviceToHost);

 //copies data from device to host
cudafree(vectorDevice); //frees device memory

}

__global__ void VectorSquare(int *vectorDevice){

int index = threadIdx.x; //determine index inside vector
vectorDevice[index] = vectorDevice[index]*vectorDevice[index];

}

Fig.4.3. Simple CUDA parallel program

As a general rule, all variables that have names terminating with “host” are
located in the memory of the host PC, while variables terminating with “device” are

3 CUDA or Compute Unified Device Architecture is a parallel computing architecture
developed by NVIDIA. CUDA is the computing engine in NVIDIA graphics processing
units (GPUs) that is accessible to software developers through variants of industry
standard programming languages like C, C++ or FORTRAN. CUDA gives developers
access to the virtual instruction set and memory of the parallel computational
elements in CUDA GPUs. Using CUDA, the latest NVIDIA GPUs become as accessible
for computation as CPUs.
4 General-purpose computing on graphics processing units (GPGPU, also referred to
as GPGP and less often GP²U) is the technique of using a GPU, which typically
handles computation only for computer graphics, to perform computation in
applications traditionally handled by the CPU. It is made possible by the addition of
programmable stages and higher precision arithmetic to the rendering pipelines,
which allows programmers to use stream processing on non-graphics data

BUPT

GPU Accelerated Model for Spiking Neural Networks - 4 56

located in the memory of the GPU. Consequently, host variables are processed by
the CPU and device variables are processed by the GPU.

The example in figure 4.3 has to square the elements of a vector without
using a “for” loop. The first three statements declare, allocate and initialize the host
vector (vectorHost) and also declare a pointer to the device vector (vectorDevice).
The fourth statement allocates memory on the device and stores the reference to
this memory space inside the pointer. It is very important to notice that
dereferencing this pointer inside the CPU code leads to a run-time error or a false
result. The pointer cannot be de-referenced because the CPU treats it as if it pointed
to its own memory space and not the GPUs. Its purpose is to store a memory
address that can be used later only by CUDA specific instructions (transfer functions
and kernel launches).

The fifth statement transfers data from the host to the device. The function
needs the pointers to the two memory spaces and also the size of the data block in
bytes. The sixth statement is the “kernel” launch and represents the key to the
CUDA optimized solution. A kernel is a piece of code that can be launched in parallel
on multiple computing units inside the GPU. Each instance of the kernel code is
called “thread”. The number of launched threads is specified inside the brackets
“<<>>”; in this case N. This is the same as the vector size meaning that each
thread will operate on one entry inside the vector. The parameter to the function is
the starting address to memory space where the vector has been stored on the
device. Any function that is to be used as a kernel needs to have the “__global__”
identifier and must respect the CUDA programming restrictions.

Figure 4.4 presents the launch of the kernel. Basically, the same code will
be running inside every thread.

Fig.4.4. Kernel Launch

Thread 0

vectorDevice + 0

Thread 1

vectorDevice + 1

Thread N-1

vectorDevice + N -1

KERNEL
CODE

KERNEL
INSTANCE

KERNEL
INSTANCE

KERNEL
INSTANCE

GPU Global
Memory

VECTOR
MEMORY

BUPT

4.1 – General Purpose GPU Computing 57

However, CUDA offers hardware and software mechanisms that allows
identification of the thread from inside the kernel code. This way, branches and
accessing by reference allow different threads to have independent execution paths
and operate on different memory addresses. This is achieved by the first line of the
VectorSquare kernel in figure 4.3. Even though variable threadIdx.x is never
declared it will be available at run-time and will differ in value from one thread to
another, unveiling the identity of the thread (0 to N-1). The thread identity
initializes an index that is used at referencing the vector memory. This way every
thread will operate on a different entry inside the vector. The second statement of
the kernel squares the element. The last two statements of the main function copy
the results back to the host and free the device memory.

4.2. Spiking Neural Network CUDA Model

Implementing the spiking neural network model on the GPU can produce
significant speedup by simulating the model in parallel. However, in order for this to
be possible the model itself needs to be parallelizable. In chapter three we have
proven the all neurons of a SNN can be simulated in parallel. However, the attempt
to parallelize the model by distributing it on a network of computers was not
satisfactory because of the significant communication times between computational
units. In order to simulate the SNN model on the GPU, the MATLAB model had to be
redesigned such that it suits the GPU architecture. In addition, the code had to be
re-written in CUDA C. Figure 4.5 shows how the MATLAB code and the CUDA C code
communicate by using the MEX interface. MEX files allow calling a pre-compiled C
files as they were in-built MATLAB functions. It is important to be able to call the
GPU simulator from MATLAB because this way we can reuse the design, analyze and
display functions that were already written for the MATLAB simulator.

Fig. 4.5. MATLAB-CUDA C interfacing

4.2.1. Model Architecture

Our proposed GPU model is object oriented and contains 6 classes as

follows: SpikingNeuralNetwork, Neuron, DelayLine, Synapse, InputSource,
and ActivityRecorder (classes and objects are printed in bold). Each class contains

Design the SNN
Architecture

Generate/Import
Input signals

Simulate the SNN
in parallel

Analyze and
Display Results

MATLAB
HOST PC

CUDA C
GPU

MEX
Interface

BUPT

GPU Accelerated Model for Spiking Neural Networks - 4 58

all necessary host and device (GPU) methods. Host methods serve in:
create/initialize the model; send/retrieve the model to/from the device; save
results. Device methods perform the simulation. Figure 4.6 presents the CUDA C
model. The arrows show the flow of information inside the model. The simulator
sends input signals to the InputSource object, design parameters to the
SpikingNeuralNetwork object and reads results from the ActivityRecorder
object. The simulator also creates control variables and synchronizes the simulation.
The dotted line marks the fact that the arrays of Neuron objects and Synapse
objects are internal components of the SpikingNeuralNetwork object. The
DelayLine object is responsible for keeping track of spikes while they propagate
(with delay) between neurons. Consequently every Neuron object has a DelayLine
pair-object.

Fig.4.6. Spiking Neural Network Architecture

4.2.2 Delay Line Implementation

Paragraph 4.2.3 will reveal that the DelayLine object is the one that

performs the most memory accesses during simulation. Therefore, for the purpose
of accelerating the simulation, it is important to design the object carefully such that
the number of memory accesses is minimized. Without going into the details of how
the simulation works (presented in paragraph 4.2.3), it can be summarized that the
DelayLine object performs three types of actions:

• inserts new spikes (when a neuron receives a new spike from a synapse the

spike is inserted in the delay line)
• searches for active spikes (spikes that have time stamps equal to zero are

called “active spike” in the sense that these spikes will contribute to the
membrane potential of the neuron during the current simulation time step)

• updates the delay line (when the simulation time advances, the time stamp
of all spikes needs to be modified; also, all active spikes are removed)

Spiking
Neural
Network

Neuron

Delay
Line

Synapse

Input
Source

Activity
Recorder

Simulator

Neuron Array

Synapse
Array

BUPT

4.2 – Spiking Neural Network CUDA Model 59

Two implementations for the DelayLine are proposed. Both
implementations use two buffers of data: one for the spike amplitudes and one for
the spike time stamps. Buffer entries that have the same index store information
about the amplitude and time of the same spike. In the first implementation of the
DelayLine, new spikes are stored at the end of the buffer. This way inserting a new
spike is done easily because the position of the spike inside the buffer is pre-
determined. This implies a reduced number of memory accesses. In the second
implementation spikes are always stored in an ordered fashion, such that successive
entries in the buffers store spikes with increasing delay times. Figure 4.7 shows the
functionality of the DelayLine object for this case.

Fig.4.7. Delay Line Functionality

The abbreviations in the figure are as follows: SA and ST are spike

amplitude and spike time stamp. DLA and DLT are buffers of data representing the
delay line contents (amplitude and time). Pair entries to DLA and DLT store

Read SA
and ST

index =
0

ST =
DLT[index]

ST <
DLT[index]

index++

index =
MAX index

DLT[index] = ST
DLA[index] = SA

DLA[index]
+= SA

MAX index++

Shift DLT and DLA
to the right

START

STOP

YES

YES

YES

NO NO

NO

BUPT

GPU Accelerated Model for Spiking Neural Networks - 4 60

amplitude and time information of previously received spikes. When a new spike is
received, its time ST is compared to the previously stored data in DLT. If the time of
the new spike matches any of the entries in DLT then the same entry in DLA
accumulates the amplitude of the new spike SA. Because the two spikes arrive at
the neuron at the same time, there is no reason to store them separately since their
effect on the neuron’s membrane potential is cumulative. If the time of the new
spike ST does not match any of the entries in DLT, a new entry needs to be
allocated in DLT and DLA to store the new spike. Spikes are always stored in an
ordered fashion, such that successive entries in DLT and DLA store spikes with
increasing delay times. This is useful because the simulator only needs to check the
first entry in DLT when computing the new value for the neuron membrane
potential. Needless to say this approach requires significantly more memory
accesses for inserting a spike. However, because the delay line is always ordered, it
offers an advantage when searching for active spikes or updating the delay line.

In order to determine which of the two implementations is better we tried to
quantify the average number of memory accesses for each of the two cases. This
cannot be done by examining the compiled code alone, because the execution path
is determined by the exact neural network architecture and value of the input
signal. In order to estimate the average number of memory accesses for each of the
two implementations 1000 simulations were performed for each implementation of
the delay line by combining 20 neural networks and 50 versions for the input
signals. A set of counters was used to determine the number of memory accesses
for each simulation. Table 4.1 presents the average number of memory accesses for
the three actions for each of the two implementations.

Table 4.1. Number of memory accesses

Action Symbol Implementation 1 Implementation 2
Insert new spike IS 4 accesses 15 accesses

Search for active spike SAS 14 accesses 2 accesses
Update delay line UDL 119 accesses 22 accesses

In order to quantify the overall number of memory accesses for each of the

three actions note that IS is performed for each spike propagating inside the neural
network while SAS and UDL are performed for each neuron.

() NS NNMEM ∗++∗= 1191441 SN = nr of propagating spikes (4.1)

() NS NNMEM ∗++∗= 222152 NN = nr of neurons (4.2)

The two implementations of the DelayLine have the same number of

memory accesses if:

90.910911 =⇒∗=∗
N

S
NS

N

N
NN (4.3)

The average number of spikes that are propagating inside the neural

network Ns is equal to the average number of neurons that are firing a spike
multiplied by the average number of synapses branching from each neuron.

BUPT

4.2 – Spiking Neural Network CUDA Model 61

90.9=∗⇒
∗∗

=
∗

synfire

N

synfireN

N

synfire
NK

N

NKN

N

NN
 (4.4)

Kfire is the average fraction of neurons that are firing a spike during a single

simulation time step. If for example 30% of all neurons are currently firing (which is
a realistic situation), the average number of synapses branching from each neuron
Nsyn needs to be 33 in order for the two DelayLine implementations to have the
same number of memory accesses. Chapter 5 presents introduces a computational
architecture called Liquid State Machine that is based on a spiking neural network.
In the case of the Liquid State Machine the average number of synapses branching
from each neuron is Nsyn is below 10 in most cases. Therefore, for the purpose of
this project the second implementation (presented in figure 4.7) for the DelayLine
is considered to be more efficient.

4.2.3. Moving Objects between Host Computer and Device GPU

The model is created and initialized by the host program. In order for the
simulation to run on the device GPU a copy of the model needs to be transferred to
the device. After the simulation is done the device model needs to be transferred
back to the host in order to update the state of the host model and to retrieve the
simulation results. Transferring the model between the host and device raises a
problem which is discussed and solved by the next section.

CUDA C offers a single function for transferring data between the host and
device (cudaMemcpy). The function transfers a block of data of given size between
two specified memory addresses each belonging to the host and to the device
respectively. In many situations, especially when memory is allocated dynamically,
complex data structures (objects) are not a continuous block of data. The internal
components of an object could be stored inside disjointed blocks of memory and be
linked by pointers. In this case using cudaMemcpy directly on the object could lead
to an incomplete transfer and also to false references inside the device memory.
Figure 4.8 presents such a situation. This is the outcome of the following two lines:

cudaMalloc (&objectDevice, sizeof (objectHost));
cudaMemcpy (objectHost, objectDevice, sizeof (objectHost), cudaMemcpyDeviceToHost);

One problem is that the contents of the array are not transferred. The

second problem is that the pointer to the array on the device contains the memory
address of the host array. If the device code tries to dereference the pointer it will
cause a runtime error.

In order to transfer all the internal data of the object and to keep the correct
internal references the steps enumerated below need to be performed. Note the
operations marked with *. Our design is build such that this restriction is not
violated. However, there are situations when external factors (i.e. exceptions) can
violate the restriction. Future improvements to the design will eliminate the
problem.

• Allocate device memory for the main object
• Allocate device memory for all internal arrays
• Transfer internal arrays with cudaMemcpy
• Save original values for all host pointers

BUPT

GPU Accelerated Model for Spiking Neural Networks - 4 62

• Replace host pointers with device pointers (Host object cannot be used
because it temporarily contains false memory references) *

• Transfer main object with cudaMemcpy
• Restore values for all host pointers (Host object is ready to be used again)

The above steps assure that both the host and device objects will operate

correctly inside the host and device code respectively. Similarly, the object transfer
from device to host is performed as follows:

• Transfer internal arrays with cudaMemcpy
• Save original values for all host pointers
• Transfer main object with cudaMemcpy (Host Object pointers are falsely

overwritten. Host object cannot be used until pointes are restored)*
• Restore values for all host pointers (Host object is ready to be used again).

Fig.4.8. Incomplete Object transfer

The above paragraph describes how to transfer an object that contains an
internal array. However, when a project uses a complex hierarchy of classes, where
objects include sub-objects, the above steps cannot be applied directly. Therefore, it
is desired to create a standardized mechanism that allows transfer of objects from
host to device regardless of the number of class layers and the arrangement of child
classes within parent classes. We propose the introduction of the BasicObject class
for this purpose.

The BasicObject class contains all the necessary methods, memory address
maps and control variables that facilitate the correct transfer of the object itself and
all its internal sub-objects. All classes used in a CUDA project inherit the
BasicObject class hence benefit from all the transfer methods. However, in order
for the transfer methods to work, the new class needs a suitable constructor that
correctly initializes the memory address maps and the control variables. Figure 4.9
presents the concept described above. It can be seen that the BasicObject class
does not contain the memory maps and control variables explicitly. Instead, it
contains a pointer to an external structure that contains them. This is useful
because it avoids transferring this information to the device (where it is not needed;
both transfers host-device/device-host are performed by the host) and so it saves
device memory space. The BasicObject class is also described in [64].

BUPT

4.2 – Spiking Neural Network CUDA Model 63

4.2.4. Simulating the Model

All actions are initiated by the host CPU. Figure 4.10 presents the flow of

actions during the simulation of the Spiking Neural Network. For a clearer
representation the figure uses the following abbreviations (SpikingNeuralNetwork
= SNN, InputSource = IS, ActivityRecorder = AR). The host starts by creating /
initializing the necessary objects and also by allocating the necessary device
memory. Next, the objects are transferred from host to device by using the transfer
methods inherited from the BasicObject class. The simulation starts with a
sequence of kernel launches initiated by the host.

The host continues by launching the “Propagate Synapse” kernel. This
kernel operates on the SpikingNeuralNetwork object. It has the task to read the
synapse information and propagate (or not) a spike between a source Neuron and
a target Neuron object. The Synapse object amplifies the spike with the specified
gain and places the spike in the DelayLine of the Neuron object at a position given
by the delay value.

Fig.4.9. BasicObject Class

One possible problem with this approach is when two or more synapses

targeting the same neuron try to execute propagation at the same time. Adding
spikes to the delay line involves addition that needs to be performed atomically. One
possible solution is to perform an atomic lock on the DelayLine object memory
space before calling the propagation method. This way the hardware serializes the

BUPT

GPU Accelerated Model for Spiking Neural Networks - 4 64

conflicting threads. Instead of using atomic operations which are slow, the thread
conflict was solved by pre-processing the model on the host and by arranging it
such that a thread conflict never occurs. The pre-processing to the model reads the
array of synapses and re-arranges them such that adjacent synapses in the array
can form large groups where the targeted neuron is not repeated. This way the host
can launch “Synapse Propagation” kernels on one group at a time avoiding thread
conflicts and thus performing software serialization between groups. Obviously this
leads to performance decrease. On the other hand, if the problem had been solved
by using atomic hardware locks the decrease in performance would have also been
present. This is because even though the threads are launched at the same time the
hardware serializes execution to assure atomicity.

