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Rezumat,  
Teza de doctorat prezinta o abordare noua, concentrata pe metode utile in 
culegerea de date exacte de la senzori. Sunt considerate in mod special metode de 
filtrare a informaţiilor afectate de zgomote sau diverse erori, pentru a obţine date 
fiabile, utilizate în continuare în aplicaţii de supraveghere a traficului. Lucrarea 
demonstrează convingător utilitatea unei astfel de abordări, precum şi încadrarea 
ei în cercetările actuale din acest domeniu. Acest proces se bazeaza pe filtrele de 
particule, metode care sunt fiabile şi care in acelasi timp reprezinta tehnici 
puternice de calcul. Metodele existente, prezentate pe scurt în secţiunea „State of 
the art”, nu iau în considerare posibilitatea de a utiliza metode de tip Filtre de 
Particule Monte Carlo Markov Chains (PF MCMC) bazate pe un model de observatii 
centrat pe acceleratie. În abordarea clasică filtrarea si predictia se fac cu ajutorul 
poziţiei observate. Considerand abordarea MCMC şi un model discret al 
comportamentului soferului, baza pe acceleratie, unui algoritm adaptiv este propus 
şi evaluat prin simulări. Acest algoritm se bazează pe o matrice de tranziţie cu 
cinci stari. În fiecare pas al acestui studiu, deciziile se bazează pe argumente 
teoretice. Algoritmul este validat prin rezultatele relevante obtinute in urma 
simularii. Pentru demonstrarea aplicabilitatii practice in partea finala a tezei, este 
prezentata o variatie a algoritmului propus. Aceasta aplicatie evalueaza acţiunile 
de depăşire, iar performanta este evaluata comparativ din punct de vedere a 
dependabilitatii, cu o alta abodare bazate pe logica fuzzy. Rezultatele prezentate in 
cadrul aceste teze, demonstrează faptul că luând în considerare un model de 
observatie bazat pe acceleraţie, in combinatie cu utilizarea unei metode adaptive 
poate creşte în mod semnificativ de performanţa sistmului de filtrare, in 
comparatie cu abordarile clasice. 
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1 Introduction 

 

1.1 Abstract  

 

This research is focus on methods useful in gathering accurate data from 
wireless sensors with direct application in robust traffic management. Traffic 
surveillance measurements based on wireless sensors can be affected by various 
noises especially on bad weather conditions. They consider especially filtering noisy 
information or error affected information in order to obtain reliable data, further 
used in traffic surveillance applications. This process involves particle filters 
methods, which are reliable and powerfully techniques. Contributions are brought in 
determining the suitable variations of particle filters in combination with a proposed 
model of observations based on drivers’ behavior. Existing methods, briefly 
presented in the state of the art section, don’t take into consideration the possibility 
of using MCMC methods based on an acceleration-driving observation model. In 
classical approach this is done with the aid of observed position. Considering MCMC 
and a discrete model of observation based on acceleration a new approach in the 
field of data filtering is presented in chapter three. 

With the aid of simulations and detailed analysis of its performance, in 
chapter four an adaptive algorithm is proposed and further evaluated via 
simulations. The core of the algorithm is represented by the five states transition 
matrix. Considering an adaptive Markov Chain Monte Carlo algorithm (MCMC) based 
on drivers behavior it has studied the influence of several parameters in order to 
determine the optimum calibrations values for the surveillance system. It was 
determinate also the influence of external conditions, in order to find the best set of 
parameters calibration for applications that needs accurate data from sensors. In 
each step of this research, the decisions are based on theoretical arguments. A 
chapter is dedicated for validation through relevant simulations results. Moreover, a 
practical application for overtaking actions based on the core of proposed algorithm 
is also presented in the thesis. To prove its reliability the algorithm is evaluated via 
simulations. Mathematical tools are used in order to describe the model and also to 
give a proof for convergence of a modified MCMC error correction algorithm, in order 
to underline its’ efficiency. The first step is to describe the mathematical model 
based on existing simulations. Second step is to define the important cases: no 
acceleration (constant move), constant acceleration/deceleration, pseudo-chaotic 
movement. In each of these cases, based on mathematical model, the necessary 
conditions for convergence in case of infinite time are determinate. Based on these 
conditions, a mathematical overview between interdependence of parameters it is 
given. Another step is to determine the moment of time at which the filters is 
reaching a given value, and remains stable, under that value. Given that fact that 
convergence and also settling time is dependent on initial conditions and also on 
sensor error, in the end of the thesis, also some computer simulations are 
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presented. The focus is putted on determining the number of steps necessary in 
order to obtain convergence of filter to a desired value or to a desired distribution. 
In theoretical part and state-of-the-art chapters, some details about convergence of 
optimal filter and also about integrating observation model into particle filter 
algorithms are presented.  

Conclusions and future development possibilities are presented at the end of 
the thesis. The results of this work prove that considering a driving model based on 
acceleration and using an adaptive method can increase significantly the 
performance of classical methods. Several further improvements of the proposed 
algorithm, considering the specific context of distributed systems for traffic 
management, are underlined at the end of this thesis.  

 

1.2 Motivation 

 

The justification for choosing this research theme is complex. The subject of 
data filtering and accurate information gathering is known in literature for several 
years. Using sensors for traffic surveillance application faces some safety critical 
aspects as real-time constraints and a very good accuracy of provided data. Because 
accuracy is associated with the concepts of bias or systematic error in 
measurement, it is influenced by the procedure of taking measurements or by the 
instrument of measure itself. An important aspect is the determination of possible 
factors that influence the error propagation. Although several viable solutions were 
proposed so far, none of them combines all criteria for accurate traffic surveillance 
and driving assistance systems. Many of existing algorithms fulfill real-time 
requirements or high accuracy, but all this with the cost of computation effort.  

Error can affect the process of data gathering in many ways and due to many 
reasons: sensibility of sensors, visibility area and wrong system calibration, bad 
conversion. Although not for all science fields and error close to zero is extremely 
relevant, for automotive industry this could become crucial. In case of driving 
assistance applications and devices for overtaking, errors correction is crucial. 
Wrong input in this type of systems can lead to catastrophic result.  

  Although the automotive industry is in a continuous and rapid development, 
road accidents are still a major problem without a viable solution. On average, each 
minute a person dies in a traffic accident. In addition, based on statistics supplied 
by the Organization for Economic Cooperation and Development Paris, hospital bills, 
damage to the estate, and other costs can reach up to 1.3 percent of gross domestic 
product of mankind. Given only the United States, the total annual amount rises to 
about 200 billion U.S. $. And, very important, the losses that matter most are not 
captured by these statistics, and cannot be monetized.  

Another important factor was that the subject is an interdisciplinary one, 
combining majority computer science and information technology with 
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transportation, mathematics and physics. Given the fact that these areas are 
dynamic, numerous opportunities are offered among with a wide horizon for 
improvement of specific known methods.  

The need for mobility and speed specific XXI century led to the development 
of transport and the occurrence of certain specific problems. Among these, the most 
stringent are security of traffic participants, congestions and those related to 
environmental awareness.  

In general, congestion occurs at certain times, regarded as the peak hours 
when a large number of participants use the same segment of road or are heading 
for the same destination. This is due to the fact that a specific segment of road 
infrastructure does not support a large volume of participants in traffic 
simultaneously. Other causes developing congestions are being described in [1]: 
charge entry tools or exit from certain segments of the road on which a fee, a low 
capacity road segment to manage a large volume of vehicles insufficient capacity for 
public transport. In those cases, I would add the following: adverse weather 
conditions, leading to lower velocity and thus a slower emptying of the segment, 
reparation work on certain road segments, leading to narrowing or blocking of 
certain sections, the appearance of a unforeseen event (such as, for example an 
accident).  

Traffic issues are without borders, affecting most states. The results from 
research on causes and effects of road congestion, both in terms of road 
infrastructure, economic and environmental aspects, may be consulted in 
documents made public by the House of Commons of Great Britain [2]. Although 
figures are not the latest, document dating from 1998, can still illustrate the costs 
and the urgent need to solve the problem.  

Primary solutions described in [1], underline the following actions: building 
more roads, more efficient tools for tax, gradually building access ramps to the 
highway, building intelligent systems for traffic management, construction of lanes 
with a high occupancy, reaction rate increased in case of accidents or traffic 
incidents, consideration of new areas and increase the density occupancy 
corresponding segments of the road, offering a regional transport authority growing 
departments. Since most solutions proposed in that article primary target area and 
the economic and political carrier, I will continue to focus on the solution that 
directly impact the field of computer engineering, namely the description of 
intelligent systems for managing traffic, as the proposed thesis has as targets 
improvements in this field.  

The aim of the research project is to use an optimal architecture based on 
wireless sensor systems combined with appropriate algorithms to detect abnormal 
situations of the road (congestion, dangerous situations resulting from an 
overtaking maneuvers and lane changing).The immediate results are represented by 
streamlining the movement and ensure greater safety for participants. In order to 
determine an optimal algorithm for sensor network, the research was focus on 
conducting numerous experiments based on simulations, and on determining a 
suitable model describing observations.  
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1.3 Context  

Traffic issues are very urgent, as demonstrated by numerous scientific articles 
published in the field of transport, and beyond, as well as by achievements of the 
industry. The automotive industry and the big machine-building concerns, have 
translated into practice scientific research, by many achievements that have led to 
the facilitation and streamlining traffic, increase safety of participants, and not the 
least, which had a favorable impact on the environment.  

Further I will briefly present some of these achievements. First I will describe 
the existing solutions on the market and which have proven to be effective. By 
reserving certain frequencies and with contributions from traffic participants useful 
information is transmitted. This is one of the most commonly used methods to 
inform road users about possible incidents that occurred, or about the weather 
condition. From time to time it is possible to recall information or updates of earlier 
status in order to draw attention to an event or emerging conditions. Another 
possible form of informing traffic participants is by implementation of message-
based technique. The disadvantage of these methods presented above is 
represented by the fact that only in case that one incident or a situation has already 
created, the information is passed on, but without any intention in anticipating the 
situation. 

Aiming to streamline traffic, reduce time spent in traffic, but also with a 
declared intention to go green, one of the largest car manufacturers, Audi, 
implemented at Ingolstadt, a system called Travolution. The system is capable of 
communicate to drivers the speed with which they have to move so that at the next 
intersection to catch the green lights, and thereby to reduce time spent in traffic 
and also to avoid traffic jams. Unfortunately, this system isn’t spread on an 
industrial scale. It is available only for a few pieces of A5 and A6 models of the 
manufacturer and it cannot be used in other locations outside the city of Ingolstadt. 
The role of this project was to reduce time spent in traffic, fuel consumption and to 
avoid frustrating operation of stopping at traffic lights. The immediate results could 
be seen in traffic flow and CO2 emission optimization. The system relies on 
communications modules integrated into each traffic light, which are able to send 
messages to cars in their vicinity, alerting them of the time remaining until the next 
green phase. 