Fig.4.10. Spiking Neural Network Simulation Flow

Next, the host launches the “Inject Input” kernel. This reads input signals

from the InputSource object and injects them as membrane potential at the
appropriate locations inside the SpikingNeuralNetwork object. The number of
threads is equal to the number of locations where input signals need to be injected.

BUPT

4.2 – Spiking Neural Network CUDA Model 65

This is specified by the InputSource object. The “Compute Neurons” kernel
computes the new membrane potential and output of all neurons. The number of
threads is equal to the number of neurons. The “Record Activity” kernel reads the
current spiking state (the output of all neurons) of the SpikingNeuralNetwork
object and stores it as network spiking activity inside the ActivityRecorder object.
The “Tick” kernel advances the simulation time. All the above kernel launches are
performed iteratively for all simulation time steps.

4.2.5. Simulation Results

Before comparing simulation times of the MATLAB and CUDA models it is

imperative to assure that the output of the two models is the same. This comparison
is done independently for each simulation time step. Two output vectors are built
containing the neuron membrane potentials of the two models. The error between
the outputs is considered to be the norm of the difference vector. The maximum
error ever found is 3.46*10-6. This small error is present because floating point
operations are not associative due to rounding of intermediate results. This means
that the order in which operations are performed matters. Obviously, this order
cannot be guaranteed in a parallel thread-based system. Nevertheless, the output of
the serial MATLAB model also depends on the order in which the network objects
are picked for execution. Changing this order would also result in an error of the
same magnitude. Anyway, in most applications where the system needs to be
robust and insensitive to noise of significantly higher magnitude this error can be
considered negligible.

Table 4.2 presents the simulation times for various network sizes. Shown
times are an average from 100 simulations performed on different networks
generated with the same parameters.

Table 4.2. Achieved Speedups

MATLAB Model

Simulation Time

CUDA Model

Simulation Time
SNN Size

Average

(s)

Relative

Std (%)

Average

(s)

Relative

Std (%)

Speed-

up

5x5x5 0.42 0.43 0.05 9.63 x8.3

6x6x6 1.18 0.24 0.09 8.45 x13.6

7x7x7 2.87 0.15 0.14 7.61 x21.0

8x8x8 6.29 0.18 0.21 6.29 x30.9

9x9x9 12.58 0.18 0.29 6.16 x42.4

10x10x10 23.47 0.18 0.43 7.91 x54.9

11x11x11 41.34 0.16 0.57 5.48 x72.9

12x12x12 69.48 0.19 0.75 6.21 x92.1

13x13x13 111.91 0.13 0.94 2.61 x119.5

14x14x14 173.71 0.18 1.15 2.51 x150.6

BUPT

GPU Accelerated Model for Spiking Neural Networks - 4 66

It is worth noticing that the relative standard deviation is a lot larger in the
case of the CUDA model (max 9.63%). The MATLAB model has a very small
standard deviation (max. 0.43%). This is because the efficiency of the simulator is
constant (one neuron at a time) regardless of the particular network synaptic
connectivity. Still, a small deviation is present due to the multitasking nature of the
operating system. On the other hand the CUDA simulator is always trying to exploit
parallelism as well as possible. The efficiency of the simulator varies and depends on
the exact network synaptic connectivity and amount of available parallelism.
Therefore, the simulation time will vary significantly from one network to another.
The standard deviation tends to decrease for large networks (down to 2.51%). This
is because the synaptic diversity averages out for larger networks.

The speedups achieved by the CUDA model are great for all network sizes.
However, it is the larger networks that allow the GPU to make use of its stunning
computational power. When the network is large, the groups of synapses that can
be processed in parallel are also large (see section 4.2.4) keeping all execution units
busy. On the other hand, if the network is small, the groups of synapses that can be
processed in parallel are small, leaving some of the execution units idle during the
simulation of one group.

4.3. Improved CUDA Model

Explaining further improvements requires a deeper understanding of the

GPU hardware [60], [61]. Figure 4.11 presents the GPU architecture. The GPU
contains several Stream Multiprocessors (SMs). Each SM has eight Stream
Processors cores (SPs)5, one multi-threaded instruction unit and on-chip shared
memory.

4.3.1. Minimizing the number of branches

Because there is only one instruction unit, each multiprocessor operates

similarly to a SIMD6 architecture. This means that all processors inside the same
multiprocessor execute the same instruction on different data. Nevertheless,
paragraph 4.1.3 states that each thread can branch independently based on
conditions generated by its thread index. This property is particularly important for

5 Stream processing is a computer programming paradigm, related to SIMD (single
instruction, multiple data), that allows some applications to more easily exploit a
limited form of parallel processing. Such applications can use multiple computational
units, such as the FPUs on a GPU or FPGAs, without explicitly managing allocation,
synchronization, or communication among those units. The stream processing
paradigm simplifies parallel software and hardware by restricting the parallel
computation that can be performed. Given a set of data (a stream), a series of
operations (kernel functions) are applied to each element in the stream. Uniform
streaming, where one kernel function is applied to all elements in the stream, is
typical.
6 SIMD is a type of multiprocessor architecture in which there is a single instruction
cycle, but multiple sets of operands may be fetched to multiple processing units and
may be operated upon simultaneously within a single instruction cycle. Acronym for
single-instruction-stream, multiple-data-stream.

BUPT

4.3 – Improved CUDA Model 67

this project when implementing the logic of the neuron DelayLine. In order for this
to be possible the CUDA architecture deviates slightly from the SIMD architecture.
Let’s assume that a group of threads is running on the same multiprocessor.
Whenever the code reaches a branch, the group is divided into two sub-groups each
following a different execution path. Because the instruction unit can only dispatch a
single instruction at a time, the two execution paths are serialized and so one sub-
group will be pending while the other is executing. When the two execution paths
have completed, the threads converge back to the same execution path.

This type of architecture allows the user to program freely without having
restrictions regarding the control flow of a group of threads. However, when the
code has a lot of diverging branches, the hardware serializes execution and
resources are not used efficiently. With this thought in mind the application was
programmed such that it avoids using any unnecessary branches.

Fig.4.11. GPU architecture

4.3.2. Merging Kernels

Threads can be grouped into blocks with up to 512 threads per block and up

to 64K blocks for each kernel launch. Having two ways of organizing parallelism
(blocks and threads) creates control over the way the workload is distributed inside
the GPU. When a kernel is launched it is assured that all threads in the same block

BUPT

GPU Accelerated Model for Spiking Neural Networks - 4 68

will be executed inside the same SM. This allows the threads in the same block to:
communicate (fast), synchronize and quickly switch register context when toggling
the active thread.

Figure 4.12a presents a simplified version of the simulation flow shown in
figure 4.10. The “Propagate Synapse” and “Inject Input” kernels are drawn is
parallel. This symbolizes that the two kernels can be launched in any order. The
three synchronization barriers are important because they assure that the different
parts of the neural network remain synchronized during the simulation. For
example, it is important that no neuron is simulated before all synapses have
finished propagation. Otherwise, some data dependencies might be violated.
Implementing the three synchronization barriers shown from figure 4.12a is done
easily, as a consequence of the fact that the host launches the kernels in order and
it synchronizes the launch of the new kernel with the termination of the previous
one (synchronization is performed by the host). However, this approach has two
major disadvantages. The first one is that very many kernels are launched during
one simulation. Every kernel launch has an overhead time of around 3us. This is the
time necessary for initiating the kernel execution and depends very little on the
number of parameters passed to the kernel. Additionally, the overhead time does
not depend on the amount of computation performed by the kernel.

If the kernel does not do a lot of computation the overhead time can
represent a significant fraction out of the total simulation time. For example, if a 10s
simulation is run with a 1ms time step the total amount of overhead time is
10s*103(time steps/s)*4(kernels/time step)*3us (overhead time/kernel) = 0.12s,
which in this case can represent up to 30% of the entire simulation time. The
second disadvantage comes from the inability to efficiently use shared memory.
Because the GPU global memory is not cached, the shared memory is an alternative
to accelerate data access. Each SM inside the GPU has 16KB of fast memory that is
visible to and can be shared by all threads of the same block. The shared memory
can be as fast as a processor register as long as a bank conflict is not present during
the simultaneous accesses of different threads. Anyway, the intended purpose of
shared memory is that at the beginning of a kernel each thread copies the
necessary data from global memory to shared memory. During the execution of the
kernel, all intermediary results are stored inside the shared memory. The final
results are copied to global memory only at the end of the kernel. This way, the
shared memory works like a software managed cache; it is the responsibility of the
programmer to assure data coherency between threads of different blocks. The
lifetime of a variable declared as shared is only as long as the duration of the
kernel. This makes the model presented in figure 4.12a very inefficient because it is
necessary to store intermediary results in global memory between kernels.

We propose a second approach to organizing the simulation depicted in
figure 4.12b. In this case all kernels, and also the main time loop are merged
together into a single kernel. This way, the kernel launch overhead time is
eliminated. More importantly, shared memory can be exploited very efficiently.
However, because the simulation is no longer divided into kernels, the host can not
control and synchronize the simulation anymore. Once the kernel is launched, it is
the job of the GPU to synchronize threads. First, the model was slightly reorganized
such that it needs fewer synchronization barriers. In the original simulator (4.11a),
the kernels dedicate individual threads for the processing of each synapse, input
injection and neuron respectively. Alternately, in figure 4.12b, each thread
processes everything that is related to the functioning of one neuron.

BUPT

4.3 – Improved CUDA Model 69

The kernel has two internal loops that process serially all synapses and input
signals targeting one neuron. Therefore, once the execution reaches the “Evaluate
Neuron” stage it is assured that the previous stages have completed. It is not
important that the processing of other synapses or other input signals in the neural
network might not completed yet, since they do not influence the functioning of this
neuron during the current time step. The introduction of two loops inside the kernel
does not impact the efficiency of parallel processing if the number of neurons is
large enough to fully load the resources of the GPU.

Unfortunately, the synchronization barrier at the end of the simulation time
step cannot be avoided. The hardware offers a synchronization instruction, but it is
only able to synchronize threads of the same block. This is because the threads of
the same block will be executed on the same SM. The only way to use this hardware
synchronization is to put all threads into the same block, but that would waste GPU
resources since only one SM would be used. An alternative, which allows
synchronizing all threads, is to use a software implemented barrier described by the
following steps:

• Synchronize all threads in each block.
• First thread of each block atomically increments counter variable that

resides in global memory.
• First thread of each block waits in loop until counter reaches the total

number of blocks.
• Synchronize all threads in each block.

a) Original Simulation Framework b) Simulation Framework with Merged Kernels

Fig.4.12. Merging Kernels

Propagate all Synapses for this
Neuron

Inject all Signals for this Neuron

Evaluate Neuron

Update Neuron State

For all time
instances

Sync

HOST PROGRAM

Propagate
Synapse

Inject
Input

Evaluate
Neuron

Update
Neuron
State

Sync 1

Sync 2

Sync 3

For all
time

instances

HOST
PROGRAM

BUPT

GPU Accelerated Model for Spiking Neural Networks - 4 70

The synchronization is done in two steps. First, all threads in each block are
synchronized. Second, each block delegates a thread to communicate globally and
synchronize blocks. Because the counter is a shared resource, it needs to be
incremented atomically (serialized by hardware) in order to eliminate race
conditions and miscounting. Also, because atomic operations are slow and because
writing to global memory is slow in general, the two step approach presented above
is much better than synchronizing all threads globally.

However, there is a trick to this approach. When a kernel is launched the
blocks are enumerated and distributed evenly to the SMs of the GPU. After counting
the necessary resources for the execution of each block, it is decided how many
blocks can be launched in parallel on each SM. If the SM cannot accommodate all its
designated blocks at the same time, the remaining blocks wait in a queue until a
running block finishes execution and resources are freed. Note that a block does not
suspend execution if it is not doing anything (waiting in a loop). This can lead to a
dangerous situation where the counter condition is never achieved. This is because
inactive blocks wait in a queue for the active blocks to complete execution. At the
same time, the active blocks never complete execution because they wait for a
condition that needs all blocks to be active. One way to solve the situation is to set
the number of blocks equal to the number of SMs which in the case of the GT9800
GPU (employed in this paper) is 14. Afterwards, the number of threads in each block
can be computed in order to have a total number of threads equal or higher to the
number of neurons in the neural network.

4.3.3. Using Shared Memory

As presented in the previous paragraph, shared memory is a powerful tool
to speed up memory access. Merging all kernels into a single one makes shared
memory even more appealing because variables will be present in shared memory
during the entire simulation without having to load/store them from/to global
memory. Because the shared memory is a limited and precious resource it is
important to see what to store in there and what not. A statistical analysis of how
memory is accessed during a simulation reveals that almost 80% of all accesses are
performed to the data delay line of the neurons. The number of accesses to this
data structure is not constant and depends on the contents of the delay lines during
the simulation. However, in all situations, they dominate the overall amount of
accesses, making the data DelayLine objects the best candidates to occupy shared
memory. The next best candidate is the neuron output variable which is responsible
for about 14% of all accesses. This variable, however, is not suitable for shared
memory because it needs to be broadcasted globally at the end of each simulation
time step. This is because the model has no restrictions regarding the connectivity
of the network, and so synapses can connect neurons that run on threads residing
in different blocks on the GPU. Accesses to other variables are less significant in
number. Therefore, in our implementation the data DelayLine are the only objects
that are stored in shared memory.

In order to have a higher bandwidth, shared memory is divided into 16
banks that can be accessed simultaneously as long as there is no bank conflict (two
threads accessing memory locations of the same bank). The shared memory space
is organized such that consecutive addresses are found in consecutive memory
banks rather than the same bank. This is because in most CUDA programs
successive threads access consecutive memory addresses. With this argument in
mind, we propose two ways to organize the data DelayLine class.

BUPT

4.3 – Improved CUDA Model 71

Consider that TN is the number of threads running in the same block (and
also on the same SM) and that DS is the size of each DelayLine buffer. Therefore, a
total space of TNxDSx8 bytes needs to be allocated in shared memory for each
block. 8 bytes are needed for each entry of the delay line because two 32bit words
need to be stored (one float word for the spike amplitude; one unsigned integer for
the spike timestamp). The size of the delay line DS is constant and is set at the
beginning of the application. For example, if a network of 2000 neurons must be
simulated, the computing grid will have 14 blocks x 143 threads. Given the
maximum of 16KB of shared memory per block the maximum delay size DS is 14
(143x14x8B = 15.64KB). The limit of the delay line size would not be present when
using global memory. However, it is a compromise worth taking because the speed
improvement is significant and it is rarely the situation when more than 5 entries in
the DelayLine buffer are needed. Anyway, if a neuron receives a spike and its delay
line is already full, the spike that has the largest timestamp is eliminated.

Figure 4.13 shows two ways of storing the delay lines in memory. For
simplicity, the figure only shows 4 neurons (threads) and each has a delay line of
size 6. In the upper part of the figure the DelayLine entries of different neurons are
interleaved. In the lower part of the figure all entries of the same neuron are
grouped. In the upper part, banks conflicts are eliminated naturally because the
threads access simultaneous consecutive addresses thus distinct banks. In the lower
part, bank conflicts are eliminated if DS%16 is odd. For this implementation the first
approach was preferred because no restrictions are imposed on DS.

Fig.4.13. Two versions for implementing the delay line inside shared memory

4.3.4. Overlapping Computation and Data Transfer

The simulator records traces of the neural activity for all neurons. At the end

of the simulation two sets of traces are available: one binary set for the neuron
outputs and one floating point set for the neuron membrane potential. This data
needs to be copied from the device memory to the host computer memory in order
for it to be available to the host main application (unless the application continues
on the GPU). If the neural network is large and/or if the simulation length is large
the amount of data that needs to be transferred is significant and can add up to tens
or even hundreds of MB. There are situations when the host application only
requires the neuron binary spiking traces and not the neuron membrane potentials.
If so, the amount of data that needs to be transferred is significantly reduced.
Anyway, in order to reduce overall application time, NVIDIA offers hardware
mechanisms that allow overlapping of computation and data transfer. This enables

Threads

Shared Memory 6x4

BUPT

GPU Accelerated Model for Spiking Neural Networks - 4 72

the user to transfer available simulation results while new results are being
computed.