Another way to inform the participants in traffic, Suna, produced and 
marketed particularly in Australia. Suna GPS Traffic Updates provide real-time traffic 
information directly to the navigation system. Also, this system is compatible with 
all industry-leading GPS brands. The system was designed, in real time to determine 
road conditions and navigation system to inform any potential problems in 
perspective, and to recommend routes that would reduce congestion. Unfortunately, 
also this system has a limited scope, is currently available only in some city of 
Australia. Suna GPS Traffic is continuously updated, based on monitoring traffic and 
road conditions, and it is bringing detailed information on incidents, traffic 
congestion throughout the metropolitan area or areas that could affect the trip. The 
system is based on a combination of sensors and video cameras to continuously 
monitor the levels of congestion in an area of thousands of kilometers of arterial 
roads, agencies national, and highways. In addition, warnings about major incidents 
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(such as accidents), major road work, severe weather conditions in terms of road 
and special events which may impact traffic are sent periodically. The system also is 
able to estimate the possible delays, and in this case to calculate and recommend 
an auxiliary route.  

There are two basic types of traffic surveillance systems: on side of the road 
and placed on vehicles. Among the most popular road located are represented by 
magnetic loops, laser detectors and video cameras. A detector based on a magnetic 
loop is represented by a wire buried in the road surface and fed by a DC. If a vehicle 
passes over these devices, it induces an increase of current through the loop. These 
changes in intensity can be measured and taken into account to obtain information 
about traffic flow density. Laser detectors do not require installation in asphalt, and 
therefore they can successfully replace loop detectors based on magnetic and also 
classic video surveillance devices, especially at night or in areas with low visibility. 
The conventional video surveillance devices require good visibility. In dense fog, 
snow, rain, smoke or dust particles in the air at times of low natural light, these 
methods may be inadequate. However, it is precisely these low visibility conditions 
is a greater need for trust in traffic monitoring. Under these conditions most likely 
candidate is based on infrared and radar detector which has numerous advantages 
especially in darkness and fog. However, the above devices do not fall into the 
category of low-cost device. The categories of devices that are not located in road 
infrastructure have to do with the vehicle mount surveillance. These systems involve 
probe vehicles equipped with tracking devices, such as transponders, which will 
allow vehicles to be tracked by central computer facilities. Due to various factors 
such as cost, environment, infrastructure design and site monitoring devices 
regularly transmit the data which are accompanied by noise and may also be 
corrupted or unreliable. 

Driving assistance systems are intelligent systems that provide driver 
support in tasks of driving a vehicle. Assistance in driving must be performed by 
robust systems, as they are incorporated and used in cars that are driven on public 
roads. By design, the roads have a high contrast predictable scheme and are 
governed by simple rules. Also, driving assistance systems must be driven and 
operated in all road conditions. These support systems can be adapted to solve well 
defined tasks that seek to help, and not to replace a driver. Whether it's co-pilot of a 
human or an automated system, it requires knowledge of: speed, acceleration, 
direction, position on the road, driving direction, location of vehicles and potential 
obstacles, a priori model vehicle dynamics, even the knowledge of the vehicle driver 
behavior. Assistant in leadership also must be able to deliberate on possible actions 
based on prior knowledge and possible consequences over time or through 
communication with the driver or even the secondary control over the vehicle.  
Taking into account the importance of having that support system, the role fulfilled 
and provided by real-time human-machine interface must be very carefully chosen. 
It must inform the driver in friendly manner and at the right time of the decision 
reached. On the other hand, it must not mislead or disturb the driver when giving 
an answer.  

Nowadays driving assistance systems are not yet able to anticipate and 
prevent traffic anomalies in real time. Currently as pre-crash systems are operating 
safety measures approximately, at the best choice, 1-2s before a possible crash. 
Also this situation stays the same in case of forecasting a possible traffic jam. 
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Tracking and determining the correct position of a car has become an 
important issue for a robust traffic management. Therefore, many intelligent 
surveillance transport systems have been developed in recent years. An important 
aspect of this work is to obtain accurate results by using sensors and low-cost 
devices which are sending only a few frames per minute, and thus, by having 
information incomplete or affected by error, at hand. These systems usually require 
precise information on the current traffic situation. Some systems extract data and 
estimate traffic flow based on information from the sensors in a well-defined 
neighborhood. In order to filter noises and distortions from these measurements, 
and to use them for calculating in optimal conditions, a possible solution is to use 
appropriate stochastic filter type methods. 

The traffic monitoring devices are incorporated in intelligent transport 
systems. The usefulness of these systems can be seen primarily related to economic 
and social problems of transport in most industrialized countries. Their crucial role is 
incident detection, traffic management, and collection of time travel. More 
specifically they can improve traffic management in congested networks. This 
requires a clear understanding of civil and traffic flow and also congestion avoiding 
methods on road segments. Other problems are to determine the time and location 
where a traffic jam or congestion happened and to follow how this can be 
propagated inside the transportation network. To this end, traffic status research 
and a set of parameters is required. In most cases of determining the state of 
traffic, such as density, requires some computation, as usually this information are 
not available directly from measurements at any point of the road network. 

In this sense, filtering and predictive algorithms can become a powerful tool. 
If we consider the price perspective, sensors can have a low density, and base on 
this scenery information on large sectors of roads can be missing. In this case we 
need to estimate the information based on poor information received a priori. 
Particle Filters represent a set of flexible and powerful sequential Monte Carlo 
methods designed to solve the optimal filtering problem numerically, as they 
encapsulate the dynamics of the model and the observations [3]. Defining and 
estimating traffic parameters such as position of a car in a realistic mode, assumes 
state-space models which include elements of nonlinearity and non-Gaussianity. 
Also drawing samples of a moving car and filtering information will transform a 
continuous model into a discrete model, with possibility to introduce approximation 
errors.  

 

1.4 Problem description - Scope 

Traffic surveillance systems based on wireless sensor networks face some 
important requirements. A major aspect is represented by low-power need, as 
power consumption is a major design constraint in embedded systems. Indeed, high 
power consumption reduces the operation time in battery or solar-powered 
environments. Other important aspects regard heat dissipation, low computational 
resources or node reliability. Considering the real-time aspect when video sensors 
are involved, the network bandwidth and computational capabilities are critical. 
Nevertheless communication and distribution of information plays an important role, 
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and in general these devices are part of a massively distributed system. Regarding 
this aspect, information extractions algorithms and data aggregation are highly 
required. Moreover, in critical applications as traffic surveillance and management, 
the data accuracy is a significant parameter.  

Sensing data with nowadays devices is prone to error. In case of video sensors 
these errors result from sensor sensitivity and resolution, lens quality or shooter 
speed. There are also external factors that have major influences like various 
environment condition: fog, rain, snow, light or dust. 

Safety critical applications, as traffic surveillance systems [4], require a higher 
degree of data accuracy than regular or statistical gathering of sensory data. Due to 
the fact that information can be alliterated in many ways or can be taken in 
unfavorable conditions, filtering is required. Two directions for this topic are possible 
as hardware and software error filtering. Hardware filtering can introduce some 
latency in data gathering and also in power consumption strategy, while software 
information filtering can be performed in a central node, with a higher 
computational capability. Also, using software filters and depending on the type of 
system implemented, one can implement a centralized or a distributed filtering of 
data, with corresponding benefits. 

Particle filter algorithms can draw samples from practically any given 
distributions. Thus, this family of algorithms is one of the most popular methods of 
data filtering. Several classical particle filter algorithm variations were developed 
and successfully used in error correction applications. In this research thesis a brief 
overview of two main variations as Sequential Importance Sampling (SIS) and 
Sequential Importance Resampling (SIR) is provided. Contribution is brought 
through the lens of considering driver’s behavior as model observation, a significant 
part of the algorithm. 

The proposed algorithm and model assumes estimation of a continuous 
movement, transformation to a finite discrete state-space, and backwards to 
continuous, all in presence of noise affected observation. Based on these 
assumptions the filter is constrained to perform well in presence of three possible 
sources of errors: sensor error, discrete time sampling and acceleration adaptation. 
Another aspect which was considered as a pro for an adaptive implementation was 
the so called curse of dimensionality, as the rate of convergence of the 
approximation error decreases as the state dimension increases [3].   

  Contributions are brought in implementation of a multi-scale adaptive 
algorithm based on Monte Carlo Markov Chain, which incorporates a longitudinal 
model of observation, more exactly, intelligent driving model (IDM). Adaptability of 
algorithm consists in two orthogonal aspects: first of them is represented by the 
number of particles. These are determinate via calibrations, a minimum number of 
particles necessary for the convergence of filter it is set in initial phase of algorithm, 
and also the convenient threshold for filter error. Depending on these aspects more 
particles can be introduced for a better approximation in case of low performance of 
filter, and in case of reaching maximum number of particle, resampling is performed 
for particles with small weight. By these values it is easy to determine the rapport 
between computational effort and accuracy. The second aspect refers to adaptability 
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of acceleration value. For this it was considered integrating in observation model a 
microscopic model, IDM. The acceleration value was adapted in order to better 
reflect reality. In this way continuous values were taken into discrete space, used 
for state space in order to reduce computational effort and after that were taken 
back to a continuous variation. In initial stages of the implementation of the 
algorithm, fix values for acceleration corresponding to each state were considered, 
but these lead to a non-optimum performance of the filter, as on border values 
between states, deviations from real values were introduced. By integrating IDM 
into observation model, each particle could ‘follow’ observation, by adapting the 
acceleration value. Considering the fact that each particle had the target to predict 
as good as possible the position of observation, and based on weight values a 
mediation it’s done, it is obtained a good performance of the filter. 

 

1.5 Structure 

In the first chapter entitled “Introduction” a short overview on thesis is 
given. Shortly, in the abstract subchapter the thesis theme is reveal. Further are 
described the context of the thesis, a short motivation on choosing this particular 
subject and also a detailed overview on the purpose.  

Second chapter presents the state of the art in the related field of data 
filtering and also of PF. Some considerations on theoretical aspects of PF are also 
presented in this second chapter as bases for further argumentation. 

The third chapter presents the proposed approach which encapsulates both 
MCMC PF methods and also observation model based on driving behavior. A detailed 
description of the problem is presented in this core chapter.  

Based on the results obtain via simulations on the proposed algorithm, a 
stringent need of improvement appeared. This was due to the fact that acceleration 
interpretation of the value from PDM, always returned a constant value, and did not 
suffer on any variation. An adaptive approach is introduced in the fourth chapter. 
This implementation has two orthogonal directions. One is concerning directly the 
resource and performance of the algorithms, and the other is related to introduction 
of variable values for acceleration. For a better understanding some theoretical 
considerations are presented in the beginning of the chapter.  

The validation of the proposed algorithms is done via simulation. In this 
sense traffic simulator, has implemented in Java. Due to the fact that it was desired 
to determine the performance of proposed algorithm in observing and tracking one 
single and in any condition of driving (ideal case of continuous movement, or 
continuous variation of acceleration, and also in the least probable case of pseudo-
chaotic movement) it was decide to implement this traffic simulator and not the 
adopt and adapt and existing one. In this case it could be easily adapt which kind of 
input can be given to the algorithm, from ideal input, to pseudo-random values and 
also real live measurements. Experiments and practical applications are being 
described in chapter five, respectively six.  
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The thesis ended by the “Conclusions” chapter.  Here are presented some 
concluding remarks, contributions and future development is presented at the end 
of the thesis. At the end of the chapter are presented the list of publications which 
were used for disseminating the results so far. Also this thesis is supported by two 
scientific reports presented in department of Computer Science in the last two 
years, and is accordingly to the proposal made at the end of first research year. 

 

Conclusions 

 

In this chapter a short description over the thesis content, motivation, and also 
objective is described. The research is focus on data filtering and accurate 
information gathering. The usability of this research it is proved by the constant 
concern of automotive industry in developing safe systems, user and environment 
oriented. Error can affect the process of data gathering in many ways. It can affect 
frequently information coming from wireless sensors, due to many reasons: 
sensibility of sensors, visibility area and wrong system calibration, or bad 
conversion. 

Figure 1.1 depicts various error sources when gathering information from a 
real-time wireless sensor distributed system. 

 

 

 

 

 

 

 

 

 

Figure 1.1 Possible error sources in wireless sensors networks 
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2 State of the art. Theoretical considerations  

 

Algorithms for traffic surveillance represent an important part of all Intelligent 
Transportation Systems. Their main purpose is to assure a high degree in accuracy 
of data in order to increase the safety on roads. Classical surveillance equipments 
such as magnetic devices or video cameras proved to be non-optimal solutions as 
they bring lots of constraints such as implant in road infrastructure, weather and 
atmospheric conditions, orientation and nevertheless, costs. In order to assure a 
better reaction and real-time responses most surveillance systems are specialized 
on a particular capability (e.g. flow speed monitoring). Wireless sensor networks 
represent a strong alternative to classical traffic surveillance. This is given by their 
flexibility, easy deployment, support for remote control and overall, low costs.  

In addition to video sensor networks, magnetic wireless sensors represent a 
particular promising approach. Depending on the strategy used for data gathering, 
the accuracy of such equipment is between 80% and 98% [5]. Also acoustic sensors 
where proposed in order to develop a low cost solution. Here the constraints derive 
from the background noise and also from power of processor and energy 
consumption [6].   

A serious impediment in traffic flow surveillance is represented by acquisition 
errors due a variety of reasons. This includes sensors errors, hard weather 
conditions, nodes hardware failures or network transmission errors.  Over the last 
years prediction algorithms turned to be one of the most powerful tools used to 
overcome these problems. Several classes of algorithms were studied, such as 
neuronal networks, fuzzy logic, or a large family of Bayesian based prediction 
methods. The work in this thesis is focused on Monte Carlo Markov Chain Particle 
Filter. Particle Filters (PF) are used for estimating the state of a dynamical system 
from sensor measurements as they generally consist on a predict/update cycle. PF 
are trying to determine the belief about the current state, based on the probability 
of all observed data until current moment. As inputs they have the observations, the 
perceptual model, which is the probability that a particular given observation is in a 
defined state at time t, and the action model, which is the probability that system 
will end up in state xt at time t, assuming that it started in state xt-1 at time t-1, and 
also received as input observations from t-1 [7]. 

Using sensors for traffic surveillance application faces some safety critical 
aspects as real-time constraints and a very good accuracy of provided data. Because 
accuracy is associated with the concepts of bias or systematic error in 
measurement, it is influenced by the procedure of taking measurements or by the 
instrument of measure itself. An important aspect is the determination of possible 
factors that influence the error propagation. These errors can differ widely in terms 
of severity, frequency of occurrence and statistical properties [8]. As presented, 
data coming from wireless sensor could be affected by errors in many ways. First, 
we investigate the hardware performance limitations. Usually the precision of a 
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device is provided on its technical specifications and usually it doesn’t cause errors 
higher by 2-3%. Referring to the real-time aspect of the application some other 
issues are becoming critical. The first of them is the number of samplings taken on a 
time unit. The second is the way to mix these samples. In many real time 
applications involving particle filters for error correction, sensor information arrives 
at a significantly higher rate than the update rate of the filter. A common approach 
to dealing with such situations is to update the particle filter as often as possible and 
to discard sensor information that cannot be processed in time. 

In [9] the authors introduce a method in which posterior probability density 
function is represented as mixtures of sample sets, where each mixture component 
integrates one observation arriving during a filter update. The weights of the 
mixture components are set in order to minimize the approximation error introduced 
by this representation. This is done with the aid of a real time particle filter, a 
method where all sensor measurements are considered by distributing the samples 
among the observations within an update window. Another aspect that can interfere 
in data accuracy is the process of data collection and transmission over the network. 
Subject to error are conversions of raw data and resolution changes as well as 
distributing information using multiple hops, as noise may interfere. In distributed 
systems, error correction can be done in two ways, by having a central node or 
without any central collection point. Scalable and robust distributed particle filter for 
dynamic environments proves to be a reliable solution only in the second case. For 
these cases, selective communication schemes enable individual platforms to 
communicate the most informative piece of information to the others [10].  

In [11] the author describes two methodologies for performing distributed 
particle filtering in a sensor network. The first algorithm relies on likelihood factors 
and the second algorithm adds a predictive scalar quantized training step into a 
more standard particle-filtering framework allowing adaptive encoding of 
measurements. The initial assumption is that a Markovian state-space model can 
capture the monitored environment. It involves potentially nonlinear dynamics, 
observations, and observation noises. This will help in factorizing the likelihood, and 
forming parametric approximations to products of likelihood factors by using the 
particles and their associated likelihoods as training data. The model parameters are 
then exchanged between sensor nodes, instead of the data or exact particle 
information. This assumption determines also a limitation of this method. The 
second distributed algorithm is more computational excessive and it uses an 
adaptive data-encoding approach. It involves training of predictive linear quantizes 
at every time-step based on a common particle filter maintained on all nodes. Then, 
sensor nodes transmit the quantized data to one another. By these considerations 
there are no restrictions on the nature of the likelihood function. In case of 
distributed systems, a challenge is represented by overhead in communication.  

In reference [11] is proposed a distributed particle filter implementation in 
which parallel particle filters run at multiple nodes. These shared filters are used to 
quantize vectors of measurements. The information obtained from particle filter is 
then encoded using Huffman and placed on in tree structure. Then it is introduced a 
vector scheme that reduces the fraction of communication energy wasted through 
transmitting packet headers. At starting point the particles are blindly propagated. 
The success of the scheme is guaranteed by the fact that the sets of particles are 
identical, condition achieved by initializing the filters with the same seed and 

BUPT



2 - State of the art. Theoretical considerations     19 

ensuring that they all propagate based on the same distributed quantized 
measurements. The cost of the transmission directly depends on the good 
representation of the state by propagated particles. It is proved that in case of a 
good representation the measurement should lay in a densely populated bin and the 
codeword will consist of very few bits. The algorithm is highly computational and the 
price is reduced only in a few cases. This approach is not suitable if data 
measurements are not reliable. However, due to the fact that sensors convert 
physical quantities from the real world into a machine-readable digital 
representation, possible errors from conversion algorithms or resolution adaptation 
may appear. 

Traditional methods for reliability usually introduce over-heads at different levels 
and also in terms of real-time processing. In [8] a new approach is presented. It 
relies on creating predictive models based on the temporal correlation in the data, 
handling multiple sources and using them for real-time error correction. 

 Considering these last presented aspects we can refer to some important issues 
of design factors in wireless sensor applications. First of them is fault tolerance. 
Indeed, in case of some nodes failures due to lack of power or physical damage or in 
case of communication problems due to environmental inferences, it should not 
affect the overall task of sensor networks. This aspect may depend also on the 
scalability of the network.   

To deal with the error aspect two important modes of error control were 
proposed. These are forward error correction (FEC) and automatic repeat request 
(ARR). The first solution has problems in terms of decoding complexity, and thus 
simple error control code might present a better solution. The last one is limited by 
the power consumption scheme. Usually, in solving link reliability of massively 
wireless distributed systems, the FEC is considered. 

Some solutions were also provided in the field of on-line fault detection for 
sensor networks. In [12] a generic approach with a flexible trade-off between 
accuracy and latency for identifying the sensors that have the highest probability to 
be faulty is presented. It is based on taxonomy for classification of faults in sensor 
networks on-line model-based testing technique. 

In terms of deployment and operation of a wireless system network 
responsible for traffic management, the challenges are even harder. Small video 
camera may not provide relevant information on bad weather conditions or in case 
of dust or smoke. In case of random deployment the system can face lack of 
sensors in possible key points. Possible alterations of information can also appear 
due to noise or low resolution in sensing. When information suffers distortions and 
error steps are over an acceptable range, error correction algorithms are required. 
There are two fundamental challenges in the event detection problem for a sensor 
network. First, the detection accuracy is limited by the amount of noise associated 
with the measurement and the reliability of sensor nodes. Second, collecting up to 
date data to a central point is hard to be achieved. Therefore, to get optimal 
detection accuracy, it is essential to consider both factors during detection. It is also 
necessary to limit the effects of inaccurate measurement or faulty behavior of 
individual components to a minimum. However, the basic idea of distributed 
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detection is to have each of the independent sensors involve in taking a local 
decision and then combine these decisions at a fusion sensor to generate a global 
decision. 

If we consider correct information coming from sensing data, a solution is 
presented in [13]. It provides a designing method for an efficient real-time 
application of dynamic probabilistic models to streaming data. To achieve that, 
authors use an abstraction of a user declaratively model. The output of the models 
is presented to the user as a probabilistic database view. This is done by the aid of a 
particle filter, by the model-based view through queries over particle tables. 

 

2.1 Particle filter through mathematical glance   

Traffic surveillance is a complex task because of non-linearity of the flow of 
vehicles and the many interactions between them and also the computational 
complexity and the need for real-time response.  Many video surveillance methods 
based on predictive techniques used to estimate an unknown state dynamic and 
usually come from a collection of observations and sequential non-linear, affected 
by noise.  Stochastic approaches often reduced to an estimation problem, an 
estimate of the state for a period of a series of state-space model.  Most 
investigative techniques for non-linear / non-Gaussian models are based on Monte 
Carlo method, and are known as particulate filters.  

  The term particle probability density designate applicable to any type of 
space and state and thus represents a generalization of the traditional Kalman filter. 
An important step in dynamic Bayesian approaches is estimated to construct the 
probability density function PDF posterior [14]. To analyze and make inference of a 
dynamic system at least two models are necessary.  First, a model that describes 
the evolution of states over time (system model) and secondly, a model with the 
accompanying noise measurements (measurement model).The filter has essentially 
two stages.  These are the prediction and update.  Phase prediction and system 
model used earlier to determine the new PDF value and transmit states at a time to 
another.  Because the condition is usually influenced and disturbed by random 
noise, the impact is reflected in the general deformation and distortion of probability 
density function from the previous form. Update operation uses the latest 
measurement to modify the prediction function (PDF) [14].   