The NVIDIA architecture is organized as a stream processor. When the host
computer expects the GPU to perform a certain task it places a request for this task
in a queue called stream (usually a task is either a kernel launch or a memory
transfer operation). The host continues to execute the host program until another
GPU specific instruction is met. At this point, the host checks if the GPU has
completed the previous action. If true, it sends a new request, else it waits for the
GPU to finish. This is called synchronous operation mode, in the sense that the host
is always synchronized to the GPU. It is worth mentioning that in this operation
mode only one stream is used and that stream will only contain one action in its
queue, since no new task can be sent to the GPU until the previous one is finished.
Another type of operation mode is asynchronous. In this mode, the host does not
need to synchronize to the GPU until a specific synchronization instruction is
reached. This way the host application can send several tasks to the device without
actually waiting for them to complete. Also, the host can place the tasks on distinct
streams.

Figure 4.14 shows how this procedure allows overlapping of computation
and data transfer. Consider that the simulator presented in paragraph 4.3.2 (figure
4.12b) breaks the simulation into N sequential parts and launches N consecutive
kernels. This is useful because as soon as the first kernel finishes execution the
hardware starts to transfer the results from the first kernel while the second kernel
computes. The streams in figure 4.14 are conceptual and only exist from the
programmer’s point of view. In hardware, the tasks are sent to the actual engines in
the same order they are inserted by the host into streams. Additionally, the
hardware has an inter-engine mechanism which assures that all tasks coming from
the same stream are performed in the same order as specified by the stream. For
example, task CPY0 will start after task SIM0 is completed even though they are
performed by different engines.

Fig.4.14. Overlapping computation and data transfer

SIM0

SIM1

SIM2

CPY0

CPY2

SIM3

CPY1

CPY3

SIM0

CPY0

SIM2

SIM1

SIM3 CPY2

CPY1

CPY3
time

Stream 0

Stream 1

Kernel Engine
Copy
Engine

BUPT

4.3 – Improved CUDA Model 73

As presented in paragraph 4.3.2 launching a kernel produces about 3us of
overhead time, regardless of the amount of computation inside the kernel.
Therefore, splitting the simulation into N segments, and so launching N kernels
instead of one, adds a penalty time equal to N*KLT, where KLT is the kernel launch
time. At the same time, the transfer time required to send the results back to the
host TRT reduces to its Nth fraction. Because the penalty increases linearly while the
transfer time decreases non-linearly it is optimal to increase N as long as the rate of
decrease for the transfer time is higher than KLT (4.5).

()11 +∗
=

+
−≤

NN

TRT

N

TRT

N

TRT
KLT (4.5)

Because N is usually a large number (over 100) eq. (4.5) is approximated

well by the next relation.

KLT

TRT
N < (4.6)

4.3.5. Using Constant Memory and Texture Memory

As presented in figure 4.11 the GPU is equipped with two special types of
memory spaces: the constant memory and the texture memory. Both types of
memory are cached and can provide further improvement to memory access speed.
As already mentioned, the GPU does not dedicate many transistors to complicated
memory management and sophisticated data caching. Therefore, the constant
memory and texture memory caches must be simple. The simplicity is assured by
the fact that both memory spaces are restricted to being read-only. This way, the
coherency of cached data is assured implicitly and significant hardware can be
excluded from the cache. The only data in the Spiking Neural Network model that is
constant is the synapse information and the general neural network parameters.
The neural network parameters are few and it is easier to store them in shared
memory which is faster than the caches. Because of its large size the synapse
information cannot be stored in shared memory and so constant memory or texture
memory can represent an alternative (Synapse data size = 16B x number of
synapses; up to hundreds of MB).

The efficiency of caching depends drastically on the cache hit rate.
Therefore, the address access pattern that results during the execution of an
application is very important and determines the efficiency of the cache. In general,
if some data is read and cached, it needs to be read again at least a few more times
before it is evicted from the cache. Examining the memory access pattern for this
application reveals that using the cache will be inefficient. During each simulation
time step the data stored by a synapse is required only once. In addition, all
synapse information is required during each simulation time step. Because the
cache is only 64KB and cannot store the entire synapse data, each synapse is stored
and then is evicted from the cache before it is needed again.

Consequently, for this application the cache cannot be exploited so the
synapse information is stored in global memory. The improvements described in
paragraph 4.3 are also found in [65].

BUPT

GPU Accelerated Model for Spiking Neural Networks - 4 74

4.3.6. Simulation Results

Table 4.3 presents the achieved speedups for different neural network sizes.
The GPU simulator is benchmarked against a simulator written in C++. Note that
the C++ simulator is inherently faster than the original MATLAB simulator. The C++
model is run on a system with the following configuration: Intel Core i7 CPU at 2.67
GHz, 4GB DDR3 RAM, 64bit Windows 7. The CUDA C model is run on a NVIDIA
GeForce GT9800 GPU with the following specifications:

• CUDA Cores 112 (14 Multiprocessors x 8 Stream Processors)
• Graphics Clock 600Mhz
• Processor Clock 1500Mhz
• Memory Size 1GB
• Memory Clock 900Mhz
• Memory Bandwidth 57.6 GB/sec

 The speedup is calculated as the ratio of the C++ simulation time and the
CUDA C simulation time. There are four versions of CUDA implementations: V1 is
the CUDA model presented in figure 4.12a without any of the additional
improvements; V2 is the CUDA model presented in figure 4.12b where the kernel
overhead time eliminated; V3 is V2 with the delay lines implemented in shared
memory; V4 is V3 with the overlap of computation and data transfer. The simulation
times used at computing the speedups are estimated by averaging the results of
100 simulations performed on different networks of the same size and with the
same number of synaptic connections.

Table 4.3. Achieved Speedups

Speedup Network Size

V1 V2 V3 V4

8x8x8 x1.19 x1.42 x2.41 x2.44
9x9x9 x1.43 x1.66 x2.91 x2.98

10x10x10 x1.86 x2.14 x3.83 x4.01
11x11x11 x2.45 x2.60 x4.56 x4.96
12x12x12 x2.87 x3.25 x5.49 x6.14
13x13x13 x3.38 x3.76 x6.02 x6.84
14x14x14 x3.72 x4.08 x6.14 x7.12
15x15x15 x4.05 x4.39 x6.22 x7.23

It can be noticed that in general larger networks have greater speedups.

This is because for larger networks, more computational workload allows the CUDA
model to better exploit parallelism and more efficiently utilize its resources. On the
other hand the simulation time of the C++ model scales linearly with the amount of
computations.

BUPT

5.2 – Liquid State Machine Architecture 75

5. LIQUID STATE MACHINE AND LIQUID
COMPUTING

5.1. Introduction

 The concept of “Liquid State Machine” or “Liquid Computing” was introduced
by Wolfgang Maass in [18], [73], and [74]. The idea behind the concept comes from
a basic observation that a liquid medium (i.e. a pond of water) disturbed by a
stimulus (i.e. a stone) will produce a sequence of unstable states that are stimulus
specific. A trained independent observer should be able to extract all significant
features of the stimulus by examining the trajectory of transitory states of the liquid
medium. The approach offers an advantage, if and only if, the observer is able to
extract more features by examining the liquid medium than by examining the
stimulus directly. This is potentially possible when the liquid medium is complex
enough to produce information analysis and feature decomposition.

The theory can be generalized from an actual “liquid medium” to any
recurrent medium having any physical support [70], [78], [80], [84], [85]. This
project uses a “liquid medium” implemented within a recurrent neural network of
spiking neurons. The authors of [18] also suggest that an implementation with
spiking neurons is very suitable and also biologically plausible. Even though it is
strictly symbolic this thesis continues to refer to the recurrent medium as “liquid
medium”.

5.2. Liquid State Machine Architecture

The architecture of a Liquid State Machine is presented in figure 5.1. Two

major sections can be depicted: the Recurrent Liquid Medium and the Read-out
Units.

Fig.5.1. Liquid State Machine architecture

The liquid medium is task independent and has multiple random connections
between units. The input stimulus is injected inside the liquid medium and produces
a stimulus dependent sequence of unstable states. On the other hand the read-out

Recurrent
Liquid

Input

Task specific
Read-out Units

Task1

Task2

Task3

BUPT

Liquid State Machine and Liquid Computing - 5 76

units are task dependent and need to be trained in order to read, interpret and
convert the current liquid state into a desired output.

5.2.1. Recurrent Liquid Medium

The liquid medium behaves like a time invariant filter7 than has fading

memory8. It is implemented by a recurrent spiking neural network. Neurons are
distributed along several bi-dimensional layers [82]. Each individual neuron can
choose from the four neuron models presented in chapter two: “integrate and fire”
(I&F), “integrate and fire with burst” (I&FB), “integrate and fire with adaptation”
(I&FA) and “resonate and fire” (R&F) [72].

Neurons inside the liquid medium are connected via dynamic synapses
having the model presented in 2.2.4. The probability of a synaptic connection to
exist between neuron A and neuron B is given in eq. (5.1).

() λ

),(BAD

eCDP
−

∗= (5.1)

• D is the Euclidian distance between neuron A and neuron B
• λ is the density of connections
• C is a scaling constant.

In this configuration neurons are connected to several other neurons that are

placed in its immediate neighborhood. The chance of connection decreases as the
neurons are further away. Some neurons are inhibitory. This means that their spikes
will have a negative effect upon the membrane potential of the neuron that is
receiving the spike. The amount of inhibitory neurons is determined by the

7
 A filter F is called time invariant if any temporal shift of the input function u(×) by
some amount t0 causes a temporal shift of the output function y = Fu by the same
amount t0, i.e., (Fu

t0) (t) = (Fu)(t + t0) for all t, t0 Є R, where u
t0(t) = u(t + t0) .

Note that if U is closed under temporal shifts, then a time invariant filter F:Un
→ (RR)k can be identified uniquely by the values y(0) = (Fu)(0) of its output
functions y(×) at time 0.
8
 Fading memory (Boyd at al., 1985) is a continuity property of filters F which
demands that for any input function u(×) Є Un the output (Fu)(0) can be
approximated by the outputs (Fv)(0) for any other input functions v(×) Є Un that
approximate u(×) on a sufficiently long time interval [-T,0]. Formally one defines
that F:Un → (RR)k has fading memory if for every u Є Un and every ε > 0 there
exist δ > 0 and T > 0 so that ||(Fv)(0) - (Fu)(0)|| < ε for all v Є Un with ||u(t) -
v(t)|| < δ for all t Є [-T,0]. Informally a filter F has fading memory if the most
significant bits of its current output value (Fu)(0) depend just on the most
significant bits of the values of its input function u(×) from some finite time window
[-T,0] into the past. Thus, in order to compute the most significant bits of (Fu)(0) it
is not necessary to know the precise value of the input function u(s) for any time s ,
and it is also not necessary to know anything about the values of u(×) for more
than a finite time interval back into the past. Note that a filter that has fading
memory is automatically causal.

BUPT

5.2 – Liquid State Machine Architecture 77

percentage parameter INH. Figure 5.2 presents a Liquid Medium created in MATLAB
that has the following parameters:

• Network topology: 4x4x6 (96 neurons)
• Percentage of inhibitory neurons: 30% (drawn in red)
• Synapse probability parameters: C = 1, λ = 0.8
For clarity, the figure shows the synaptic connections of only one neuron. Blue

connections are excitatory while red connections are inhibitory (coming from
inhibitory neurons).

Fig.5.2. Liquid State Machine implemented by a recurrent Spiking Neural Network

5.2.2. The Read-Out Units

The Read-Out Units are implemented either by parallel perceptrons or by
multilayer feedforward networks. A parallel perceptron is a group of N single
McCulloch-Pitts perceptrons that are fed with the same input P (figure 5.3). The
output of the parallel perceptron Y is produced by a squashing function S that
counts the number of active neurons and maps this number onto a real number, as
shown in equation (5.2), where i is the number of perceptrons and yi is the output
of each single perceptron.

Fig. 5.3 Parallel Perceptron Readout Unit

+

+ +

+

S P1

P2

Y

BUPT

Liquid State Machine and Liquid Computing - 5 78

()∑ =
=

N

i i pySpY
1

)()((5.2)

Alternatively, the readout units can be implemented by a multi-layer

feedforward neural network as presented in figure 5.4 [44]. In this case the
activation function is the sigmoid function. Paragraphs 5.4 and 5.5 present the p-
Delta training rule and the backpropagation algorithm, which are useful for training
the parallel perceptron and the feedforward network. In addition three
improvements of the p-Delta rule are also presented.

Fig. 5.4. Multi-Layer Feedforward Readout Unit

5.3. Liquid States. Separation Property

 When the input signals are injected some neurons will start to fire spikes at
different frequencies. These spikes propagate via the recurrent synapses and force
other neurons to fire new spikes. The result is a complex spike activity propagating
back and forth inside the liquid medium.

The spike pattern produced by an input stream should be input specific and
should help at classifying the input. In order to quantify this ability [18] introduces a
useful macroscopic property called separation property SP. This property allows
comparison of how different are the spike patterns produced by the liquid medium
when injected with two different input streams. A high separation property means
an easy classification task for the read-out units. The following paragraphs present
how the separation property is computed.

The spike pattern produced by the liquid medium when injected with an
input stream is considered to be a sequence of states called liquid states (one liquid
state for every time instance). Basically, a liquid state is a vector that has the
dimension equal to the number of neurons inside the liquid medium, holding “1” if
the neuron fires (at that time instance) or “0” if the neuron rests. The liquid states
are produced by sampling the spike activity along time. In order to study if one
spike pattern is different from another spike pattern both “non-temporal” and
“temporal” differences/similarities need to be taken into account. Performing a
“non-temporal” comparison can be done by simply computing the Euclidian distance
between the two liquid states. However, computing the separation property as the
time average of these distances is insufficient. This approach would loose any
“temporal” relationships between spikes and also would result in a macroscopic
property that is “time-noise” intolerant (if some spikes slightly change their time
positions SP is high even though spike patterns are still very similar).

W1

+

f1

b1

P

1

n1

a1
W2

+

f2

b2
1

n2

aM-1

WM

+

fM

bM
1

nM Y

BUPT

5.3 – Liquid States. Separation Property 79

In order that the SP makes both “non-temporal” and “temporal”
comparisons each spike from the spike activity is replaced with a decaying
exponential. This is done by performing a convolution operation between the spike
activity and a decaying exponential. This way, every liquid state holds information
about current spikes but also about past spikes (note that “time-noise” has little
impact with this approach). After the convolution operation is performed the spike
activity is sampled to produce the set of liquid states. SP is computed as the
absolute difference between the liquid states. Further information about improving
the separation property can be found in [71].

5.4. The Parallel Perceptron Readout Unit. The p-Delta
Learning Algorithm.

 The read-out units are trained using the “p-Delta” learning rule. The
algorithm was introduced by Peter Auer in [66] as a direct solution to designing the
readout units of a Liquid State Machine [18]. In general, the learning rule can be
used for training any parallel perceptron regardless of the application. The original
algorithm was developed assuming that it will be applied to a system implemented
exclusively in hardware. For such a system, the communication between individual
neurons and the control unit can be a major difficulty. Therefore, the algorithm had
one important constraint, simplicity.

The following paragraphs present the original algorithm and also an
improved version. It introduces a few modifications that make the algorithm faster,
more stable and with a higher noise margin. However, the changes complicate the
algorithm making it less suitable for a hardware implementation. Currently, our
team is using a software model for the spiking neural network and is not aiming
towards a software independent implementation. This allows a more complicated
algorithm to be easily implemented.

As presented in 5.2.2 the read-out units can be implemented by parallel
perceptrons. The following paragraphs present the concept more thoroughly.

 5.4.1. The Parallel Perceptron

 A single perceptron, as introduced by McCulloch-Pitts, is a gate that
computes an averaged sum of all inputs. If the sum is greater than the threshold TH
the perceptron outputs “1” otherwise “0”. Mathematically, this is written as in
equation (5.3).

()




<

>
=

THwp

THwp
py

,0

,1
 (5.3)

where w is the synaptic weight vector and p is the input.

The perceptron model can be easily implemented by a spiking neuron [32],
[34] if p is considered to be the rate of the spike train. The output is “1” when the
neuron fires and “0” otherwise. As already mentioned a parallel perceptron is a
group of N single perceptrons that are fed with the same input P. The output of the
parallel perceptron Y is produced by a squashing function S that counts the number
of active neurons and maps this number onto a real number. The squashing function

BUPT

Liquid State Machine and Liquid Computing - 5 80

S can be any monotonous continuous function. However, for the presentation of the
training algorithm the linear function in equation 5.4 was used.

() minminmax)(YYY
N

n
nS +−∗= (5.4)

where Ymax, Ymin are the boundaries of the output range and n is number of active
neurons.

The “p-Delta” algorithm can be efficiently used for training a parallel
perceptron to map a set of given input data p to a desired target output t.

5.4.2. The Single Perceptron Delta Rule

This is the simplest learning rule that can be applied to a single perceptron.
Let p, y and t be the input, output and target data respectively. If the output y is ‘0’
and the target t is ‘1’ it means that the dot product wp is too small in comparison to
the desired threshold TH. In order for the dot product to increase, the weight vector
w needs to move toward the data vector p; hence the angle between the two
vectors will decrease. If the output y is ‘1’ and the target t is ‘0’ it means that the
dot product wp is too large and so the weight vector needs to move away from the
data vector. If the output y matches the target t no change is done. The rule can be
mathematically expressed by eq. (5.5).









=




<−

>+
∗+∗−

⇐

ytw

ytp

ytp
w

w

,

,

,
)1(λλ

 (5.5)

where λ is the learning rate.

5.4.3. The Parallel Perceptron p-Delta Rule

In theory the approximation error of the parallel perceptron can be as small
as half the size of the quantization step. Therefore, the algorithm could theoretically
set the desired accuracy ε to the value given by eq. (5.4), where Ymin and Ymax are
the same as in equation (5.4).

N

YY

∗

−
=

2

minmaxε (5.4)

However, reaching this error level is not guaranteed. This is because the

algorithm can get stuck in a local error minimum and so it will not find the global
minimum that satisfies eq. (5.4). Therefore, from now on it is considered that the
accuracy ε is set by the user application and that the number of neurons N is
sufficient for the accuracy constraint to be met. Given the input data p, the output
of the parallel perceptron Y(p) is computed with eq. (5.2). If the weights of the
parallel perceptron are correct the output should be as close to the target t as

BUPT

5.4 – The Parallel Perceptron Readout Unit. The p-Delta Learning Algorithm 81

constrained by ε. This is expressed in eq. (5.5).

() ε<− tpY (5.5)

If the output is greater than the target it means that too many neurons are

active and so the weights of “some” of the active neurons should move away from
the data. If the output is too small compared to the target, too few neurons are
active and so “some” of the inactive neurons should move their weights towards the
data. The term “some” is flexible and represents the answer to the question: “how
many and which neurons should be chosen for weight modification?” The authors of
[66] suggest that all active neurons should be updated if the output is greater than
the target and also that all inactive neurons should be updated if the output is
smaller than the target. This approach does not offer a great convergence speed or
stability. However, it minimizes communication between neuron units if a hardware
implementation is preferred. In [66] it is also suggested that the stability and
convergence speed could be improved if only a few neurons (or one [67]) are
chosen for weight modification. Those neurons should be the ones that have a dot
product wp that is closest to the threshold. This approach on the other hand
increases communication as the neuron units would need to broadcast their dot
product to the central unit.

Because we use a software implementation of the spiking neural network
model, communication bandwidth is not a constraint. Therefore, during each
training iteration, the weights of only one neuron are updated. This neuron is
considered “winner”. A neuron is declared winner if it has a dot product wp that is
closest to the threshold and also if is on right side of the threshold. Therefore, the
learning rule can be mathematically expressed by equation (5.6).

() () +∗−∗−∗−⇐ iikk wwww 11
2

ηλ

()
()




>−+

>−−
∗+

ε

ε
λ

pYtp

tpYp

,

,
 (5.6)

where:

• λ is the learning rate
• η is the normalization rate
• k is the winning neuron
• i =1….N

The middle term, containing the norm of the weight vector is a correction

that is performed for each neuron on all iterations. This correction preserves the
angle of the weight but brings the length of the vector to unit length. This is
important because the dot product wp represents the angle between the two vectors
only if the lengths of the vectors remains roughly the same.

5.4.4. Adaptive Learning Rate

The first modification to the original algorithm is the introduction of an
adaptive learning rate. The learning rate is recomputed at each iteration as in eq.
(5.7).

BUPT

Liquid State Machine and Liquid Computing - 5 82

errormsqmean

errormsq

__

_
max ∗⇐ λλ (5.7)

The learning rate starts from a maximum value λmax and then decreases as

the parallel perceptron starts to approximate the data well.

5.4.5. Greedy vs. Not Greedy

The second modification to the algorithm is the implementation of a
conscience mechanism. A statistical study was done to see how fast the algorithm
converges. The algorithm is considered to have converged when the parallel
perceptron approximates the target with an error smaller than ε for every data point
in the training set. 10000 simulations were performed for every data point p and
target t. The target t is the result of a randomly chosen linear function that takes p
as input variable. Each simulation starts with different initial weights for the
neurons, records the number of epochs that the algorithm needs to converge and
places it in a convergence histogram. Such a histogram is presented in figure 5.5. It
is seen that most trials converge in less than 400 epochs (aprox. 56.7%). Some
trials converge in more than 400 epochs but it is most likely that their convergence
is caused by chaotic effects and therefore is unreliable. Because the convergence
percentage is not very high it was interesting to see what prevents some of the
trainings from converging.

Fig. 5.5. PDelta Convergence histogram

 An activity monitor variable was attached to each neuron forming the
parallel perceptron. The activity variable counts the number of times the weight of a
neuron is updated during the current epoch. Then, it divides the count to the total
number of updates performed during the epoch for all of the neurons. After the
epoch is finalized the activity variable reflects a percentage of how often was a

BUPT

5.4 – The Parallel Perceptron Readout Unit. The p-Delta Learning Algorithm 83

neuron declared winner. Figure 5.6 plots the activity traces for all the neurons
during a trial that did not converge (each neuron is plotted in a different color). It is
seen that initially several neurons have their weights updated. However, at some
point, only one neuron is chosen exclusively for weight modification. This “greedy”
behavior occurs when a neuron reaches a region that is densely populated with data
and no other neuron is in the same region.

Fig. 5.6. Distribution of weight activity (“greedy” approach)

In order for the minimum error to be reached it is required that several

neurons are present in this region such that the quantization is smoother. Unluckily,
no other neuron is close enough to the data and so the single isolated neuron will
always win the competition preventing other neurons to approach the region. In
order to avoid this greedy behavior a conscience mechanism is inserted in the
scoring function that is responsible for selecting the winner neuron. The scoring
function calculates two scores: a proximity score PS and an activity score AS. Both
scores are sub-unitary and reflect the probability of a neuron to be declared winner.
The proximity score ranks the neurons based on dot product comparison. PS will be
1 for the neuron with a dot product that is closest to the threshold TH and 0 for the
neuron that is furthest away. The activity score is computed by monitoring the
activity trace of each neuron i inside a window of given size WS. The activity score
AS is computed at any time t as shown in eq. (5.8).

() ()∑
=

−∗−=
WS

k

ii kttraceactivity
WS

tAS
1

_
1

1 (5.8)

The overall score is the product of the two scores PS and AS. The neuron
with the highest overall score is declared winner. A neuron weight activity trace for
the “not greedy” approach is presented in figure 5.7.

BUPT

Liquid State Machine and Liquid Computing - 5 84

Fig.5.7. Distribution of weight activity (“not greedy” approach)

It is seen that in this case no neuron dominates as all neurons change

weights throughout the epochs of the algorithm. It is seen that with this approach
the algorithm converges a lot faster (140 epochs). In order to graphically compare
the “greedy” and “not greedy” methods a similar histogram as the one in figure 5.5
was computed. Figure 5.8 plots the cumulated sums of several such histograms.

Fig.5.8. Convergence Rate

The blue trace represents the cumulated sum of the “greedy” histogram in

figure 5.5. The other traces are cumulated sums of histograms obtained with the
“not greedy” approach for several values of the window size WS. It is seen that the

BUPT

5.4 – The Parallel Perceptron Readout Unit. The p-Delta Learning Algorithm 85

size of the averaging window WS does not significantly influence the convergence
speed of the algorithm. However, it is also seen that the “not greedy” approach
converges a lot faster than the “greedy” approach and also that the number of un-
converged trials is significantly reduced. The same data is numerically available in
table 5.1.

Table 5.1. Greedy vs. Not Greedy Convergence Statistics

Converge under x epochs Method

100ep 200ep 400ep

Never

converge

Greedy 6.21% 26.94% 56.13% 36.89%

Not Greedy 17.56% 63.38% 93.12% 0.53%

5.4.6. Adaptive Noise Margin Control

The algorithm stops when the error of the parallel perceptron is below the
desired accuracy ε. This happens when for any data point in the training set all
neurons will have a suitable dot product wp relative to the threshold TH. The
problem with this approach is that some of the neurons could have a dot product wp
that is very close to the threshold. In this case, any noise affecting the data can flip
one of the neurons thus causing an undesired change at the output of the squashing
function. More details on the necessity of a high noise margin can be found in [68],
[69].

The original algorithm presents a solution to this problem by inserting a
mechanism that produces a reasonable amount of noise margin between the
thresholds and the wp products of all neurons for any data point. This is done by
adding another term in the learning process as presented in equation (5.9). This
applies only when the output is within the desired accuracy but the dot product wp
is closer to the threshold TH than a specified margin M. In this case the weight
vector W is moved towards or away from the data with the margin learning rate mlr
such that the noise margin is increased.

() ∗+∗−⇐ mlrwmlrw kk 1





<−<+

<−<−−
∗

MTHWpp

THWpMp

0,

0,
 and ε<− tpY)((5.9)

The only problem with this idea is the constant learning rate mlr and the

constant margin M. Choosing a margin beforehand can be tricky because the
maximum obtainable margin is dependent on the distribution of the data within the
input space. Also, a learning rate that is too big can lead to instability and also to
the inability to reach the maximum margin even though this margin might has been
guessed or computed beforehand. As a solution to this problem our approach
introduces an adaptable learning rate mlr and an adaptable margin level M.

The margin level M is recomputed at each iteration as being the P%
percentile of all margin levels for all neurons. Values for P between 5% and 20%
have proven to work very well. This approach guarantees that the margin constraint
M is not higher than what the p-perceptron can obtain considering the given data. It
also assures that the algorithm adapts and increases the constraint M once the

BUPT

Liquid State Machine and Liquid Computing - 5 86

average margin increases. This leads the algorithm towards obtaining the highest
possible margin even though the margin is not known beforehand.

Several attempts were made until an appropriate control rule for adapting
the learning rate mlr was found. The first attempt was to increase the learning rate
whenever the derivative of the average margin is high. This meant that the current
average margin is still significantly small compared to the maximum margin so
faster changes can be done. Whenever the derivative of the average margin is small
or negative the learning rate mlr is decreased because the maximum margin is close
or already reached. The problem with this method is that predicting the approach to
the maximum margin by monitoring changes in the average margin can lead to a
late prediction. If the learning rate is very high at this point the algorithm can
become temporally unstable and loose whatever progress accumulated.

The second attempt tried to fix this problem by setting positive and negative
boundaries for the learning rate. This assured that the algorithm will not get out of
control. Unfortunately the boundaries were also data dependent and could only be
set experimentally.

The third approach was more successful. At each step of the algorithm, the
learning rate mlr is modified according to equation (5.10). K is a percentage with
range -1 to 1 given by eq. (5.11), where ∆m is the changes of the average margin
during the last training epoch.

mlrKmlr ∗+⇐)1((5.10)

BmAK +∆∗= (5.11)

A normal learning regime is one where the margin increase ∆m is equal to

an estimated increase ∆mest. In this case mlr should be constant hence K should be
zero. ∆mest is computed with eq. (5.12). In practice, ∆m will not equal ∆mest but will
randomly move inside a small interval around it. This will create small opposite
changes in mlr that will average down to zero.

A

B
mest −=∆ (5.12)

Whenever ∆m is constantly larger than ∆mest it is considered that the

learning process allows a faster increase of the margin. Because in this case K is
constantly positive the learning rate mlr will increase. In order to avoid an excessive
increase of the learning rate the algorithm enters an adaptive regime where the
estimated value ∆mest is reevaluated with eq. (5.13). This moves ∆mest towards the
new average value of ∆m. This is graphically shown in figure 5.9.









+∆−∆∗+=

dt

dB
mmBB estξ (5.13)

Whenever ∆m is constantly smaller than ∆mest the algorithm adapts in the

opposite direction. Figures 5.10 and 5.11 give the values of the average margin and
of mlr respectively over the epochs. Please note that the margin enhancement

BUPT

5.4 – The Parallel Perceptron Readout Unit. The p-Delta Learning Algorithm 87

mechanism is inhibited until the mean square error of the parallel perceptron
reaches the desired accuracy level. This can be seen in the fact that until epoch 70
the average margin changes randomly as a result of the error minimizing learning.

Fig.5.9. K Control Rule

It is seen that as the margin approaches its maximum value, the learning

rate mlr decreases. The margin reaches its maximum value some time before epoch
150. It is seen that until this point the learning rate mlr is sufficiently small such
that any additional changes do not make the learning process unstable or loose any
of the gained progress.

Fig.5.10. Average margin during training

The value for A was experimentally set to 2 and it reflects the sensitivity of

K over ∆m. The initial value for the learning rate mlr was also set experimentally.
Anyway, it is preferred to have a very small value for mlr at the beginning of

BUPT

Liquid State Machine and Liquid Computing - 5 88

training in order to avoid instability. The algorithm will quickly adapt mlr to a proper
level.

Fig.5.11. Margin learning rate mlr during training

5.5. The Feedforward Readout Unit. Backpropagation.

The structure of the multi-layer feedforward readout unit is presented in

figure 5.4. The input of the readout unit is the state of the liquid medium. Because
the spiking activity of the liquid medium is filtered, the resulting state will be a
vector containing real numbers. Like all feedforward neural networks the readout
unit is able to map the input vector to the desired output function. The
backpropagation learning algorithm is used for training the readout unit. Equation
5.14 shows the recursive relation between the outputs of two successive neural
layers. Index m is the number of the layer and has values between 1 and M. The
equation is written by examining the network in figure 5.4

()mmmmm baWfa += −1 (5.14)

Consider that the following input-output training pairs are available (pq, tq)

with q=1 to Q, where Q is the size of training set. For each input pq the output of
the network aq can be calculated using eq. 5.14 and the error of the network is
calculated as the mean square error MSE in eq. 5.15. It is considered that pq, aq and
tq are vectors. Index k in eq. 5.15 represents the kth training iteration.

() () ()qqTqq atatkF −−= (5.15)

The weights W and biases b of the neural network are adjusted such that

the error function F is minimized. This is done by using the gradient decent
technique presented in eq. 5.16. Indexes i and j denote a connection between
neuron i of the mth layer and neuron j of the (m-1)th layer. It is seen that weight
changes are inverse proportional to the derivative. Additionally, the changes are
modulated by learning rate lr which controls the speed and stability of the

BUPT

5.5 – The Feedforward Readout Unit. Backpropagation 89

algorithm. This method guarantees that at each iteration k the error is decreased.
However, it does not guarantee that error will ever reach its global minimum.

()
m

ji

m

ji
w

F
lrkw

,

,
∂

∂
−=∆ , ()

m

i

m

i
b

F
lrkb

∂

∂
−=∆ (5.16)

The biggest difficulty of the algorithm is to compute the partial derivatives in

eq. 5.16. This is because the error function F is indirectly related to weight values of
different layers. Equation 5.17 decomposes the derivative of 5.16 into a product
where Si

m represents the sensitivity of the error function F relative to the net output
ni
m of the mth layer.