Indeed, a particle filter is a technique for implementing recursive Bayesian 
filters by Monte Carlo method of sampling. As described by Mihaylova in [15], the 
flow of traffic on the highway is represented by a multi-particle model with non-
linear character.  This includes also complex interactions between vehicles, such as 
traffic jams, waves of start-stop and more.  More filter configurations can be used to 
process information from sensors in an operation to estimate the traffic flow.  Most 
common approaches and methods are based on stochastic filtering. In [16]is 

presented a comparison between Kalman filter and unscented Kalman filter for state 
estimation and different parameters for different detector configurations.
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Own position estimation of a moving entity is another application of the filter 

particles.  This is a filtering problem rather than a static estimation problem, when 
an inertial navigation system is used to provide measurements on a moving body.  
Another problem is shipping, where, in addition to such position, speed, altitude and 
direction, and angular acceleration are included in the problem subject to filtration.  
Tracking a target, where the position of another object is estimated based on 
measurements of relative position and status, is presented in [17]. 

For a small number of observations, the problem of tracking a target, 
improved particle filter was proposed using a modified algorithm LS-N-IPS (Local 
Particle Sampling System interacting N-N-IPS) [18]. This is done using a non-trivial 
operator local search, with the aim to improve the prediction. At each step, the 
predictions were refined in a local search procedure using the latest observed data. 
This would be best if they operate a small number of particles.  

Another approach, which has some similarities with the algorithm presented 
in this paper, is proposed in [19]. Here, the authors used a hybrid Monte Carlo filter 
for analysis using the posterior distribution of an application for tracking people. 
Rather than assigning a weight to each particle based on the similarity of risk 
function, each particle produced a Markov chain to sample posterior distribution 
using the gradient estimates.  

Extended Kalman filter (EKF) [20] is another common method of tracking 
video-based applications. Disadvantages of this method refer to the algorithm 
complexity, which increases with the number of measurements. Also, they are 
considered very sensitive to noise parameters. Therefore, this method expects a 
reasonable estimate of initial state variables. In contrast, the filter particles can 
start from a uniform distribution, but poor performance, on the size of the state 
vector.  

If the initial specified conditions are implemented correctly by the previous 
distribution, fast convergence can be guaranteed when using a particle filtering 
approach. A hybrid solution was proposed in [21] to improve convergence of particle 
filters. This approach generates a first phase particles in the same way as the 
conventional case. Then try to move closer to the previous value of particle 
distribution generated by a step EKF. This strategy was successfully applied in 
training neural networks, but the disadvantage is that it must comply with the 
Kalman filter on the noise distribution. In a recently proposed algorithm based 
search method on the average shift in a particle filter and a target representation, 
which uses multiple semi-overlapping color histogram was proposed in [22]. 

A combination of Monte Carlo filter and Markov chains is presented in the 
literature as MCMC (Markov Chain Monte Carlo) [23]. Originally a first state x0 is 
taken in accordance with a proposed density, which can be Gaussian, where the 
covariance is also calculated Monte Carlo samples to the last step. Subsequent state 
vectors are then taken by the step function status. MCMC methods allow estimation 
of probability distributions using large samples of some standard considered. By 
using this method may be used to calculate the average of these samples more 
quantities of interest. These samples can also be used to calculate statistical 
estimates, such as regions with high probability, or the differences are highlighted. 
This method is a powerful algorithm with importance sampling and benefits in 
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reducing problems associated with sequential Monte Carlo filters. For some models, 
however, MCMC method may not be optimal, because a large number of iterations 
would be needed to achieve the desired density distribution [24]. 

In case of using mathematical prediction and correction tools, these are 
based on Bayesian algorithms structure. The advantage is that they use previous 
states of the system (from previous observations), and phase prediction is corrected 
by observations of the current step. Studies in the field, have shown that Kalman 
filters are not the most appropriate tools in the industry because not only suitable 
for models with linear distribution.  

Improving this is achieved by particle filters, algorithms able to respond to 
system performance with almost any type of distribution. Also another strong point 
of these algorithms is that in addition may have predictive ability and capacity 
correction comments, comments which often contain useful information in addition 
to noise. In the field of particle filters applied in traffic management have been 
important research conducted by Mila MIHAYLOVA (et all), especially to improve the 
filter (Unscented filters, operations with intervals), attempts to implement 
distributed filters to reduce overhead communication (M. Coates) implementation of 
probabilistic tools for traffic management sites (is theme proposed for research by 
T. Singliar), the implementation of particle filters and other methods Bayesian able 
to operate in real time. 

In many applications based on particle filters that require real-time 
execution information from the sensors reach a significantly higher rate than the 
discount rate of the filter. Most common approach in these situations is to update 
the particle filter as often as possible and giving up that information coming from 
the sensor, which cannot be processed in time. Another possibility is to mix the 
sample sets for a single value PF filter sent back when the upgrade information. 
[26] Components weights mixes are set so as to minimize the error introduced by 
this representation. This is done with RTPF (Real Time Particle Filter) [26], a method 
where all measurements are taken into account from the distribution of samples 
among sensor observations in a window update. 

Models for predicting the behavior of a complex object is based on 
knowledge accumulated over time and used to store information about 
relevant changes or can change their parameters in the future. This information 
is usually represented as a set of data and must be collected in a long 
term observation in a complex dynamic system. 

Particle filter algorithms rely on recursive Bayesian approach and a 
probabilistic state-space formulation, which attempts to construct the posterior 
probability density function of the state based on all state and observation 
information available. Their advantage consists in ability to approximate non-linear 
and non-Gaussian process, and approximate a continuous density as a discrete one, 
by representing the required probability density function by a set of weighted 
particles and using them to estimate the state. [15] 

Another important aspect for Particle Filter algorithms is represented by the 
state estimation especially in high-dimensional systems. In order to perform well in 
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these conditions and to converge to a desire distribution, it requires that the particle 
number to increase exponentially. As mentioned in [28] quality and efficiency of 
particles can be improved by two methodologies: “bottom-up” and “top-down”. Re-
weighting, re-sampling, the kernel based particle filter, the hybrid particle filter and 
mean-shift tracker, and the annealed particle filter are stated by [28] to be part of 
the bottom-up methods control the particle quality via direct particle modifications. 
On the other hand, the top-down methods are described to be focus on the system 
model which describes the prior distribution and the observation model, the 
likelihood of Particle Filter algorithms, in order to better describe the problem.  

It is well known, that in order to perform well for a given application Particle 
filters and all Monte Carlo methods need to encapsulate a model of observation. This 
methods relay on probabilistic Bayesian filters. The principle of those filters is 
determinate by the Bayes’ theorem, which states how to update a prior belief about 
a variable x given a new observation z and an observation model [29]: ݌ሺݖ|ݔሻᇣᇤᇥ௣௢௦௧௘௥௜௢௥ ן ሻถ௣௥௜௢௥ݔሺ݌  ሻᇣᇤᇥ௢௕௦.௠௢ௗ௘௟ݔ|ݖሺ݌

 In case of considering integrating model observation for a robot movement 
video tracking, we can find in [29] the proposed mathematical model of filter is 
given by the following equation (Bayesian recursive filtering): 

, ଵ:௧ݖ| ௧ݔሺ݌ , ଵ:௧ݑ ݉ሻ ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ ௖௨௥௥௘௡௧ ௣௢௦௘ ௘௦௧௜௠௔௧௜௢௡ ן ,௧ݔ|௧ݖሺ݌  ݉ሻ ᇣᇧᇧᇤᇧᇧᇥ௢௕௦௘௥௩௔௧௜௢௡ ௠௢ௗ௘௟ න , ௧ିଵݔ| ௧ݔሺ݌ ௧ ᇣᇧᇧᇧᇤᇧᇧᇧᇥ௠௢௧௜௢௡ ௠௢ௗ௘௟ݑ ሻ , ଵ:௧ିଵݖ| ௧ିଵݔሺ݌ , ଵ:௧ିଵݑ ݉ሻ݀ݔ௧ିଵ ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ ௣௥௘௩௜௢௨௦ ௣௢௦௘ ௘௦௧௜௠௔௧௜௢௡  

where z represents observation, m the map set of 3dimensional landmarks, x୲ the 
pose of the robot, and u୲ the actions of the robot. Also in this case and for SLAM, 
filter consists of three major steps: sampling, importance weight, and resampling. 
First step uses the previous generation xଵ:୲ିଵ and samples the next generation of 
particles xଵ:୲  from the proposal distribution πሺ·ሻ. The selection of proposal distribution 
can greatly influence the performance of algorithm itself. 

Particles evolve randomly in time according to the dynamics of the model 
and the observations [3]. Due to interactions of particles classical limit theorems 
relying on statistically independent samples do not apply. [3] Presents a survey of 
convergence results on Particle Filters.  

Particle filter (PF) represents a sequential importance sampling method 
based on Monte Carlo simulation and Bayesian sampling estimation theories, which 
evolved from the Bootstrap nonlinear filtering algorithm.  

PF can estimate non-linear and non-Gaussian dynamic processes and has 
the property that it could be directly applied on any non-linear system model. The 
particle filter aims to estimate a sequence of parameters based only on the 
observed data. Several approximation techniques have been presented in a non-
linear, non-Gaussian state space context [30], [31]. 

Because of their interaction, particles are statistically dependent. 
Consequently, the classical convergence results on Monte Carlo methods based 
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onindependent and identically distributed assumptions are not applicable [26]. 
Given this, a target for optimization in the implementation of particle filter is the fact 
that total error variation vector of observations is consistent with the result that the 
variance estimator and particle filter is independent of the size of states [26]. If the 
MCMC method is applied, the idea is to use observations and to generate samples 
from posterior distribution or likelihood function of interest and use them to extract 
relevant information, because all known information is kept by their posterior 
densities or similarity functions. Thus, samples with higher values of posterior 
densities can be used for future calculations and deduction, because they best 
approximate the unknown situation. 

Using Bayesian sampling estimation theory, the posterior density p(xk|y1-k) 
can be inferred from the prior density p(xk|y1:k-1), [32]: 
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PF uses Monte Carlo simulation method to approximate the posterior density by N 
particles with the associated weight: 
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In the basic bootstrap particle filter [33], a more general approach involves the 
concept of importance sampling [34]. In order to briefly describe the basic PF 
algorithms, we assume that a set of particles and their weights are given by a 
discrete posterior density representation. The bootstrap PF then implements the 
following three iteration steps [32]:  

a) sampling: draw N samples from the existing set of particles according to their 
likelihood weights; 

b) prediction: propagate the particles through the transition; 

c) update: each particle and normalize the weights in the end. 
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Basically, particle filters rely on importance sampling and thus require a good 
design of proposed distribution in order to approximate the posterior distribution. 
One possible strategy to fulfill this need is to sample from the probabilistic model of 
the transitions prior states evolution [35].  In case that the measurement is in prior 
sample tail or the likelihood function is too peaked in comparison with the prior, 
filter performance can be very weak. In this reference a dynamic state space model 
is presented as an alternative for improvement for above mentioned issues. It is 
based on the fact that states follow a Markov process and observations are assumed 
to be independent to states. The mix with a sequential importance sample is a 
combination that outperforms standard particle filtering. Also a good technical and 
formal PF variations presentation can be consulted in [35]. 