1

,,

−=
∂

∂
∗

∂

∂
=

∂

∂ m

j

m

im

ji

m

i

m

i

m

ji

aS
w

n

n

F

w

F
, m

im

i

S
b

F
=

∂

∂
 (5.17)

Equation 5.18 groups all sensitivities of layer m into a single sensitivity

vector Sm. The sensitivity vector can also be expressed recursively as a function of
the sensitivity vector of the next layer. This is shown in equation 5.19.

T

m

I

mm

m

mn

F

n

F

n

F













∂

∂

∂

∂

∂

∂
= K

21

S (5.18)

1
1

1

1
+

+

+

+










∂

∂
=

∂

∂









∂

∂
=

∂

∂
= m

T

m

m

m

T

m

m

m

m FF
S

n

n

nn

n

n
S (5.19)

It is seen that the sensitivity vector also depends on the Jacobian matrix

shown in eq. 5.20





























∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

=
∂

∂

+++

+++

+++

+

+++

m

I

m

I

m

m

I

m

m

I

m

I

m

m

m

m

m

m

I

m

m

m

m

m

m

m

m

mmm

m

m

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

1

2

1

1

1

1

2

2

1

2

1

1

2

1

1

2

1

1

1

1

1

1

111

K

MOMM

K

K

n

n
 (5.20)

Each element of the Jacobian can be calculated by substituting in eq. 5.14.

This transforms eq. 5.19 to eq. 5.21, where ()m
nF& is given by eq. 5.22. This

relation allows computing the sensitivities on all layers starting from the last layer
and advancing towards the first layer of the network (hence the name

BUPT

Liquid State Machine and Liquid Computing - 5 90

backpropagation). The sensitivities of the last layer can be easily computed because
the error function depends directly on the net output of the last layer. Matrix

function ()m
nF& can also be computed by evaluating all derivatives of the activation

functions for the values of nm produced by the input data pq.

()() 11 ++= mTmmmm
SWnFS & (5.21)

()

()
()

()



















=

m

I

m

mm

mm

m

mnf

nf

nf

&L

MOMM

L&
K&

&

00

00

00

2

1

nF (5.22)

A few additional improvements can be made to backpropagation. For

example, eq. 5.23 displays a training rule that uses momentum. At each training
iteration the weights are updated as a combination of two terms. The first term is
calculated according to eq. 5.16 of backpropagation. The second term equals the
weight updates performed during the previous training iteration. This assures that
the weights update has inertia (momentum) and has a tendency to preserve its
dynamic trajectory. The advantage of having momentum is that the training is less
likely to get stuck in a local error minimum. As a result, the algorithm allows a
temporary increase of the error function. Another improvement is using an adaptive
learning rate.

() () () ()11 −∆+∆−=∆ kkk
mm

backprop

m
WWW λλ (5.23)

The readout units can also be implemented by spiking neurons instead of

classic logsig neurons. In this case, an alternative to backpropagation in presented
in [75], [76] and [77].

BUPT

6.3 – Filtering with Liquid State Machines 91

6. GABOR FILTERING USING LIQUID STATE
MACHINES AND SPIKING NEURONS

6.1. Introduction

Recent studies of the visual cortex have revealed the existence of
specialized cells that are selective to particular frequencies and orientations. The
discoveries of Hubel and Wiesel revealed significant information regarding the
functioning of these cells. It is generally accepted that their functionality is
successfully approximated by 2D Gabor wavelets, which are also tuned to specific
orientations and frequencies.

Because face detection and recognition is a task that is easily performed by
the brain, biologically inspired approaches like Gabor filtering are very appealing to
researchers because of their potential. Presently, several face recognition systems
using Gabor filtering have very good recognition rates proving that the approach is
very promising [92], [93], [95] and [96].

6.2. Gabor Filtering

The Gabor filter was first introduced by Denis Gabor in [88] as joint entropy,

minimizing frequency sensitive filter. It was later extended to two dimensions by
Daugman [89], a modification that is also biologically motivating [90]. The kernel of
the Gabor filter is shown in eq. 6.1. It is a 2D harmonic oscillation, composed of a
sinusoidal plane wave of a particular frequency and orientation, restricted by a
Gaussian envelope.

() () 















−−








−=Ψ

2
expexp

2
exp,

2

2

22

2

2 σ

σσ
ikx

xkk
xk (6.1)

Figure 6.1a presents the surface representation for the absolute value of the

Gabor filter. The contour of the Gabor surface can be depicted in 6.1b for 4 distinct
orientations of the wave plane. Further information in Gabor filtering can be found in
[91] and [94].

6.3. Filtering with Liquid State Machines

6.3.1. Input Signals

The input information is represented by raw pixel data. We have used two

methods to feed the signals to the Liquid State Machine. The first method sends the
pixel data directly to the liquid medium. Each pixel signal, represented as an analog
current, can source a liquid neuron directly. Alternately, a layer of integrate and fire
neurons can be interposed between the pixel signals and the liquid medium. In this

BUPT

Gabor Filtering Using Liquid State Machines And Spiking Neurons - 6 92

case the new layer rate-codes the pixel signals and sources the liquid medium with
spike trains rather than analog signals.

a) Surface Representation b) Contour Representation

Fig. 6.1. 2D Gabor Filter Kernel

The disadvantage of this approach is the high number of input signals

associated with larger input images. If we assume that one liquid neuron cannot be
sourced by more than one input signal, the number of liquid neurons needs to be at
least as large as the number of pixels in the input image. Moreover, if most of the
liquid neurons are sourced by input data, the liquid medium might become
saturated and might not have any free resources to perform any useful
computation. This means that the size of the liquid medium must be at least a few
times larger that the size of the input image. Another disadvantage is that in this
case the input signals are static, fact that is more or less inconsistent with the
dynamic behavior of the LSM.

The second method uses time-multiplexing in order to reduce the number of
input signals. Figure 6.2 presents the architecture that was used. The left-side figure
shows an image column circuit. It is constructed from a set of pixel circuits each
connected to an individual pixel. All pixel circuits have a shared control signal called
“phase shift signal”. The control signal contains a pair of spike trains that have a
constant phase shift relative to each other. The first spike train has a constant
frequency and is considered to be the reference signal. The second spike train has a
frequency that is either slightly smaller or higher, and so the phase of the second
spike train shifts constantly relative to that of the first spike train. Each pixel circuit
is sensitive to a unique phase difference. Whenever this phase difference occurs, the
pixel circuit activates and generates its own spike train that is proportional to the
input pixel. Otherwise the pixel circuit remains inactive. An I&F neuron combines all
signals into a single output. The I&F neuron has a threshold that is sufficiently low
such that the neuron generates a spike whenever it receives a spike. The speed of
the phase shift determines the frequency of the time-multiplexing and also how
much time is dedicated to each channel.

 Several column circuits are combined into a set in order to cover the entire
space of the input image. Figure 6.2 (right) shows this design. Each column circuit
multiplexes the pixels from an image column. The width of a column circuit equals
the number of rows in the image. Alternately, the image can be transposed in order

BUPT

6.3 – Filtering with Liquid State Machines 93

to do a sweep along the rows. The number of signals that are sent to the LSM is
reduced to the number of columns (or rows).

Fig. 6.2. Time-Multiplexing the Input Signals

One possible drawback of this method could be the fact that the LSM does

not have access to the entire amount of information at the same time. However, the
concept of liquid computing is based on the idea that the liquid medium is able to
store past information in its high dimensional internal state. This means that if the
frequency of the multiplexing is not too low, the LSM should be able to do
computations on the entire image even though it has access to only part of the
information at a time.

Figure 6.3 shows the circuit that performs the actual multiplexing (the pixel
circuit PC). Central to this circuits is the resonate and fire neuron (R&F). Figure 6.4
(right) shows how the membrane potential of the R&F neuron is affected by the
spikes of the phase shift signal. Initially, the membrane potential is in resting state
which is zero. Consider that the reference spike occurs at time tsp1 and the variable
phase spike occurs at tsp2. The membrane potential is represented in the complex
plane by z(t). At tsp1 z changes from zero to S, where S is the strength of the input
synapse of the R&F neuron. The membrane potential starts to oscillate according to
(6.2), where ωRF is the pulsation of the oscillation. Because the R&F neuron was
resting before the first spike we can consider tsp1 = 0.

() () ()tiSiStz RFωϕ expexp == (6.2)

As presented in chapter 2, the timing of the second spike relative to the

phase of the oscillation determines whether the membrane potential reaches the
threshold or not. The neuron is most sensitive to spikes occurring at times when ωt
is a multiple of 2pi. Therefore, as presented in figure 6.4 (left) and by equation 6.3,
the pulsation ωRF of the R&F neuron should be set such that the timing of the
second spike tsp2 synchronizes with the phase of the oscillation at 2kpi.

PC

PC

PC

PC

I&F

Column Circuit Image Liquid State Machine Column
Circuit Set

Phase Shift Signal

BUPT

Gabor Filtering Using Liquid State Machines And Spiking Neurons - 6 94

Fig. 6.3. Pixel Multiplexing Circuit

In addition, the threshold of the neuron should be set such that the R&F

neuron is still sensitive to spikes that occur during a time window of ∆tsp2 centered
on tsp2. Equation 6.4 can be written by examining the geometry of figure 6.4 (right).
It shows how to calculate the threshold TH in order for the membrane potential z to
exceed the threshold if the phase of the second spike is in range ±φ around 2pi.

2

2

sp

RF
t

kπ
ω = (6.3)

()
()

2

2
cos2,

22
cos

2

2

2 πωϕ kt
STHTHtz

S

tz
sp

sp

sp −
<⇒≥= (6.4)

4
cos2

2spRF

RF

t
STH

∆
=

ω
 (6.5)

Equations 6.3 and 6.5 design an R&F neuron that is sensitive to a pair of

spikes that have a specific timing difference of tsp2± ∆tsp2/2. The phase difference of
the two control spike trains shifts constantly and so at same point the second spike
will be inside the time window of the R&F neuron (fig. 6.5).

Note that it is assumed that the R&F neuron has a resting membrane
potential before receiving the reference spike. It is the job of neuron I&F1 to assure
that this happens. The threshold of this neuron is set such that it generates a spike
for every three spikes that it receives. Its output is inhibitory and serves as a reset
mechanism that brings the membrane potential of the R&F neuron to zero.

Note that the R&F does not fire a spike immediately after receiving the
second control spike at tsp2, even if the timing of the spike is correct. It continues to
oscillate for a short time (less than pi/2) until the membrane potential exceeds the
threshold (also seen in fig. 6.5). If neuron I&F1 triggered the reset after two spikes
instead of three it would risk bringing the R&F neuron to resting potential
prematurely, preventing it from reaching the threshold. This is fixed by triggering
the reset after three spikes and slightly delaying the control signal for the R&F
neuron. This way, when the third control spike (a reference spike) reaches the R&F
neuron it would have already caused neuron I&F1 to trigger the reset.

R&F D

I&F 1

I&FB I&F 2

Pixel Signal

Phase Shift
Signal

Output S -

+ + +

I&F 3

m1
m2

K
+

BUPT

6.3 – Filtering with Liquid State Machines 95

Fig. 6.4. Membrane Potential of R&F Neuron

Neuron I&F2 integrates the pixel signal and then generates an output spike
train that rate-codes the pixel information. The threshold and loss factor of I&F2 are
set high, and so the neuron is unable to reach the threshold with just the pixel
signal at the input. When neuron I&F2 also receives spikes from neuron R&F its
energy is boosted and the neuron starts to fire. This is equivalent with temporarily
lowering the threshold. The period of the output spike train To is a function of the
pixel P as shown in eq. 6.6 and 6.7. The value B is the average energy value
produced by the boosting spike train. Note that the output of the resonate and fire
neuron R&F is not used directly as a booster signal. Instead, an integrate and fire
with burst I&FB is interposed between neurons R&F and I&F2. The reason is the
following: in order for the boosting spike train to be well approximated by its
average value B, its period needs to be much smaller than the operating time
constants of neuron I&F2. Neuron I&FB has the duty to generate a burst of spikes
for every spike generated by neuron R&F. This avoids a situation where the pixel
circuit operates at a frequency a lot higher than that of the Liquid State Machine.
The concept is also depicted in figure 6.5.

() 








+
−−=

BP

kTH

k
PTo 1ln

1
 (6.6)

k

BP
TH

k

P +
<≤ minmax (6.7)

Equation 6.6 gives the period-pixel dependency and therefore defines the

rate-code. It can be noticed that the code is not linear. This is not necessarily a
problem but we would prefer to have a linear coding rather than a logarithmic one.
Neuron I&F3 has the duty to linearize the transfer function as much as possible. The

S

S

φ

φ/2

TH

()
1sptz

()
2sptz

S

spike 1

spike 2

RF

sp

k
t

ω

π2
2 =

RF

spt
ω

ϕ2
2 =∆

BUPT

Gabor Filtering Using Liquid State Machines And Spiking Neurons - 6 96

neuron is fed by the pixel signal P via a static synapse connection m1 and also by a
constant signal K.

Fig. 6.5. Activation of R&F Neurons

The output of I&F3 is sent to neuron I&F2 via the synaptic connection m2.

The expected functionality of the circuit is the following. For high values of P the
rate code generated by neuron I&F2 is almost linear. Therefore, we want neuron
I&F3 to have little or no influence in I&F2. This is achieved by making connection
m1 inhibitory. For low values of P the inhibition of m1 is small and neuron I&F3
activates and starts firing. The average value of the spike train generated by I&F3
partially compensates the non-linearity of I&F2. The values of m1 and m2 are
subject to optimization. Figure 6.6 shows the performance contour obtained for the
scoring function in eq. 6.8. As expected, the best performance is obtained for a
negative connection m1 and a positive connection m2.

Fig.6.6. Optimization of m1 and m2 synaptic connections

() ()

() ()[]∑
=

−

−
=

N

k

kk PTPT
N

TT
Score

1

1

minmax
 (6.8)

R&F

I&FB

Spike
Train 1

Spike
Train 2

BUPT

6.3 – Filtering with Liquid State Machines 97

The scoring function in eq. 6.8 is a ratio of the range of the output period T
and the mean square error between function T and its linear approximation

T (linear regression). This way we seek a transfer function that is as linear as
possible and that also preserves the output dynamic range. Figure 6.7 shows the
results of the optimization. The blue trace represents the original transfer function
(rate-code) as given by eq. 6.6. The green trace is its linear approximation obtained
with linear regression. The dashed red trace is the corrected transfer function. This
transfer function is obtained for the optimal pair (m1, m2) and is the most linear
transfer function achievable with this architecture. Of course, adding additional
correction neurons could improve the linearity.

Fig.6.7. Linearized Rate-Code

6.3.2. Spike Generator with Shifting Phase

As presented in the previous paragraph the resonator circuit requires two

control spike trains that have a shifting phase difference. Figure 6.8 depicts such
signals. The first spike train has a steady period T. The second spike train has an
initial phase difference and also a period that is roughly higher than T. Therefore the
second spike train has a phase that will constantly shift away from the phase of the
first spike train. The minimum and maximum phase differences are given by the
phase shift control window. When the phase of the second spike train reaches the
end of the phase shift window its period is decreased and so the process is reversed.
The continuously changing time difference between the two spike trains can be used
to activate selectively the resonate and fire neurons. Figures 6.9 and 6.11 show two
I&F neural circuit implementations that generate the signals described above. The
implementation shown in figure 6.9 has more neurons. However, the functionality of
each neuron is simpler and more biologically plausible compared to figure 6.11.

BUPT

Gabor Filtering Using Liquid State Machines And Spiking Neurons - 6 98

Fig. 6.8. Shifting Phase Spike Trains

Neurons 1, 2, 3 and 4 integrate the same analog stimulus and therefore

generate spike trains that have the same frequency. The initial membrane potentials
of the four neurons are evenly spread in their dynamic range and so there’s a T/4
phase shift between spikes. Neurons 1 and 2 are responsible for generating the odd
spikes of the first and second spike train respectively. Neurons 3 and 4 generate the
even spikes. Neurons 5, 6, 7 and 8 are gate neurons. This means that they have a
sufficiently low threshold that they fire a spike whenever they receive a spike, as
long as there is no inhibition signal.

Neurons 9, 10, 11 and 12 are I&F neurons that have a very high loss factor.
Their threshold is set such that two input spikes are able trigger the neuron as long
as the two spikes both arrive within a given time window. The value of the loss
factor controls the size of the time window. Figure 6.10 presents this concept (for
simplicity the three spikes are abbreviated S1, S2, and S3).

Fig. 6.9. Shifting Phase Circuit 1

1

5 7 9
+ + + -

2

11

+

+

+

- -

3

6 8 10
+ + + -

4

12

+

+

+

- -

+

+

13

+

+

+

+

-

-

-

-

shift step

T

Phase shift window

Spike
Train 1

Spike
Train 2

T T T

BUPT

6.3 – Filtering with Liquid State Machines 99

Initially, the timing of S2 is inside the time window of both neurons 9 and
11, and would potentially cause both of them to fire. However, because neuron 9
fires first (it receives S1 and S2; neuron 11 receives S2 and S3), it will send an
inhibitory spike to neuron 11 forcing it not to fire. As a result, neuron 7 is inhibited
and is deactivated while neuron 5 remains active. The purpose of neuron 5 is to
retransmit the spikes of neuron 1 back to neuron 2 as an inhibitory feedback. This
feedback delays spike S2 and creates the phase shift effect.

The speed of the phase shift is determined by the strength of the synapse
that connects neuron 5 and neuron 2. When spike S2 exits the upper time window,
neuron 9 will stop firing and neuron 11 will start firing (because there is no more
inhibition). This deactivates neuron 5 and activates neuron 7. As a result the
negative feedback of neuron 2 is replaced with a positive feedback that accelerates
spike S2 and gradually decreases the phase difference. When spike S2 re-enters the
time upper time window neuron 9 is ready to fire again. However, it does not fire
because now it is inhibited by neuron 11. Finally, neuron 13 combines the four
signals into a single spike train that is ready to stimulate the R&F neurons of layer
2.

Fig. 6.10. Selective Firing Window

The circuit in figure 6.11 has the same functionality. The difference is that it

uses a pair of I&F neurons as context detectors (CD). The context detectors are
used for determining the moments when spike S2 crosses the borders of the phase
shift window. Because the context detector is sensitive to the timing between spikes
but also to the order of spikes (S1, S2 is not the same as S2, S1) the spike trains do
not need to be separated on odd/even channels. Therefore, only 2 neurons are
needed for generating the two spike trains (neurons 1 and 2).

When context detector CD1 fires a spike it triggers neuron 5. Because this
neuron has a positive feedback connection it will keep firing until it is inhibited by
CD2. Similarly, CD1 inhibits neuron 6. This mechanism toggles activation of gate
neurons 3 and 4 and creates the phase shift effect as explained for circuit 6.2.

BUPT

Gabor Filtering Using Liquid State Machines And Spiking Neurons - 6 100

Fig. 6.11. Shifting Phase Circuit 2

6.3.3. Estimating Gabor Coefficients with Liquid State Machine

As presented in 6.3.1 there are two types of input signals. The first type,

which we will call StaticInput, corresponds to the case when the entire image is sent
to the liquid state machine. The second type, named DynamicInput, is the time-
multiplexed signal. If the multiplexing is done along the columns the signal is called
DynamicInputX; if the multiplexing is done along the rows the signal is called
DynamicInputY. The period of the time-multiplexed signal is 1s. This means that it
takes 1s to completely scan an input image and produce the input signal. After 1s
the input signal is repeated. It takes at least one period until the entire information
of the input image is available to the Liquid State Machine. Figure 6.5 presents
some examples of spiking activity of the liquid medium when it is stimulated by
input signals.

We set up 4 readout units that are connected to the liquid medium by static
synapses. Each readout unit is responsible for estimating the Gabor coefficient
corresponding to filters with 4 different orientations: 0o, 45o, 90 o and 135 o. All
filters have the same spatial frequency with wave number k = pi/2. The
performance of the Liquid State Machine is tested with both types of
implementations for the readout units: parallel perceptron (PP) and multilayer feed
forward networks (MLFF).

In order to train the readout units and then test the Liquid State Machine,
training and testing data had to be gathered. A set of 30 random images are
selected for the experiment. For every image, 20 different points are chosen by
generating their coordinates randomly. A window of 11x11 pixels is centered on
each random coordinate, thus generating 600 smaller input images. For every input
image the target Gabor coefficient tG is calculated with eq. (6.1). Because filters
with 4 different orientations are used, the target data will be 4x1 vectors.

The input images are converted to input signals according to 6.3.1 which are
used at stimulating the liquid medium. The spiking activity of the liquid medium is
recorded and converted to a set of liquid states as presented in 5.3. The liquid
states are real Nx1 vectors, where N is the number of neurons of the liquid medium,
and they represent the input of the readout units pL. The (pL tG) data is divided into
two sets of 400 pairs and 200 pairs used at training and testing accordingly. The
training algorithm further divides the training set into training and validation. During
training, the error of the approximation is a vector is considered to be the difference
between the outputs of the 4 readout units and the target vector tG. Each readout
unit is trained independently from the others and tries to minimize one component
of the error vector.

1

3 4 5
+

+
+ -

2

6

+

+

-

-
7

CD1

CD2

+

+

-

-

+

+

BUPT

6.3 – Filtering with Liquid State Machines 101

Fig. 6.12. Spiking Activity of Liquid Medium

The two types of implementation of the readout units (PP and MLFF) are

tested separately. After the readout units are trained, the Liquid State Machine is
tested with images from the testing set. Figure 6.6 presents an example of the
functionality of a trained LSM. In this case the LSM is stimulated by 10 input
images, the input being changed every 6 seconds. The red dashed line marks the
value of the target Gabor coefficient (0o filter). The blue trace is the output of the
LSM. It is important to notice that the LSM is not able to approximate the Gabor
coefficient well immediately after the new input image is available.

A certain amount of time is needed until the LSM manages to process and
accumulate enough useful information in its liquid states. Additionally, because the
liquid medium behaves like a filter that retains information, it takes some time until
the information of the old input image fades away.

Fig. 6.13. Estimating Gabor Coefficients

6.3.3.1. Approximation Accuracy

The approximation error is computed as the absolute difference between the
output of the readout unit and the actual Gabor coefficient from the target set.
When stimulated by a new set of input signals, the Liquid State Machine will have a
higher approximation error at the beginning. Afterwards, if the LSM is able to

BUPT

Gabor Filtering Using Liquid State Machines And Spiking Neurons - 6 102

perform useful computations, the absolute error should have a tendency to decrease
exhibited by e(t). In order to quantify the approximation accuracy emin of the LSM
we determine the minimum value e(tm) = min(e(t)) as long as for any moment of
time t > tm no more than K percent of the error samples e(t) are higher than e(tm).
In this case tm is considered to be the time required by the LSM to reach its best
approximation accuracy. A small error can either be the outcome of a good
approximation or the effect of random noise. The measurement technique presented
above is insensitive to noise and determines the approximation performance of the
LSM. An example is presented in figure 6.14. Note that the Gabor coefficients are
scaled [0 to 1] and so the approximation accuracy emin is expressed in percentages.

Fig. 6.14. Computing the Approximation Error

6.3.3.2 Approximation Speed

As explained in 6.3.3 the LSM requires some time until it can reach its best
approximation accuracy. This time can also be considered a performance measure in
addition to approximation accuracy. In order to quantify it, we introduce three
additional measurements: t10%, t20% and t50%. It is considered that for t>tP%, e(t)
verifies condition (6.9) for more than its K samples, where K is the same as for emin.

() ()()







+








−< te

P
e

P
te max

100100
1 min (6.9)

While t10%, t20% are meant to measure how fast does the LSM reach its best

accuracy, t50% measures how fast is the LSM able the fade away the information of
the previous input image.

6.3.3.3. LSM Performance

 Table 6.1 presents the performance results for three different LSM networks
equipped with MLFF readout units. All types of signals (Static, DynamicX and
DynamicY) are tested. Every group of 3 rows in the table shows the performance
results of one LSM network. Each LSM has different network parameters that are
optimized to different performance criteria. The optimization is performed by using

BUPT

6.3 – Filtering with Liquid State Machines 103

a genetic evolution method [87]. The vector of parameters that is subject to
optimization is shown in eq. 6.10.

}ParametersSynapseParamtersLSMParametersNeuronParametersNetwork

DIPERINHCkLossTHtopZtopYtopX max

444 8444 7648476444 8444 76
λ (6.10)

The performance criteria for the three optimizations are: emin for LSM1, 0.5*

t10% + 0.5* t20% for LSM 2 and t50% for LSM3. The optimization criterion is also
underlined by the curly border of the table cell. The numbers shown in table 6.1 are
computed by averaging the results of 600 simulations performed on 30 different
LSMs (20 different input stimuli for each LSM). In addition, the performances of the
4 readout units (one for each angle) are also averaged. All LSMs have the same
parameter vector (6.10). Nevertheless, because some of the vector components are
statistical parameters (the LSM parameters), the 30 LSMs are different.

Table 6.1. Feed-Forward Multilayer Readout Unit
 Signal

Type
Best Aprox.
emin [%]

Time to e <
t10% [s]

Time to e <
t20% [s]

Time to e <
t50% [s]

Static 8.2% 2.85 2.04 1.06

DynamicX 6.2% 2.91 1.98 1.10

LSM 1

DynamicY 6.8% 2.97 2.03 1.07

Static 7.8% 2.75 1.94 1.05

DynamicX 6.5% 2.69 1.89 1.03

LSM 2

DynamicY 6.9% 2.65 1.84 1.01

Static 13.2% 2.92 1.88 0.97

DynamicX 9.1% 2.88 1.92 0.93

LSM 3

DynamicY 9.3% 2.93 1.89 0.89

The first general observation is that all LSMs perform better for the

DynamicX and DynamicY input signals compared to the Static signal. Secondly, even
though LSM1 and LSM2 are optimized for different performance criteria, they both
perform well and similar for both criteria. For LSM3 the approximation accuracy emin
is up to 5% worst while the t50% is decreased with up to 10%. It is interesting to
notice that both LSM1 and LSM2 have neuron loss factors kLoss between 0.07 and
0.12. On the other hand LSM3 has a lost factor between 0.16 and 0.19. The higher
loss factor gives the LSM the ability to “forget” the old information faster, and so it
is able to deal better with transitory regimes.

Table 6.2 presents the approximation accuracy of LSM1 when the network is
equipped with readout units implemented by a parallel perceptron.

Table 6.2 Parallel Perceptron Readout Unit

Signal Type Best Aprox.
emin [%]

Static 11.5%
DynamicX 9.2%
DynamicY 8.9%

BUPT

 Conclusions and Contributions - 7 104

The parallel perceptron uses enough neurons such that the approximation
accuracy of the LSM is not limited by the quantization ability of the readout unit.
Anyway, it can be noticed that the PP readout unit does a poorer approximation of
the liquid states compared to the MLFF readout unit. However, the training of the PP
readout unit is a lot quicker because the p-Delta algorithm does not need to
compute the derivatives of backpropagation.

BUPT

7.1 – Conclusions 105

7. CONCLUSIONS AND CONTRIBUTIONS

7.1. Conclusions

 This thesis proposes a novel approach to information processing using
neural networks. The subject is particularly interesting because spiking neural
networks are used instead of traditional models. These are considered to be the
third generation of neural networks and are the models most similar to the
biological neurons. The new spiking models preserve all properties of previous
models by using the frequencies of the spike trains to encode information.

 7.1.1. Spiking Neural Networks

The first chapter of the thesis presents up-to-date studies regarding the
potential applicability of spiking neural networks and the motivation to choose such
models. The second chapter presents the relation between spiking models and the
biological neuron. The dynamic functionality of the synapse is presented and a
simplified mathematical model (with variable internal state) is proposed {1}9. An
important observation is made about the fact that the internal state of the synapse
converges towards a constant when the pre-synaptic spike train is of constant
frequency. This observation creates the opportunity for an important simplification
inside the simulation framework. The simulator divides the neural network into
areas and monitors the average spike frequency of each area. Afterwards, it uses
the average frequency to estimate the internal state of the synapses in each area.
Consequently, the internal state of each synapse must not be recomputed at each
simulation time step. It will only be updated periodically as a response to average
frequency changes. The second chapter also studies the structure of the neuron cell.
First, the functionality of a single ion channel is introduced. Then, several possible
configurations of ion channels are presented, each leading to a different dynamic
behavior for the neuron cell. The analysis concludes with a selection of four neuron
models that are considered to be most useful for simulation purposes {1}.

The second chapter concludes by analyzing some information encoding
techniques and also the ability of a spiking neural network to implement a content
addressable memory with complete and incomplete spike contexts {2}.

7.1.2. MATALB simulation framework

Chapter 3 presents a MATLAB simulation framework for spiking neural

networks together with all tools necessary for analyzing and visualizing results {7}.

7.1.3. Parallel MATLAB framework and GPU accelerated framework

The parallel implementations performed in the third and fourth chapters

show that spiking neural networks are ideal candidates for parallel implementations.

9
 {n} associates this conclusion to contribution n in paragraphs 7.3 and 7.4

BUPT

 Conclusions and Contributions - 7 106

Neural networks in general are structures with an extremely high level of
parallelism. The first attempt to parallelize the model uses a distributed MATLAB
model that runs on several computers connected by a network. The attempt is
successful and proves the potential of a parallel implementation. However, the
improvement is not satisfactory considering the amount of available computational
power and the difficulties encountered while setting up the simulator. The second
attempt to parallelize the model uses a GT9800 NVIDIA GPU. This time the
implementation is much more successful and achieves significant speed-up. In
addition, further improvements are made to the model like: minimizing number of
branches, eliminating unnecessary kernel overhead time by merging kernels,
improving data access time by storing the data delay line in shared memory,
reducing the transfer time of result by overlapping computation and data transfer.
Chapter four concludes with a brief presentation of the MEX interface that connects
the MATLAB application to the compiled CUDA C simulator.

7.1.4. Liquid State Machines and p-Delta Learning Rule

While the structure of the biological neurons is very well known, the exact

architecture and computational models of the brain is still a mystery. Chapter five
presents an architecture called Liquid State Machine that is able to perform dynamic
data computation without previous knowledge of process or of the data itself. The
structure of this computing machine is not deterministic and is generated by
statistical rules. This aspect concludes that such architectures do not need to be
designed and can easily be built using genetic evolution of their statistical
parameters. When being stimulated by external signals the Liquid State Machine
generates an un-stable sequence of states (neural activity) that is stimulus specific.
A trained read-out unit is used to map the neural activity into a desired output
function.

Chapter five also presents two possibilities of implementing the read-out
units: the parallel perceptron, and the feed forwards sigmoid networks;
accompanied by suitable training algorithms: the p-Delta rule, and backpropagation.
In the case of the p-Delta rule chapter five also presents three improvements that
lead to a better convergence rate and a higher convergence speed: adaptive
learning rate, not-greedy neuron competition, and a mechanism for adapting the
noise margin {2}. The improvements are the result of a thorough investigation of
the dynamics of the training algorithm. Several scopes were attached to different
variables that change during training. Analyzing the time traces of these variables
uncovers the reasons why training fails to converge or does so very slowly.

7.1.5 Extracting Gabor Coefficients from images using Liquid State

Machines based on Spiking Neurons

The concept of processing information using Liquid State Machines as the
main computational core is proven by successfully extracting Gabor coefficients from
images at different fiducial points. The Liquid State Machine manages to
approximate the Gabor coefficients well without any pre-processing of the pixel
data. Both types of readout units (parallel perceptrons and multi-layer networks)
prove to have similar performances from the error approximation point if view. From
the computational perspective the parallel perceptron and the p-Delta training
algorithm is less demanding. The parameters of the Liquid Medium are optimized
using a genetic optimization. This approach was appealing because it is very likely

BUPT

7.1 – Conclusions 107

that the biological networks have evolved in a similar way. In addition, the genetic
optimization can deal well with the large parameter space and the highly dynamic
performance function that would be impossible to optimize with gradient methods.

7.2. Future Work

 The ultimate goal of this research is to design a system that can perform
face recognition by using neural networks exclusively. So far, a good architecture
(LSM) that can perform universal computation has been chosen. The architecture
has been implemented to run on a GPU in order to accelerate simulation, and an
application that estimates Gabor coefficients has been designed using LSM.