An adaptive PF is described in paper [36]. Filter efficiency and accuracy improves 
as the number of particles used in the estimation increases. Better results are 
obtained by considering the propagation function that reallocates these particles on 
all iterations. Authors underline that the effect of particles number on filtering 
accuracy is determined by two intuitive factors: the true density complexity and how 
closely the proposal density mimics the true density. It has been demonstrated that 
the improvement is due to the processes varying dynamics and to the fact that 
models are ignored. The proposed self-adaptive version of the particle filter uses 
statistical methods to adapt the number of particles and the propagation function on 
all iterations with similar computational effort.  

Several resampling schemes have been proposed in the literature including 
multinomial, residual and stratified resampling [37], and [38]. Based on resampling 
strategy, in [38] a multi modal sequential particle filter algorithm used for object 
tracking is presented. A hidden state sequence linked to several sensory observation 
sequences in association with a based framework, is considered such as each sensor 
provides likelihood (weight) associated to each particle and simple rules are applied 
to merge the different weights, as addition or product. The aim of the proposed 
multi modal sequential importance resampling algorithm (M2SIR) [38] is to 
generate a new particle with a three step approach: sampling via Importance 
Sampling strategy to a set of M candidate samples and their associated weight 
vector, determination of a likelihood ratio vector and candidate sample selection 
given by an importance sampling strategy operated on a normalized likelihood ratio 
vector. Reference presents the algorithm as a mix between condensation algorithms 
based on likelihood ratios to merge the observations within the sampling step. 

A limitation of particle filters is that particle degeneracy appears, in which most 
particles yield no useful information, thereby negating the advantages of this 
approach. Auxiliary particle filters address this limitation by constructing proposal 
densities that better correspond to the true posterior distribution [31]. An extended 
auxiliary particle filter was developed in [39] where an additional hyper-parameter 
was added to better adapt the proposal to the posterior. 

A comparison between fixed-lag roughening and the block proposal distribution 
sample strategies is offered in reference [39]. Both exploit “future” information, 
when it becomes available. Consequently, filter’s estimation for previous time steps 
is improved. Fixed-lag roughening perturbs trajectory samples over a fixed lag time 
according to a Markov Chain Monte Carlo kernel. The block proposal distribution 
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directly samples poses over a fixed lag from their fully joint distribution conditioned 
on all the available data. 

State space dimension is taken into consideration in [4]. There are cases of 
tracking applications where large dimensional problems such as multimodal 
observation likelihood are often and the state transition prior is often broad in at 
least some dimensions and direct application of PF requires an impractically large 
number of particles. A particle filter with efficient importance sampling and mode 
tracking provides a possible solution to these problems. This is based on estimating 
a hidden sequence of states, from a sequence of observations, which satisfy the 
Hidden Markov Model. Also an observation model and a system model are taken into 
consideration in order to develop the algorithm.  

The authors of [30] discuss the dynamic state space estimation problem of an 
exothermic irreversible parallel reaction in a continuous stirred tank reactor. It 
presents a solution based on an alternative approach whereby particle filters based 
on the sequential Monte Carlo method are used for the estimation task. In fact, a 
Markov chain Monte Carlo method is proposed to enhance particle filters where the 
estimates of the initial conditions are poor. The above-mentioned mixture is 
concretized in the Auxiliary Sequential Importance Resampling (ASIR). Reference 
[30] also invokes that, as the computational cost of MCMC increases with time, 
MCMC is performed during the first few time steps, before switching over to the 
conventional particle filter. In their experiments, authors have shown that a MCMC 
running for only ten steps can significantly improve state estimation performance 
whilst incurring reasonable computational load. 

The vehicle dynamic was taken into consideration in implementing a PF algorithm 
in the paper [31]. The proposed method is represented by a Rao-Blackwellised 
particle filter, used to determine the faults in the suspension elements of a railway 
vehicle via changes in the vehicle dynamic model parameter values. It was 
considered that parameter estimation of vehicle condition and monitoring system 
based on PF method is able to detect and isolate incipient faults is usually described 
by a linear stochastic state space model. The use of Rao-Blackwellisation techniques 
can increase the efficiency of sampling in PF by reducing the state space size to be 
sampled through marginalization, which results in RBPF. 

 

2.2 Classification of mathematical models  

Theories related to traffic flow modeling try to describe in a precise manner, 
based on mathematical descriptions, the interactions between vehicles, drivers and 
infrastructure. Infrastructure is represented by the road system and all its 
operational elements, including control devices, signs and markings. These theories 
are an indispensable element of all traffic models and analysis tools that are used in 
the design and operation of streets and highways, and the analysis of the behavior 
of participants in various traffic situations.  

Scientific study of traffic flow has its beginnings in the 1930s, starting from the 
application of probability theory to describe traffic and, with pioneering studies by 
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Bruce D. Greenshields at Yale. Those studies were performed on various models of 
vehicle volumes, speed and investigation of traffic performance at intersections. 
After the Second World War, there was an increase in the number of cars in use and 
expansion of the highway system. It was also not reflected by an increase in the 
study of traffic characteristics and the development of theories on the flow traffic. 

A traffic simulation model represents the dynamic change over time, the traffic 
status. Macroscopic level of traffic modeling can be likened to a pipeline that crosses 
water. A mesoscopic model aggregates behavior of individual vehicles, and if the 
microscopic level has individual behavior details as central points of the model.  

Another possible classification of different traffic models is given the stochastic, 
deterministic, and event-oriented theories. Stochastic models capture the variation 
in reaction time, reaching the destination and routing choice. After each simulation, 
results differ because of the influence of different factors leading to the need to save 
and replicate results. For these models, the next states cannot be determined with 
great precision. Deterministic models are based on stable physical laws, and next 
state can be determined with great precision.  

Mathematical models of vehicular traffic gain field lately due to their applicability 
in solving problem in terms of robust traffic management situations such as 
congestions and accidents avoidance systems. Classification of mathematical models 
of vehicular traffic can be done considering several parameters and also the scale of 
representation. In literature we have the following classifications: microscopic 
models, mesoscopic model and macroscopic model.  

Microscopic traffic simulation models differ significantly from the conventional 
"aggregated" traffic models. This is due to the fact that instead of shaping traffic 
flows, the model simulates the microscopic behavior of all individual vehicles in the 
network. These models allow consideration of some important phenomena such as 
drivers on high traffic roads, behavior near their maximum capacity, and also the 
complex interaction between vehicles at intersections, pedestrians and traffic and 
interaction between different categories of vehicles. In the microscopic models are 
snapped some behavioral patterns, such as: "Car following attitude" describes 
acceleration, deceleration and keeping a safe distance between cars, models of this 
type are stimulus - response, safety distance; "Changing lanes; "Stop-and-go". 
Microscopic models focuses on each particular vehicle considered and tries to 
describe via differential equations interactions between individuals and 
infrastructure. In case of microscopic model the accent is putted on the time-space 
behavior base of individual drivers and their influence in the proximity. One of the 
main disadvantages of this kind of representation is represented by the facts that if 
the number of observed cars is growing also the complexity and the equations 
evolve rapidly.  

The most popular models at the microscopic level are represented by the 
Cellular Automata and Cognitive multi-agent systems. Cellular Automata or a robot 
cell is a collection of cells "colorful" belonging to a network that has a specified 
shape and evolve through a series of discrete time steps, in accordance with a set of 
rules based on the state of neighboring cells. The rules are then applied iteratively 
whenever desired. Cellular Automata can be presented in a variety of forms and 
versions. One of the most fundamental properties of such robot is the type of 
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network is calculated. The simplest type of "network" is the one-dimensional, based 
on just one line. Variations may include: two sizes, shapes, square, triangular, 
hexagonal or the networks. Cellular Automata can also be built on grid networks 
with random numbers dimensions, but integers are the most common choice.  

The main characteristics of microscopic simulations are the following, as 
described in [51]: detailed representation of road network geometry; representation 
based on individual characteristics, includes stochastic components. 

Mesoscopic models use both macroscopic level by aggregating the individual 
components and interactions as the microscopic level. These models describe the 
traffic participants with a high level of detail, but also the behavior and interaction 
are described by a lower level of detail.  

Macroscopic and kinetic models describe the traffic at a high level of aggregation 
as macroscopic density, average speed, or kinetic distribution function as continuous 
functions of space and velocity, without considering its individual constituent parts. 
In this case accent it is putted on time-space behavior of the whole collectivity.  

Macroscopic level of traffic simulation is based on a model that discusses the 
relationship between the main flows of traffic parameters [52]: speed, flow and 
density.  Variables that reflect macroscopic traffic model can be calculated for each 
location, at any moment in time for each measurement interval.  In practice, most 
often are used detectors that measure traffic flow and speed over a certain period of 
time.  If you want to calculate the average speed for a time, must be individual 
harmonic gears.  When times extend beyond five minutes, some dynamic features 
are lost.  

 Currently for determining a mathematical model on the macroscopic level, are 
analogous to the known physical laws phenomena and so the kinetic theory and 
fluid dynamics, and gas kinetics, obtaining differential equations describing the 
relationship of traffic [53]. Level simulation and modeling macroscopic traffic 
METANET model [52] is the reference for many researchers.  It is based on certain 
similarities with the gas kinetic law (based on equations that correlate with running 
speed traffic density).  

Macroscopic models have an advantage in that data needed for such models 
such as traffic density and speed are at the same level of aggregation that the data 
provided by measurements from the aggregation devices [52].  While macroscopic 
models have the ability to efficiently simulate large networks generally lack the 
individual details.  Because of this modeling response to various incidents is difficult. 

Considering these aspects this representation is computationally more efficient 
as it involves fewer partial differential equations and the global characteristics of the 
system, which are readily accessible, but all of the in the detriment of accuracy 
[54].  In case of macroscopic model the number of considered car should be large 
enough in order to represent approximations of temporal and spatial dynamics of 
the traffic system. Due to their likelihood with the flow of the fluids, modeling of 
vehicular traffic the flow of cars along a road, macroscopic models are often called 
hydrodynamic models [55]. 
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Mesoscopic models are based on an intermediate level of detail, describing the 
individual vehicles, but not their interactions, or in other words, are based on 
stochastic methods, mainly using master equations describing the time propagation 
of a traffic state probability function either of single cars or car clusters [56]. For 
single car states case, Boltzmann like master equations are considered, and for this 
reason this type of modeling it is called kinetic model [56]. In this case 
representation of quantity of interest it is given by: f (x, v, t), where f (x, v, t)dxdv 
is the probability to find a car at place between x and x + dx with velocity between 
v and v + dv at time t. Derivation of  Boltzmann equation can be done in one of the 
following ways: by heuristic plausibility consideration, by defining a stochastic 
Markov process or by using the BBGKY-hierarchy [57]. 