In the future we plan to design subsequent parts of the system that use the
estimated Gabor coefficients to perform face recognition [109], [110]. Also, we
desire to use a feedback technique that helps the Gabor estimator at selecting the
most significant fiducial points of the image rather than using a uniformly spaced
grid. This technique will use adaptive coordinates for the fiducial points and will
probably be biologically unfaithful. This is because the brain is able to recognize a
face in just fractions of a second and it is unlikely that there is enough time to use
an adaptive method for selecting fiducial points. Alternately, it performs analysis of
the entire image in parallel and selects the relevant information in subsequent
processing layers. However, because of our limited computational resources, and
because we are not necessarily aiming towards a real-time recognition system, an
adaptive solution will be a good compromise. In fact the performances are predicted
to be similar with only speed being altered. So far, our research has only restricted
to face recognition. However, there are several other biometric recognition
applications that can use the liquid state machine architecture. The remaining of this
paragraph presents such applications that are possible future research tracks.

One of the research directions that we are aiming towards is affective
computing. This differs from face recognition because we are interested in
classifying the facial expression of a person rather than determining its identity.
More information about affective computing can be found in [105], [106], [107] and
[108]. An aspect that is very interesting and that deserves investigation is the
potential ability of a liquid state machine to unify face recognition and affective
computing by using a single liquid medium and multiple readout units. This is
potentially possible because the two applications are similar in terms of input signals
(Gabor coefficients). Therefore, it is the duty of the liquid medium to decompose the
information and isolate aspects that are significant to either face recognition or
affective computing.

Probably the oldest biometric identification technique is fingerprint
identification. In [97] Elmir and Zakaria present an application that uses a liquid
state machine for fingerprint classification. It is very appealing that they also use
Gabor filtered images to obtain the stimulus for the LSM and so facilitate unification
with the techniques presented above.

Another application that we are considering is human gait recognition, which
is also a biometrical recognition problem [98], [111]. In contrast to the face
recognition problem where the stimulus is static (or artificially dynamic as in the
case of the swept input), the human gait analysis inherently comes with dynamic
signals. This type of stimulus is better fitted to the functioning principle of the liquid
state machine. The goal for this application is to use key points on the human body
that form a set that is significant to human movement (i.e. feet, knees, elbows,
shoulders, center of head). The trajectory of each point will be spike coded in terms

BUPT

 Conclusions and Contributions - 7 108

of absolute or relative changes of coordinates. The goal of the liquid state machine
is to analyze the trajectory of each key point and also combine the set of
movements into a unified gait characteristic. Such an application together with face
recognition and affective computing can have numerous applications starting from
human-machine interfaces serving visually impaired people ([99], [100], [101],
[102], [103], [104]), biometrical identification, automotive or surveillance.

Another question that remains unanswered is what parameters of the liquid
state machine architecture are most significant; and also to what aspects of the
information processing task. So far, parameters have only been improved by means
of evolutionary methods without having a rigorous understanding of their influence.

Although simulation speed has been greatly improved by using a GPU there
is always desire for more. Presently, the achievable network sizes that can be
simulated in reasonable amounts of time are still by far smaller than the biological
counterparts. A grid super-computer would be an improved, thus expensive
solution. Another less expensive approach is to use multiple GPUs, a feature that is
offered by NVIDIA’s CUDA C. Global memory access time is a bottleneck for a single
GPU and so combining several GPUs will raise additional communication issues. The
best guess is that an application will have to be divided into several LSMs that do
not directly interact; each LSM will run on an individual GPU. It will be the duty of a
sub-sequent layer (a LSM, readout unit or another type of neural network) to
combine the neural activities of the multiple LSMs and do a unified analysis. This is
analog to the brain containing several clusters, each dedicated for a sub-task,
without being interconnected to the other clusters (obviously a simplification).

7.3. Theoretical Contributions

The theoretical contributions are as follows:

 1) Improved the p-Delta learning algorithm useful at training the parallel
perceptron. This results in an algorithm that has a significantly higher convergence
rate, convergence speed and stability. The improvements are:

• An adaptive learning rate
• A not-greedy competition between neurons. This prevents the

algorithm from getting stuck due to situations when a single neuron
wins the competition exclusively.

• A mechanism for adapting the targeted noise margin and the noise
margin learning rate. A momentum effect is introduced in the
adaptation method in order to make it insensitive to noise. This
offers the advantage that the noise margin (which is data
dependent) does not need to be pre-computed.

 2) A 4 step thread synchronization procedure was defined. The procedure is
useful for synchronizing all threads of the application regardless of the block/thread
design. This contribution is very useful at merging all kernels of the application into
a single one.
 3) A study is made regarding the ability of the integrate and fire neuron to
implement a context detector and a content addressable memory. In addition, an
analysis is made to determine the relationship between the size of the spike context
and the ability of a content addressable memory to correctly recall a spike
sequence.

BUPT

7.4 – Practical Contributions 109

4) An analysis was performed and it was determined that the spiking neural
network simulator is parallelizable. Additionally, this conclusion is tested with the
MATLAB parallel model.
 5) The thesis proposes a novel approach to perform filtering by using a
Liquid State Machine based on spiking neurons. Gabor coefficients of different
orientations computed around fiducial points of an image can be accurately
estimated using the proposed architecture.

 7.4. Practical Contributions

6) Implementation of MATLAB simulation framework useful at simulating
spiking neural networks. Individual neurons can use one of the following models:
integrate and fire, integrate and fire with adaptation, integrate and fire with burst,
and resonate and fire. The model uses dynamic synapses.

7) Implementation of tools useful at:

• Generating the network and synapse parameters required for
creating a Liquid State Machine

• Visualizing the structure, connectivity, neural activity and separation
property of a Liquid State Machine

• Visualizing membrane potential traces and spiking traces
• Visualizing the neural activity of large networks as images by time

averaging the spike trains
• Displaying the synchrony between neighboring neurons.

8) Implementation of Parallel MATLAB simulation framework by distributing
the workload on several computers connected by a network.

9) Implementation of parallel GPU CUDA model for Spiking Neural Networks.
The implementation is written in CUDA C and accelerates the model dramatically
making fast simulation and iterative simulation a reality.

10) The BasicObject Class was created. This class allows easy transferring of
objects from host memory to GPU memory. When an object contains internal arrays
or internal sub-objects a transfer cannot be done by directly using the transfer
functions provided by CUDA C. The BasicObject Class contains lists of pointers and
transfer methods necessary for a correct and complete object transfer regardless of
the object structure.

Several improvements were made to the initial GPU simulation framework.

Most significant are the following:

11) Minimizing number of branches. The code was developed such that it

uses as few braches as possible. This prevents the threads from having a divergent
execution path and the hardware from serializing execution.

12) Merging kernels. The reduced number of kernels eliminates the kernel
launch overhead time. This time can add up to a significant percentage out of the
total simulation time and therefore the improvement is significant. Merging the
kernels was possible after rearranging the model such that several synchronization
barriers were eliminated.

13) Using the shared memory for storing the Data Delay Lines. Using of
shared memory was possible after merging all kernels into a single one. The result
is a significantly reduced data access time. This is because shared memory is on

BUPT

 Conclusions and Contributions - 7 110

chip and is as fast as register if a bank conflict does not occur. In addition, the
DataLine objects were organized such that the data access generates as few bank
conflicts as possible.

14) The time required for transferring the simulation results back to the host
was drastically reduced by overlapping computation with data transfer. This is
possible by using the hardware abilities of the GPU which is a stream processor.
Also, a study is made to determine the optimal fraction for segmenting the
computation. This is the fraction at which the time gained from overlapping the data
transfer equals the overhead time cause by the additional kernel launches.

15) An analysis was made which determined that using the Constant
Memory and Texture Memory caches will not improve data access time for the
Spiking Neural simulator. This is because the address access pattern is uniform and
causes a low cache hit rate.

16) A communication interface was build between MATLAB and the compiled
CUDA C GPU model. The interface makes use of the MATLAB MEX files. This
interface is particularly important because it allows the user to manipulate and
visualize GPU simulation results in MATLAB.
 17) A time-multiplexer has designed using I&F, I&FB and R&F spiking
neurons. The multiplexer reduces the dimensionality of the input signal.

 Other Contributions:

18) A study was performed regarding the dynamic behavior of different
biological neurons. In addition, a few spiking neuron models were chosen to be most
appropriate for simulation. It is believed that the chosen models make the best
compromise between model complexity and computational demand.

7.5. Publications List

• R. Mirsu, T. Hentea and D. Gray, “Optimization for Hybrid Vehicles”, Proc. of
the 12th WSEAS International Conference on Computers, Heraklion, Greece,
pp. 135-141, July 2008

• R. Mirsu, V. Tiponut and I. Gavrilut, “Storing Information with Spiking
Neural Networks”, Proc. of the 13th WSEAS International Conference on
Computers, Rhodes, Greece, ISBN: 978-960-474-099-4, ISSN: 1790-5109,
23-25 pp. 318-322, July 2009.

• I. Bogdanov, R. Mirsu and V. Tiponut, “MATLAB Model For Spiking Neural
Networks”, Proc. of the 13th WSEAS International Conference on Systems,
Rhodes, Greece, ISBN: 978-960-474-099-4, ISSN: 1790-5109, 23-25, pp.
533-537, July 2009.

• I. Bogdanov, V. Tiponut and R. Mirsu, “New Achievements in Assisted
Movement of Visually Impaired in Outdoor Environments”, WSEAS
Transactions on Circuits and Systems Volume 8 Issue 9, September 2009.

• R. Mirsu, V. Tiponut, L. Petromanjanc and Z. Haraszy, “Improved p-Delta
Learning Algorithm”, Proc. of the 14th WSEAS International Conference on
Systems, Corfu, Greece, ISBN: 978-960-474-199-1, ISSN: 1792-4235, 22-
24, pp. 282-287, July 2010.

• R. Mirsu and V. Tiponut, “Parallel Model for Spiking Neural Networks using
MATLAB”, 9th International Symposium on Electronics and

BUPT

References 111

Telecommunications (ISETC), Timisoara, Romania, ISBN 978-1-4244-8457-
7, pp 369-373, November 2010

• R. Mirsu, C. Caleanu and V. Tiponut, “GPU Accelerated Model for Liquid
State Machine based on Spiking Neurons”, 17th International Conference on
Soft Computing (MENDEL 2011), Brno, June 2011.

• D. B. Mirsu, G. Prostean and R. Mirsu, “Genetic Optimization for
Transportation Problem”, Proc. of the 15th WSEAS International Conference
on Systems, Corfu, ISBN: 978-1-61804-023-7, ISSN: 1792-4235 Greece,
14-16, pp. 459-462, July 2011.

• R. Mirsu, C. Caleanu and V. Tiponut, “Optimized Model for Spiking Neural
Network using CUDA” – submitted to “Neural Networks”, ISSN 0893-6080
(Elsevier)

• R. Mirsu, V. Tiponut, “Trajectory Analysis using Liquid State Machine” –
unpublished

BUPT

 References 112

REFERENCES

[1]. Maass, W. (1997). "Networks of spiking neurons: the third generation of neural

network models." Neural Networks 10(9): 1659-1671.
[2]. Hodgkin, A. L. and A. F. Huxley (1952). "A quantitative description of

membrane current and its application to conduction and excitation." J. Physiol
117: 500–557.

[3]. Izhikevich, E. M. (2004). "Which model to use for cortical spiking neurons?"
Neural Networks, IEEE Transactions on 15(5): 1063-1070.

[4]. Bi, G. and M. Poo (1998). "Synaptic Modifications in Cultured Hippocampal
Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic
Cell Type." Journal of Neuroscience 18(24): 10464-10472.

[5]. Izhikevich, E. M. (1999). "Weakly Connected Quasi-Periodic Oscillators, FM
Interactions, and Multiplexing in the Brain." SIAM Journal on Applied
Mathematics 59(6): 2193-2223.

[6]. Izhikevich, E. M. (2001). “Resonate and Fire Neurons”. Neural Networks 14
(2001) 883-894.

[7]. Izhikevich, E. M. (2005). "Polychronization: Computation with Spikes." Neural
Computation 18(2): 245-282.

[8]. Abeles, M. (1991). Corticonics: Neural Circuits of the Cerebral Cortex,
Cambridge University Press.

[9]. Abeles, M. (2002). Synfire Chains. The handbook of brain theory and neural
networks, MIT Press.

[10]. Bienenstock, E. (1995). "A model of neocortex." Network: Computation in
Neural Systems 6(2): 179-224.

[11]. Beggs, J. M. and D. Plenz (2003). "Neuronal Avalanches in Neocortical
Circuits." Journal of Neuroscience 23(35): 11167-11177.

[12]. Ikegaya, Y., G. Aaron, et al. (2004). "Synfire Chains and Cortical Songs:
Temporal Modules of Cortical Activity." Science 304(5670): 559-564.

[13]. Csibra, G., G. Davis, et al. (2000). "Gamma Oscillations and Object Processing
in the Infant Brain." Science 290(5496): 1582-1585.

[14]. Engel, A. K., P. Fries, et al. (2001). "Dynamic Predictions: Oscillations and
Synchrony in Top–Down Processing." Nature Reviews Neuroscience 2(10):
704-716.

[15]. Jensen, O., J. Gelfand, et al. (2002). "Oscillations in the Alpha Band (9–12 Hz)
Increase with Memory Load during Retention in a Short-term Memory Task."
Cerebral Cortex 12(8): 877-882.

[16]. Jensen, O., M. A. Idiart, et al. (1996). "Physiologically realistic formation of
autoassociative memory in networks with theta/gamma oscillations: role of
fast NMDA channels." Learn Mem 3(2-3): 243-56.

[17]. H. Jaeger, W. Maass, and J. Principe. Introduction to the special issue on echo
state networks and liquid state machines. Neural Networks, 20(3):287-289,
2007.

[18]. W. Maass, T. Natschlaeger, and H. Markram. Real-time computing without
stable states: A new framework for neural computation based on
perturbations. Neural Computation, 14(11):2531-2560, 2002

BUPT

References 113

[19]. H. Jaeger, The “echo state” approach to analyzing and training recurrent
neural networks. GMD Report 148, German National Research Center for
Information Technology, 2001.

[20]. Yamazaki T., Tanaka S., “The cerebellum as a liquid state machine”, Neural
Networks. 2007 Apr; 20(3):290-7. Epub 2007 Apr 29.

[21]. Lazar A., Pipa G., Triesch J., “Fading Memory and Time Series Prediction in
Recurrent Networks with Different Forms of Plasticity”, Neural Networks 20, 3,
312-322, 2007.

[22]. Joshi P., “From memory-based decisions to decision-based movements: A
model of interval discrimination followed by action selection”, Neural Networks
20 (2007) 298–311.

[23]. R. Legenstein, W. Maass, “Edge of Chaos and Prediction of Computational
Performance for Neural Circuit Models”, Neural Networks, 20(3):323-334,
2007.

[24]. Skowronski M., Harris J., “Noise-Robust Automatic Speech Recognition using a
Predictive Echo State Network”, IEEE Transactions on Audio, Speech and
Language Processing (2007), Volume: 15, Issue: 5, Pages: 1724-1730 `

[25]. Sebastian W., “Computation with Spiking Neurons”, PhD Thesis, University of
Cambridge 2004

[26]. David Verstraeten, Benjamin Schrauwen, Dirk Stroobandt, “Isolated word
recognition using a Liquid State Machine”, In ESANN’05, European Symposium
on Artificial Neural Network

[27]. Tong, M. H., Bickett, A. D., Christiansen, E. M., & Cottrell, G. W. (2007).
Learning grammatical structure with Echo State Networks. Neural Networks,
20, 424–432.

[28]. Yanbo Xue, Le Yang, Simon Haykin, “Decoupled Echo State Networks With
Lateral Inhibition”, IEEE Workshop on Machine Learning for Signal Processing,
2008. MLSP 2008, 444-449

[29]. Ozturk M., Xu D., Principe H., “Analysis and design of echo state networks”,
Journal of Neural Computation, Volume 19 Issue 1, 2007

[30]. Nicolas J Dedual, Mustafa C Ozturk, Justin C Sanchez, Jose C Principe, “An
Associative Memory Readout in ESN for Neural Action Potential Detection”,
2007 International Joint Conference on Neural Networks (2007), 2295-2299.

[31]. Mohammad A. Bhuiyan, Vivek K. Pallipuram, Melissa C. Smith, “Acceleration of
Spiking Neural Networks in Emerging Multi-core and GPU Architectures”, IEEE
International Symposium on Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW), 2010

[32]. Wulfram Gerstner and Werner M. Kistler, “Spiking Neuron Models: Single
Neurons, Populations, Plasticity”, Cambridge University Press, 2002.

[33] L. Pape, de Gruijl J., and M. Wiering, “Democratic liquid state machines for
music classification”, Speech, Audio, Image and Biomedical Signal Processing
using Neural Networks, Bookseries: Studies in Computational Intelligence, 83,
2008.

[34] Wulfram Gerstner, “Coding Properties of Spiking Neurons: reverse and cross-
correlations”, Neural Networks, Vol.14, Lausanne, 2001, pp. 599-610.

[35] Thomas Natschlager, Berthold Ruf, “Spatial and Temporal Pattern Analysis via
Spiking Neurons”, Network: Computer Neural Systems, Vol.9, 1998, pp. 319-
332.

[36] J. Hopfield, “Pattern Recognition Computation using Action Potential Timing for
Stimulus Representation”, NATURE, 376:33-36, 1995.

BUPT

 References 114

[37] Y. Prut, E. Vaadia, H. Bergman, I. Haalman, H. Slovin, M. Abeles.
“Spatiotemporal structure of cortical activity: properties and behavioral
relevance”, Journal of Neurophysiology, 1998, 79:2857-2874.

[38] M. Abeles, H. Bergman, E. Margalit, E. Vaadia. “Spatiotemporal firing patterns
in the frontal cortex of behaving monkeys”, Journal of Neurophysiology, 70(4),
1993, pp. 1629-1638.

[39] Mirsu, R., Tiponut, V., Gavrilut, I. Storing Information with Spiking Neural
Networks, Proc. of the 13th WSEAS International Conference on Computers,
Rhodes, Greece, ISBN: 978-960-474-099-4, ISSN: 1790-5109, 23-25 July
2009, pp. 318-322

[40] Jayavan H. B. Wijekoon, Piotr Dudek, Simple Analogue Circuit of a Cortical
Neuron, 13th IEEE International Conference on Electronics Circuits and
Systems, 2006, pp. 1344-1347.

[41] Fabrice Bernhard, Renaud Keriven, Spiking Neurons on GPU’s, CERTIS-ENPC
Research Report, 2005.

[42] Giacomo Indivieri, Neuromorphic bistable VLSI synapses with spike-timing-
dependent plasticity, Advances in Neural Information Processing Systems,
Vol.15, Cambridge MA, 2002.

[43] Misha Tsodyks, Asher Uziel, and Henry Markram. ”Synchrony generation in
recurrent networks with frequency-dependent synapses” J. Neurosci, 20:50,
2000.

[44] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators” Neural Networks, 2(5):359–366, 1989.

[45] DeLiang Wang, Temporal Pattern Processing, The Handbook of Brain Theory
and Neural Networks, 2nd Edition, MIT Press Cambridge MA, 2003, pp. 1163-
1167.

[46] L. F. Abbott, “Synaptic plastictiy - taming the beast”, Nature Neurosci.,
3:1178-1183, 2000

[47] L. F. Abbott, T. B. Kepler, “Model neurons: from Hodgkin-Huxley to Hopfield”.
In Garrido, L., editor, Statistical Mechanics of Neural Networks. Springer,
Berlin, 1990

[48] Bell, C., Han, V., Sugawara, Y., and Grant, K., “Synaptic plasticity in a
cerebellum-like structure depends on temporal order”, Nature, 387:278-281,
1997

[49] Brunel, N., Chance, F., Fourcaud, N., and Abbott, L. F., “Effects of synaptic
noise and filtering on the frequency response of spiking neurons”, Phys. Rev.
Lett., 86:2186-2189, 2001

[50] Chow, C. C. and Kopell, N., “Dynamics of spiking neurons with electrical
coupling”, Neural Comput., 12:1643-1678, 2000

[51] W. Maass and H. Markram, “On the computational power of recurrent circuits of
spiking neurons”, Journal of Computer and System Sciences. 69(4), 593–616,
2004.

[52] R. Legenstein, D. Pecevski, and W. Maass, “A learning theory for
rewardmodulated spike-timing-dependent plasticity with application to
biofeedback” PLoS Computational Biology. 4(10), 1–27, 2008.

[53] M. Rabinovich, R. Huerta, and G. Laurent, “Transient dynamics for neural
Processing”, Science. 321, 45–50, 2008.

[54] Talia Konkle, Image Segmentation Using Neural Oscillators.
[55] Bogdanov, I., Mirsu, R., Tiponut, V. MATLAB Model For Spiking Neural

Networks, Proc. of the 13th WSEAS International Conference on Systems,

BUPT

References 115

Rhodes, Greece, ISBN: 978-960-474-099-4, ISSN: 1790-5109, 23-25 July
2009, pp. 533-537

[56] Mirsu, R., Tiponut, V. Parallel Model for Spiking Neural Networks using
MATLAB, 2010 9th International Symposium on Electronics and
Telecommunications (ISETC), Timisoara, Romania, ISBN 978-1-4244-8457-7,
page 369

[57] Duane Hanselman, Bruce Littlefield, MATLAB The Language of Technical
Computing, Prentice Hall, 2001.

[58] Burkitt, A. N. and Clark, G. M., “Analysis of integrate-and-fire neurons:
synchronization of synaptic input and spike output”, Neural Comput., 11:871-
901, 1999

[59] Sanders, J., Kandrot, E. CUDA by Example. An Introduction to General-Purpose
GPU Programming. Addison Wesley, Reading, MA, 2010.

[60] NVIDIA CUDATM. NVIDIA CUDA C Programming Guide 3.1.1. 2010.
[61] NVIDIA CUDATM. Parallel NSight 1.51 User Guide 2010.
[62] Kirk, D., Hwu, W. Programming Massively Parallel Processors. Morgan

Kaufmann, Burlington, MA, 2010.
[63] Herlihy, M., Shavit, N. The Art of MultiProcessor Programming. Morgan

Kaufmann, Burlington, MA, 2010.
[64] Mirsu R, Caleanu C., Tiponut V. GPU Accelerated Model for Liquid State Machine

based on Spiking Neurons, 17th International Conference on Soft Computing
(MENDEL 2011), Brno, Czech Republic

[65] Mirsu R., Caleanu C. and Tiponut V., “Optimized Model for Spiking Neural
Network using CUDA”, to be published

[66] Peter Auer, Harald M. Burgsteiner, Wolfgang Maass. The p-Delta Learning Rule
for Parallel Perceptron, 2002.

[67] Wolfgang Maass. Neural Computation with Winner-Take-All as the only
Nonlinear Operation, Advances in Neural Information Processing Systems, vol.
12, MIT Press, Cambridge, 2000, pp. 293-299.

[68] Mirsu, R., Tiponut, V., Petromanjanc, L., Haraszy, Z. Improved p-Delta
Learning Algorithm, Proc. of the 14th WSEAS International Conference on
Systems, Corfu, Greece, ISBN: 978-960-474-199-1, ISSN: 1792-4235, 22-24
July 2010, pp. 282-287

[69] Freund Y., Schapire R. E. Large margin classification using the Perceptron
algorithm. Machine Learning, 37(3), 1999, pp. 277-296.

[70] G.M. Wojcik, W.A. Kaminski, "Liquid State Machine Built of HodgkinHuxley
Neurons and Pattern Recognition," Neurocomputing, vol. 239, pp. 245-251,
2004.

[71] G.M. Wojcik, W.A. Kaminski, "Liquid State Machine and its separation ability as
function of electrical parameters of cell," Neurocomputing, vol. 70, pp. 2593-
2697, 2007.

[72] B.J. Grzyb, E. Chinellato, G.M. Wojcik, W.A. Kaminski, "Which Model to Use for
the Liquid State Machine?", IntI. Joint Conf. on Neural Networks, Atlanta 2009.

[73] T. Natschlger, W. Maass, H. Markram, "The "Liquid Computer": A Novel
Strategy for Real-Time Computing on Time Series," Special Issue on
Foundations ofInformation Processing ofTELEMATIK, vol. 8, 2002, pp. 39-43,
2002.

[74] Bertschinger, N. & Natschläger, T. Real-Time Computation at the Edge of
Chaos in Recurrent Neural Networks, Journal of Neural Computation, vol.
16(7), pp.1413-1436 (2004).

BUPT

 References 116

[75] Bohte, S.M., Kok, J.N. & La Poutré, H. Error-Backpropagation in Temporally
Encoded Networks of Spiking Neurons, Neurocomputing, 2000.

[76] Sander M. Bohte, Joost N. Kok and Han La Poutre, “SpikeProp:
Backpropagation for Networks of Spiking Neurons”

[77] S. McKennoch, D. Liu, and L. G. Bushnell, “Fast Modifications of the SpikeProp
Algorithm”

[78] Fernando, C. & Sojakka, S. Pattern recognition in a bucket: a real liquid brain,
ECAL, 2003.

[79] Goldenholz, D. Liquid Computing: A Real Effect, Technical report, Boston
University Department of Biomedical Engineering, 2002.

[80] S. Haeusler and W. Maass, “A statistical analysis of information processing
properties of lamina-specific cortical microcircuit models”, Cerebral Cortex.
17(1), 149–162, 2007.

[81] R. Legenstein and W. Maass, “What makes a dynamical system computationally
powerful?”, New Directions in Statistical Signal Processing: From Systems to
Brains, pp. 127–154. MIT Press, 2007.

[82] B. Schrauwen, M. D’Haene, D. Verstraeten, and D.Stroobandt, “Compact
hardware liquid state machines on FPGA for real-time speech recognition”,
Neural Networks. 21, 511–523, 2008.

[83] D. Buonomano and W. Maass, “State-dependent computations: Spatiotemporal
processing in cortical networks”, Nature Reviews in Neuroscience. 10 (2), 113–
125, 2009)

[84] B. Jones, D. Stekel, J. Rowe, and C. Fernando, “Is there a liquid state machine
in the bacterium escherichia coli?”, Artificial Life. ALIFE’07, IEEE Symposium,
187–191, 2007.

[85] A. Nugent, “Physical neural network liquid state machine utilizing
nanotechnology.” (US-Patent 7 392 230 32, June 2008).

[86] K. Bush and C. Anderson, “Modeling reward functions for incomplete state
representations via echo state networks”, In Proceedings of the International
Joint Conference on Neural Networks, Montreal, Quebec, 2005.

[87] David Norton, “Improving liquid state machines through iterative refinement of
the reservoir”, Master’s thesis, Brigham Young University, 2008.

[88]. Gabor, D., “Theory of communications”. J. Int. Electr. Eng. 93, 427–457, 1946
[89]. Daugman, J.G.,”Uncertainty relation for resolution in space, spatial frequency

and orientation optimized by 2D visual cortical filters.” J. Opt. Soc. Am. 2 (7),
1160–1169, 1985.

[90]. Liu, C., Wechsler, H., “A Gabor feature classifier for face recognition” In: Proc.
of Eighth IEEE Int. Conf. on Computer Vision 2, July 7–14, pp. 270–275, 2001.

[91] Kamarainen, J., Kyrki, V., Hamouz, 2002. Invariant Gabor features for face
evidence extraction. In: Proceedings of the IAPR Workshop on Machine Vision
Applications. Nara, Japan, pp. 228–231

[92] Ayinde, O., Yang, Y. Face recognition approach based on rank correlation of
Gabor-filtered images. Pattern Recognition 35, 6 (2002), 1275_1289

[93] Kyrki, V., Kamarainen, J., Kalviainen, H., 2001. Content based image matching
using Gabor filtering. In: Proceedings of the Int. Conf. on Advanced Concepts
for Intelligent Vision Systems Theory and Applications. Baden-Baden,
Germany, pp. 45–49.

[94] Kyrki, V., 2002. Local and global feature extraction for invariant object
recognition. Ph.D. thesis. Lappeenranta University of Technology.

[95] Z. Zhang, M. Lyons, M. Schuster, S. Akamatsu, Comparison Between
Geometry-Based and Gabor-Wavelets-Based Facial Expression Recognition

BUPT

References 117

Using Multi-Layer Perceptron, Third IEEE International Conference on
Automatic Face and Gesture Recognition, pp. 454-459, 1998.

[96] C. Caleanu, S. Huang, V. Gui, V. Tiponut, V. Maranescu, “Interest Operator
versus Gabor filtering for facial imagery classification”, Pattern Recognition
Letters 28 (2007) 950–956

[97] Youssef Elmir, Zakaria Elberrichi, Reda Adjoudj, “Liquid State Machine Based
Fingerprint Identification”, Australian Journal of Basic and Applied Sciences,
5(5): 857-865, 2011

[98] Mirsu, R., Tiponut, V. Trajectory Analysis using Liquid State Machine, to be
published

[99] Bogdanov, I., Tiponut, V., Mirsu, R., New Achievements in Assisted Movement
of Visually Impaired in Outdoor Environments, WSEAS Transactions on Circuits
and Systems Volume 8 Issue 9, September 2009.

[100] A. Helal, S, Moore, B. Ramachandran-Drishti, An Integrated Navigation
System for Visually Impaired and Disabled, International Symposium on
Wearable Computers (ISWC), 2001, pp. 149-156.

[101] V. Kulyukin, C. Gharpure, J. Nicholson, S.Pavithran, RFID in Robot Assisted
Indoor Navigation for the Visual Impaired, IEEE/RSJ Intern. Conference on
Intelligent Robots and Systems, Sendai, Japan (IROS), 2004, pp. 353-357.

[102] I. Ulrich, J. Borenstein, The GuideCane – Applying Mobile Robot Technologies
to Assist Visually Impaired, IEEE Transactions on Systems, Man, and
Cybernetics, Part A: Systems and Humans, vol. 31, no. 2, 2001, pp. 131-136.

[103] S. Soval, I. Ulrich, J. Borenstein, Robotics-based Obstacole Avoidance
Systems for Blind and Visually Impaired, IEEE Robotics Magazine, vol. 10, no.
1, 2003, pp. 9-20.

[104] H. Shim, J. Lee, E. Lee, A Study on the Sound-Imaging Algorithm of Obstacles
Information for the Visually Impaired, The 2002 Intern. Conf. on
Circuits/Systems, Computers and Communications (ITC-CSCC), 2002, pp. 29-
31.

[105] Beata J. Grzyb, Eris Chinellato, Grzegorz M. Wojcik, and Wieslaw, ”A.
Kaminski, Facial Expression Recognition based on Liquid State Machines built
of Alternative Neuron Models”, Proceedings of International Joint Conference
on Neural Networks, Atlanta, Georgia, USA, June 14-19, 2009

[106] R. Adolphs, "Neural systems for recognizing emotion," Current Opionion in
Neurobiology, vol. 12, pp. 169-177,2002.

[107] C.J. Harmer, K.V. Thilo, J.C. Rothwell, G.M. Goodwin, "Transcranial magnetic
stimulation of medial-frontal cortex impairs the processing of angry facial
expressions," Nature Neuroscience, volA, pp. 17-18, 2001.

[108] R.J. Blair, J.S. Morris, C.D. Frith, D.l. Perrett, R.J. Dolan, "Dissociable neural
responses to facial expressions of sadness and anger," Brain, vol. 122, pp.
883-893, 1999.

[109] C. Caleanu, “Facial Recognition using Committee of Neural Networks”. In:
Proc. 5th Seminar on Neural Network Applications in electrical engineering,
NEUREL 2000, Belgrade, Yugoslavia, pp. 97–100.

[110] C. Caleanu, ”Face recognition using parallel neural processing and interest
operator method”, Ph.D. thesis. University POLITEHNICA Timisoara, 2001

[111] P. Joshi and W. Maass, “Movement generation with circuits of spiking
neurons”, Neural Computation, 17(8), 1715–1738, 2005.

BUPT