Heuristic model derivation for f (x, v, t) is given by equation: 

 ப୤ப୲ ൅  v ப୤ப୶ ൌ ሺப୤ப୲ሻୟୡୡ ൅  ሺப୤ப୲ሻ୧୬୲ୣ୰ୟୡ୲  [57] 

In fact, mesoscopic models present the intermediate step between microscopic 
and macroscopic models, and represent mutual interaction of considered individuals. 
Kinetic modeling was first used by Prigogine and relies on the principles of statistical 
mechanics introduced by Boltzmann to describe the unsteady evolution of a gas. 
Mesoscopic models are ideal for prediction applications, where the detailed modeling 
of route choice and other strategic driver choices are essential, but where the 
detailed modeling of driver interaction with the road network and other drivers is 
not needed. Based on the mathematical model presented above, traffic simulators 
are being developed. A survey on several mesoscopic traffic simulator, as well as 
pro and cons for choosing a particular type of model between microscopic, 
macroscopic and mesoscopic it is presented in [53]. Along it is also presented a 
mesoscopic prediction model, called Predikt [53]. [54] Depicts some of the major 
macroscopic and kinetic mathematical models of vehicular traffic and also some 
application to road networks.  

A state of the art survey on vehicular traffic model is presented in [58]. Same 
classification as above, based on the level-of-detail for vehicular flow is used, but 
additional, for each of the categories, issues like modeling accuracy, applicability, 
possibility of generalization, and model calibration and validation, are discussed. An 
interesting classification about usage of mathematical models and describing traffic 
via equation it is also done. Thus, models are being divided between purely 
deductive, purely inductive, and intermediate approaches. First class, purely 
deductive models are based on accuracy due to the physical laws applied. In the 
second case modeled data from real systems are used to fit and finally in 
intermediate approaches, first basic mathematical model-structures are developed, 
after which a specific structure is fitted using real data.  

 

2.3 Driving model 

Modeling driver behavior is a complex and heavily researched in recent years. 
Driving activities is involving numerous cognitive sub-tasks, such as a lane change, 
adapting speed to road condition and legal regulations, avoid obstacles, choosing 
the right path and so on. For these many methods have been developed over the 

BUPT



30     State of the art. Theoretical considerations - 2 

years. The methods are explored by cognitive architectures [43,44], and interfaces 
with the management support systems, such as adaptive cruise control speed [45] 
In this last reference empirical observations about different scenarios in the activity 
of driving are also mixed with scientific research. At the microscopic level, driver 
behavior is modeled in [46], with a strong emphasis on modeling the acceleration in 
different conditions.  

Due to urgent need of mobility in our days, number of cars and drivers has 
constantly increased. Driving activity has become a normal day activity. In order to 
develop safer cars and to move closer to driverless cars, several models where 
introduced in literature over the years. Steel, due to highly cognitive characteristic, 
influence of emotions it is very hard to predict the next move of a driver. Alcohol, 
drug, fatigue of simply lack of attention can transform an easily predictive driving 
session into one with unexpected moves. Based on collected information from 
environment, drivers adapt their speed. Based on Fuzzy inference process, and the 
microscopic model based on a car-following attitude, a model of driving MITRAM is 
proposed in [47]. In this model a fuzzy neural network is integrated, and the actual 
driving can be simulated through learning the vehicle’s movement data, with a high 
adaptability for changing the characteristic of learning based on presented data set. 

Driving assistance devices are becoming more and more part of regular cars as 
they add a plus of safety and also of comfort. These devices facilitate the interaction 
between human driver on one side and cars and infrastructure on the other side. A 
good knowledge of driving intentions can improve the safety of the system and also 
could lead to a better automated system. Some typical patterns of behavior drivers 
can be easily reproduced by driving assistance systems. By using these devices, 
such as control devices, adaptive cruise control, is guaranteed an adaptation of the 
vehicle speed to medium traffic. When using the device, the radar system attached 
to the front of the vehicle is detecting if a vehicle is moving slowly forward. When a 
slower moving vehicle is detected, the system will slow down the vehicle and keep a 
safe distance between the vehicle and the vehicle ahead. If the system detects that 
the vehicle is not in the way of the vehicle, the system will accelerate again to set 
the vehicle cruising speed. This maneuver allows the vehicle to slow down and 
speed up traffic autonomously without any intervention from the driver. 

The most common task in the management process may be associated with 
maintaining a constant speed around the vehicle. This is normally associated with 
free lanes, and sometimes with a cruise control device. A speed limit is imposed and 
maintained them as well during driving. Scenario undergoes modifications, if a 
vehicle is being pursuit.  In order to maintain safe distance proximity between 
vehicles, speed must be adapted and thus low. If the driver decides to exceed a 
machine speed increase will be felt. Depending on the environment and maneuver 
to overcome, there are three possible situations, further increases up to a calibrated 
speed, braking smooth and constant motion. Other possible scenarios are 
represented by movements such as on-off and oscillatory movement. However, 
these behaviors are influenced by the degree of traffic congestion. In a traffic jam 
situation, the natural response is represented by a startup- stop script, and in some 
road sections with different densities oscillatory motion a scenario is plausible. Road 
traffic for a road segment is a complex system consisting of participating vehicles. 
To understand and analyze driver behavior, and to achieve a short-term prediction 
of their actions, a modeling and simulation system is required. 
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Determining human intentions can be inferred from several possible sources, 
including the driver's current control actions, their visual scanning behavior, and the 
traffic environment surrounding them [48]. [48] describes a method similar to 
hidden Markov models, where the intended actions are modeled as a sequence of 
internal mental states, each with a characteristic pattern of behavior and 
environmental state. Patterns of control actions of the driver such as steering and 
acceleration actions offer information in the process of prediction of driver behavior. 
In order to be efficient, such a system model must capture the behavior of the 
overall population but also have facilities to adapt to a particular person or driver. 
The model proposed in [48] relies on the basic homogenous traffic flow model 
equation. The interaction between the cars in a given leading car pair is assumed to 
be a Markov jump process in the acceleration variable of the following car.  

 An interval compositional model based on a stochastic macroscopic traffic 
model, used in to vehicular traffic flow modeling is proposed in [49]. In this case 
prediction of traffic flow it is done without the assumption of uniform distribution of 
vehicles along the road and can be integrated in road traffic surveillance and control 
systems real time. In [50] we can find an approach in order to define a general 
driving model. Interactions between variables in different segments of the road are 
being described by means of interval analysis, and with some advantages that it can 
take into account the prior information for the allowed intervals of the system states 
and noises, such as the minimum and maximum values of the measurements and 
system noises are usually known in advance and also with the possibilities to include 
uncertainties. Another benefit of the proposed algorithm was the fact that the 
measurements of the number of vehicles and speed were received only at 
boundaries between some segments, but algorithm performed well on real data 
input analysis. 

 

Conclusions 

The subject of data filtering and accurate information gathering is known in 
literature for several years. Although several viable solutions were proposed so far 
none of them combines all criteria for accurate traffic surveillance and driving 
assistance systems. Many of existing algorithms fulfill real-time requirements or 
high accuracy, but all this with the cost of computation effort.  

Table no. 1 summarizes particulate filter variations from survey presented in 
[25]. Here have been mentioned the most representative algorithms derived from 
general particle filter. Many of these algorithms suffer themselves several variants. 
For example SIR algorithm can be implemented in several forms, one of the 
frameworks is using a threshold value for particle selection. Following this selection, 
one possibility would be for an amount varying weights layered directly connected 
with the threshold value. In some applications where a certain pattern (transition 
state) is repeated, SIS can be the best solution because of the growing importance 
of the set of particles associated with the real situation, surprised by this pattern. 
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Name  Description   Comments  

Sequential 
Importance 
Sampling 
(SIS)  

Propagation and
recursive computation
of the weights as long
as measurements of
observations are
received  

• major problem: the phenomenon 
of degeneration: some particles 
are privileged, the rest will have 
a share a insignificant weight; 

• a high computational effort to 
calculate values that will 
contribute to the final result with 
values close to zero; 

•  appropriate choice of probability 
density function, so that 
minimized variation in weights. 
[25] 

Sampling 
Importance 
Resampling 
(SIR)  

Elimination of small
particles that Have
weight and focus on
those who have higher
rates; thus will be
mainly used for
particles which will
have the highest
probability 

• particles are regenerated at each 
step based on their share value, 
leading to increased probability; 

• SIR algorithm can be easily 
derived from the SIS with a 
proper choice of importance, 
and the pace of regeneration, to 
be applied each time; 

•  improved version of this 
algorithm is given by the 
"Auxiliary Sampling Importance 
Resampling Filter (Assyria)" 
regeneration with equal weight, 
which could lead to obtaining a 
state much closer to the real 
state; 

•  poor results for a low number of 
particles, because of 
regeneration more weight 
particles, some states may 
become privileged, [25] 

• MCMC methods represent an 
improved type of this kind of  
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particle of this type of Particle 
Filter  

Likelihood 
Particle Filter 

Importance density
function is given by
similarity  

• Produces superior results of 
density estimation methods 
based on the calculation of 
posterior importance of this 
value. [25] 

Table 1. Brief comparison of the variations in particle filter 

In the distributed implementation of particle filters we are dealing with 
several variations. The most popular approaches are summarized in table number 2. 
The main issues involved in addition when using a distributed algorithm is given by: 
execution time (for this application requires real time response), computing power 
and accuracy of results (when using wireless sensor-based systems resources are 
limited both in terms of energy and complexity of calculations) and not least the 
system scalability. 

 

Name   Description  

 
Distributed computing with the
central node 

Central node is responsible for retrieving 
and aggregation of data; here are also 
being performed calculations 

Distributed computation without
central node 

Lack of central node tries to reduce the 
excessive communication network by 
limiting the exchange of information only 
with neighboring nodes. [27]  

                    Table 2 Ways of implementing particle filters 
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3 Data Filtering in Traffic Applications: a MCMC approach 
 

3.1   Using MCMC for Error Correction in Dynamic Conditions 
 

Markov chain Monte Carlo is used in general for drawing samples from a 
multidimensional distribution and estimating expectations with respect to this 
distribution. They are a collection of techniques that use pseudo-random values to 
estimate solutions to mathematical problems.  

The Metropolis-Hastings (MH) algorithm for MCMC provides a general approach 
for producing a correlated sequence of draws from the target density that may be 
difficult to sample by a classical independence method. The goal is to simulate the 
multi-dimensional distribution π*(ψ) that has the density π (ψ) with respect to some 
dominating measure. To define the algorithm, let q(ψ, ψ’) denotes a source density 
for a candidate ψ’ draw given the current value ψ  in the sampled sequence. The 
density q(ψ, ψ’) is referred to as the proposal or candidate generating density.  

The MH algorithm consists in two steps. In the first step a proposal value is 
drawn from the candidate generating density. In the second step the proposed value 
is accepted as the next iterate in the Markov chain according to the probability α(ψ, 
ψ’). If the proposal value is rejected, then the next sampled value is taken as the 
current value (1). 

,൫߰ߙ ߰′൯ ൌ  ൝݉݅݊ ቂగ൫ట′൯௤ሺట′,టሻగሺటሻ௤ሺట,ట′ሻ , 1ቃ ,൫߰ݍሺ߰ሻߨ ݂݅       ߰′൯ ൐ .݁ݏ݅ݓݎ݄݁ݐ݋                         1   ;0  (1) 

Typically, a certain number of values at the start of this sequence are discarded 
after which the chain is assumed to have converged to its invariant distribution. 
Summarizing, Metropolis-Hastings algorithm generates a random walk using a 
proposal density and a method for rejecting proposed moves, where calculating the 
candidate is equal to the current value plus noise. Another possibility is to have 
samples that are drawn from the proposal density then conditionally rejected to 
ensure that the samples approximate the target density, or to adaptively modify the 
proposal density on the fly [41].  Although this method is simple, it is not scalable.  

Gibbs Sampling was another improvement made to MCMC algorithms. It 
requires all the conditional distributions of the target to be known in closed form. 
Gibbs Sampling has the advantage that it does not display random walk behavior. 
However, it can run into problems when variables are strongly correlated. When this 
happens, a technique called simultaneous over-relaxation can be used. In case of 
hybrid Markov chain Monte Carlo [42], a random walk MH is proposed. It is achieved 
by introducing an auxiliary momentum vector and implementing Hamiltonian 
dynamics where the potential function is the target density. The momentum 
samples are discarded after sampling. The end result of Hybrid MCMC is that 
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proposals move across the sample space in larger steps and are, therefore, less 
correlated and converge to the target distribution more rapidly. Slice sampling 
depends on the principle that one can sample from a distribution uniformly from the 
region under the plot of its density function. This method alternates uniform 
sampling in the vertical direction with uniform sampling from the horizontal slice 
defined by the current vertical position. 

In current work, it was started by assuming that it is desired to estimate an 
expectation of a function with respect to the probability distribution. To obtain a 
Monte Carlo estimation of desired value it can be sample N pseudo-random values 
from the distribution function. Then the average function value in considered points 
is used to estimate the result. As number of samples gets larger, the estimation 
converges to the true expectation. To improve the results, a better technique for 
estimating expectations named importance sampling was introduced. It produces 
draws from a different distribution and compute a specific weighted average of 
these samples to obtain estimates of expectations with respect to function 
considered. In this case, a Monte Carlo estimated result is obtained by simulating N 
pseudo-random values from the distribution simply taking the average of function 
value multiplied by its weight. Often, for numerical stability, every weight is 
normalized. This implies dividing each of them by the sum of all weights.  

Then, it appears the need to specify a probability model for data. It was 
considered a given space of states, transitions between them and based on this 
model as probability density matrix (PDM) was developed. Indeed, it was desired to 
infer from the fixed, observed dataset.  A value from PDM based on the likelihood, 
which is obtained from the probability distribution, is maximized. This is the 
maximum likelihood estimation based on the previous knowledge.  

Following that, a Markov chain that is moving around quickly enough to produce 
good estimates or “good mixing” is constructed. If the samples are heavily auto 
correlated it is desirable to redesign the sampling scheme or, at the very least, run 
the chain for much longer. 

If the factor that determines the transition is chosen to be too small, then 
the Markov chain will nearly always accept its proposed value. However, the 
proposed value will be usually extremely close to the chain's previous state, so that 
the chain will move extremely slowly. This determines a very high acceptance rate, 
but demonstrates very poor performances. On the other hand, if transition factor is 
chosen to be too large, then the proposed values will usually be very far from the 
current state. Therefore those proposed values would usually be rejected, so the 
chain will tend to get stuck at the same state for large periods of time. 

 

3.2 Proposed probability model  

It was considered the probability model as a Probability Density Matrix (PDM), 
which is used to map the transitions between states. In order to improve the 
filtering efficiency the state space was restricted to the range of moves that a real 
vehicle can physically achieve. It was considered that states are based on 
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accelerations as they give the best driver behavior reflection. Therefore, five major 
states were chosen: strong acceleration, small acceleration, constant movement, 
deceleration and strong break.  

Relevant changes in driver behavior between two time intervals considered 
are considered to be transitions in state space. The transition between a speed 
greater decrease in the range was considered to be state "- -" a slow vehicle is 
assigned a lower status "-" is associated with approximately constant speed "0", a 
slight acceleration in "+ ", and last, a large increase in speed is represented by 
"++". 

Given the physical law of motion, in Fig. 3.1 describes the possible transitions 
between associated states. State jumps should be regarded as transitions between 
the last and the current state of the system, based on observations, and previous 
estimations. Using this transition of states, which are also the bases of Markov chain 
jump, a PDM is generated. 

 

Fig 3.1 Possible transition between states 

Because we are dealing with a normal Markov chain, condition 
1

4

0
=∑

=i
aiμ

must be fulfilled. Determination of possible next state of the car can be seen in 
terms of Bayesian estimation as a problem of a certain degree of probability of the 
state of an object x at a time t, with a sequence of observations z1: t.
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Fig 3.2 Probability density matrix 

At a particular moment of time t it was estimated the most likely transition 
from current state based on the probability density matrix, associated to each 
particle. Consequently the update of the PDM was done according to the prediction 
we made and the observed acceleration at time t.  Thus, is compared the estimated 
state with data arrived from sensors and modify the PDM with values that describe 
Gaussian distribution where the bonus for the correct state represents curve’s peak.  
The matrix is kept normalized. As a result, in time, a correct driver behavior history 
is formed, increasing vehicle’s probability to hit the right transition in next steps. 
Filtering recursive Bayesian posterior density calculated, which can be written as: 

p ( xt+1 | zt+1 ) ≈ p ( zt+1 | xt+ 1 ) p ( xt+1 ) (2) 

In order to construct the PDM, we assume that the posterior distribution 
from the previous step filter p (xt-1 | z1: t-1) is available and can be used for 
prediction. This is achieved by applying Markov assumptions [44], the prior density, 
which becomes the posterior density from the previous time step using a density 
transition (dynamic model): 

           tttttt dxzxpxxpxp )|()|()( 11 ++ ∫=          (3) 

Approximated value of prior distribution is given by (4) 
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where 
n
t 1+μ

is the probability density value derived from Markov dynamic model 
PDM. Particle filter, the SIR variant is generally based on the following three 
operations: the generation of new particles (sampling of state space unnoticed), the 
calculation of weights associated with particles and resampling (removing particles 
with small weights and replace them with particles with higher rates). 

Each vehicle is detected using a separate particle filter. The state tracked by 
the particle filter is xt = { pt, vt, at } where  xt is the vector encoding the state of the 
object. The pt is used to describe the vehicle position at time t. The vehicle velocity 
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and acceleration are described by vt and at. The vehicle is supposed to move on a 
planar ground. From the differential equation (5) 

tt vp =
 ,                                      (5) 

and (6) 

tt av =
 ,                                      (6) 

 we obtain the relation (7) 

tvppt 00 +=
                                (7) 

 if velocity is assumed constant and (8) 

2/2
00 attvppt ++=

                     (8) 

if acceleration is assumed constant. In (7) and (8) the p0 and v0 are the initial 
position and velocity of the vehicle. It was assumed that the velocity evolves from 
one time step to the next by addition of acceleration 

atvvt += 0 .                            (9) 

The exact geometric shape of a vehicle can be complex and difficult to model 
precisely. For simplicity it was approximated by a rectangular shape with fixed width 
and length. The height of the vehicle is not important for these particular driving 
applications.  

 

3.3 Error correction and observation model 

 

The early stages of this research project were a microscopic model and the 
tentative of implementing a predictive algorithm able to estimate a series of 
parameters such as position and speed of a vehicle based on observations data read 
from the video cameras. This algorithm was implemented based on a particle filter. 

Algorithm was used for a camera model with a known error distribution. Also, 
the absolute error of the car position is obtained with the use of a high definition 
video camera, which will play the role of the real position of the machine as shown 
in Figure 3.3. This error was an important role in calibrating the surveillance 
camera/ video sensors. Based on the calculated position of the filter and relative 
error, further the sensors can be calibrated, with contribution in reducing errors. 
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The proposed solution considers the processing of hidden information such as 
acceleration changes to better reflect driver behavior. Efficiency and accuracy of a 
particulate filter depends mainly on two key factors. They are the number of 
particles used to estimate the posterior distribution and the spread function used to 
re-allocate these particles throughout all iterations. 

 

Figure 3.3 A high resolution camera offers real position of the vehicle. The error 
introduced by the camera low end rate is reflected by the deviation from actual 

position of vehicles 

Key idea is to represent the posterior distribution of states given a sequence 
of sensor measurements and re-allocate them constantly as new information are 
available to update the system state estimation. Tracking problem can be seen from 
the perspective of Bayesian estimation as a matter of a degree of confidence of a 
state xt of an object at time t and at a given step in a series of observations z1: t 
recursive Bayesian filtering calculates the posterior density which can be written 
using Bayes rules that: 

p(xt+1|zt+1)≈p(zt+1|xt+1)p(xt+1)  (1) 

In order to build a particulate filter, it is assumed that the posterior 
distribution from the previous step of filtering p (xt-1 | z1: t-1) is available and can be 
used to build the prediction based on a priority density current filtering step. This is 
done by applying Markov assumptions [20], prior density, posterior density that is 
propagated from the previous step using a transition time (dynamic model): 

tttttt dxzxpxxpxp )|()|()( 11 ++ ∫=   

This probability value is used in the following steps to make predictions. Generally, 
particle filter algorithm goes through the following steps: 
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(1) Initialization: create an initial set of particles (standards) based on systems’ 
equations;  

(2) Prediction: with particles from the previous steps determine the future most 
likely position of the observed vehicle; 

(3) Update weights: the weight calculation of each particle; 
(4)  State estimation: estimating the state of each object is made in each step; 
(5)  Regeneration: The particles with higher weight generate other particles, 

while those with a lower weight are removed. 

To fill the previous probability model we define the following observation 
model. We compute the observation model p(z | x)  using a given vehicle state x 
and the measurement z. Next, the vehicle is positioned according to x. The 
representation of the vehicle is described in section 3. Then we include points, 
surrounding the rectangle shape, representing particles. All particles are spread 
within a predefined distance around the vehicle. Assuming that each particle is a 
ghost of the actual vehicle we expect that all particles would eventually fall into line 
and estimate the correct position. 

The actual observations, denoted by z, consist of data coming from a wireless 
network sensor. Due to the noise in measurements resulting from sensor sensitivity, 
resolution and possibly bad environment conditions: fog, snow, rain, the vehicle’s 
motion is typically better modeled by probabilistic densities. We assume that the 
system and observation model is driven by Gaussian random noise. Therefore, the 
particle filter is appropriate to estimate the motion state. 

Each particle’s weight is calculated according to the mentioned measurement 
model, w ≈ p (z | x). The basic effect of this equation is to reward particles 
according to the old state and new measurements. Therefore, particles that are 
closer to the observed position and those that have a right state transition receive 
higher weights. For example, the jump from a small accelerating state to a large 
one is a more probable transition in reality than a transition from a large 
acceleration to deceleration, so it gets a higher bonus. To maintain a consistent 
sample the new importance weights are set to 
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where p(zk | xk) is the likelihood of making the observation zk given that the object 
is at xk location. The weights are normalized so that they sum up to 1, 
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where N is the number of particles. Finally we estimate the position as weights sum 
from all particles. 
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3.4 Algorithms steps 

3.4.1 Initialization step 

As a recursive algorithm, the particle filter needs initialization to track a 
state vector as the observations arrive in sequence.  

At starting point the set of particles is created by sampling from the 
observed position of the vehicle. The standard deviation for the initial distribution is 
set quite high to increase the spread of particles. The weights attached by the 
particle filter are balanced. Each particle gets the same weight as 1/N, where N is 
the number of particles. 

Each particle state is updated according to the prior density xt ~ p(xt | xt-1). 
This is calculated separately for the position and velocity. Particles have the same 
dynamic model as vehicle’s model presented in (7), (8) and (9).   

Part of each generated particle we have considered the Probability Density 
Matrix (PDM), which is used to map the transitions between states. We have 
considered that states are based on accelerations as they give the best driver 
behavior reflection. Therefore, we consider five major states: strong acceleration, 
small acceleration, constant movement, deceleration and strong break. At a 
particular moment of time t we estimate the most likely transition from current 
state based on the probability density matrix, associated to each particle. There are 
to possible ways to generate the PDM matrix: with a fix value of 0.2 corresponding 
for each state transitions, even if transitions from states like strong acceleration to 
strong brake are nearly physical impossible in a small time sample, or, the second 
possibility is to have pseudo-random value, with unique condition that the sum of 
values on each raw to be equal to 1.  

3.4.2  Resampling 

The SIS particle filter, discussed by this point may suffer from sample degeneracy 
problem, where almost all particles have negligible weights after a few iterations. This 
implies that most of the computation time will be spent on updating particles whose 
contribution to the posterior probability density function approximation, p(xt |zt), is almost 
zero. This means that the sampled particles contain little information about the true target 
state and the tracking performance will consequently be degraded. In order to reduce the 
degeneracy problem, resampling has been incorporated in the particle filter to eliminate 
the particles that are far away from the observed position. A threshold is applied to detect 
the particles that leave the correct tracking state. More exactly, at a moment of time t, 
particles with negligible weights, namely those that are further from the observed position 
will be discarded after resampling and replaced with new particles initialized with weights 
equal to 1/N, where N is the number of particles. We chose the threshold value with 
respect to filter root mean square error and the resource consumption. Detailed 
discussions on this aspect could be found in the next sections.  
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4 Adaptive Filtering based on Driver Behavior 

 

4.1 Observation Model of Dynamic Systems: Intelligent Driver 
Model 

Improving traffic management applications is directly related on the way 
traffic models are chosen. Theories related to traffic flow modeling try to describe in 
a precise, mathematical base the interactions between vehicles, drivers and 
infrastructure. These theories are an indispensable element of all traffic models and 
analysis tools that are used in design and operation of streets and highways, and 
the behavior of participants in various traffic situations. Microscopic traffic 
simulation models differ significantly from the conventional "aggregated" traffic 
model such as macroscopic ones. This is because instead of shaping traffic flows, 
the model simulates the microscopic behavior of all individual vehicles in the 
network. Macroscopic models employ equations on the conservation of flow and on 
how traffic disturbances broadcast through the system like shockwaves. They can be 
used to predict the spatial and sequential extent of congestion caused by traffic 
demand or incidents in a network. However, they cannot model the interactions of 
vehicles on alternative design configurations. Mesoscopic models combine the 
properties of both microscopic and macroscopic simulation models. These models 
simulate individual vehicles, but describe their activities and interactions based on 
aggregate relationships. 

In general, when it comes into discussion the need of modeling systems, a 
predefined set of finite states is used. In most of the cases, when dynamic systems 
are involved, state transitions are not matching a well-defined pattern and thus are 
becoming unpredictable. In this case, the main idea is to model this systems as 
stochastic dynamic systems where to encode a probability distribution over one key 
component [5]. In [6], among a very good survey on possible methods of 
adaptation of particle filters, it is presented another adapting method for sampling in 
continuous time, by introducing an auxiliary variable. Using this method and 
performing particle filtering in a higher dimension, unreliability of the empirical 
prediction density in the tails of the distribution was diminished; adaptation of SIR 
rejection and efficiency of SIR or MCMC sampling can be done without slowing the 
running filter. Still, difference in comparison with classical approach is small, and it 
does not worth the computational price effort when it comes to limited resources of 
wireless sensors.  

  It is well known that the performance, accuracy and convergence of PF 
methods depend mostly on the model of observation included in the algorithm and 
also on the number of particles used in estimation. The observation model mainly 
depends on target descriptions and/or sensor models. A high number of particles 
will lead to a better accuracy, with the cost of computational effort. Nevertheless the 
quality of particles themselves and their weight it is also important. In this sense, a 
balance compromise between error estimation and computational effort has to be 
done. 
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For implementing a PF based on a top-down strategy it is very important to 
follow a certain motion model, a white noise acceleration model, a random walk 
model or an adaptive motion models which can be learned from the arrival of the 
new observations. Such an example it is mention in [28] to be the Adaboost particle 
filter incorporates the detection hypothesis in the proposal distribution. 

Adaptive implementation it was proven to be a reasonable solution in this 
sense. Several versions of this approach are available in literature. In [58] we can 
find one of them. Here authors present a self-adaptive version of the particle filter 
that uses statistical methods to adapt the number of particles and the propagation 
function for each iteration, with the benefit of the same computational effort. The 
number of particle used in the algorithm is adaptive, with the only condition that for 
practical implementation a minimum number of particle is being maintained in order 
to ensure the convergence of the filter. Also in their implementation a threshold 
error value of filter and a confidence level it is set. Authors also proved that using 
an approximation of the observation (movement) model can lead to degeneracy of 
the filter and as a consequence there is a large mismatch between the dynamic prior 
and the posterior distribution, which produces an inefficient allocation of the 
samples and the estimate without adapting the importance function needs a larger 
set of samples to populate the relevant parts of the posterior. 

  Adaptive algorithm presented in [7] is built on four basic ideas. The first 
preliminary adaptation combines those into a single strict estimation method. The 
second tries to estimate the mixture of normal distributions based on previous 
drawing and use as independent MH algorithm proposed distribution on both sides 
of the adjustment process. The third algorithm concerns the common achievement 
of the estimate, especially in pre-adaptive stage, a stage known as intensive 
adaptation. Last idea is to verify the theoretical conditions for ergodicity extraction 
system during adaptation strict values. To implement these ideas is fast and robust 
estimation of mixture parameters. In [59] is studied the case where the Markov 
chain transition kernel depends on unknown parameters and also the opportunity of 
building a particle filter to estimate the unknown parameters and partially observed 
Markov chain based on an adaptive estimation. In this case the results are showing 
an optimal filter convergence in time and the number of particles tends to infinity, 
with strong limitations in case of restricted resources. 

Micro simulations describe in general three types of behavior: acceleration, 
deceleration and lane changing. Based on the fact that is built on a "car-following 
attitude", we have decided to investigate more the Intelligent Driver Model (IDM). 
Model describes the traffic state at a given time by the positions, velocities, and the 
lane index of all vehicles. The decision of any driver to accelerate or to brake 
depends only on his own velocity, and on the front vehicle immediately ahead of 
him. In general this model simulates single-lane main road and simple lane-change 
model for the on-ramps. There are seven parameters involved: desired velocity, 
safe time headway, maximum acceleration, comfortable deceleration, minimum 
distance, and jam distance and acceleration exponent.  

IDM was successfully used in developing collision avoidance systems. A 
particular example of using an adaptive driver model in this way can be found in 
[60] with application in indirect collision avoidance. Here, on an artificial neural 
network platform the model inputs are chosen to be the past history of throttle 
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angle, controlled vehicles’ speed, range and range rate to the front vehicle whereas 
the model output is chosen to be the current throttle angle. The past history of the 
throttle dynamics plays a critical role in reducing the deviation of the error 
correction. 

In order to perform well, prediction algorithms need to incorporate a model 
of the observed system. Depending on the specific model and the way this model is 
chosen, it has a huge influence on the success of the algorithm. If the model is well 
chosen, then the way particles move around in state space, matches the way the 
values of measured variables change over time. Indeed, each update or time-step 
represents generally a fixed amount of real time. On repetitive iteration of process 
this can converge to a desired value. Unfortunately, this is happening only in case of 
discrete-time dynamics. In case of real time it can follow a divergence behavior. 
Moreover, the driver behavior is hard to predict and hard to be modeled.  

Therefore, the desired model will act in continuous time and will integrate an 
approximation of the driver behaviors. In our work we concentrate on the aspects of 
dynamical state process changes, such as driving activity, combined with prediction 
algorithms. In order to be able to construct a strong prediction algorithm the main 
concern is to incorporate the model of observation. Starting from the physical 
equations of movement and we have developed a simplified model based on initial 
velocity and acceleration of car on time axis. The Markov transitions state space 
kernel was constructed linked with car acceleration. We have considered a finite 
space of only five states in order to describe in a discrete manner the continuous 
transition of the gas pedal and, respectively with movement of the brake pedal. 

In current work, the proposed relies on a mixture of particle filtering method 
and the classical sequential Markov chain Monte Carlo algorithm for performing state 
estimation. The purpose is to reduce the noise that affects data read from sensors in 
order to determine the correct position of a moving vehicle. The state transition 
between behavior patterns is then predicted instead of just determining the next 
position. Driving behavior is modeled by five major car movement states as strong 
acceleration, smooth acceleration, constant movement, smooth deceleration and 
strong break. Therefore, considering the transition between the physical states we 
have implemented the particle filter based on a suitable MCMC approach. The 
history of driver behavior is the main issue considered when the new state is 
predicted. Particles are being considered as ghosts of the cars, having an associated 
probability density matrix, speed and positions. The probability density matrix is 
used to map the transitions to the space states as in [A]. 

Therefore, the desired model will act in continuous time and will integrate an 
approximation of the driver behaviors. In this thesis accent is putter on the aspects 
of dynamical state process changes, such as driving activity, combined with 
prediction algorithms. In order to be able to construct a strong prediction algorithm 
the main concern is to incorporate the model of observation in PF. Starting from the 
physical equations of movement and we have developed a simplified model based 
on initial velocity and acceleration of car on time axis. The Markov transitions state 
space kernel was constructed linked with car acceleration. We have considered a 
finite space of only five states in order to describe in a discrete manner the 
continuous transition of the gas pedal and, respectively with movement of the brake 
pedal. Due to the fact that pedals movements in a car are physically limited by an 
initial and a maximum position, both for acceleration and breaking, we have 
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consider the magnitude of car acceleration between a lower and an upper limit. 
Figure 2.2 depicts how the state space where chosen in the proposed algorithm. 

 

Figure 2.2 Discrete state space for car acceleration. 

 

The key concept of the method is deriving from Markov kernel and transition 
determined on hidden parameters such as acceleration of the observed target. We 
consider a given space of states based on accelerations and transitions between 
them, and use this model as probability density matrix (PDM). The transition 
between state at time t-1 and t is given by the values from this matrix. Also the 
most likely transitions are determined based on the PDM.  

The implementation of an adaptive algorithm in this case is following two 
orthogonal steps. The first one is related to the number of particle contained by the 
filter and the second one is the adaptation of PDM values. 

MCMC is used in general for drawing samples from a multidimensional 
distribution and estimating expectations with respect to this distribution. The 
implementation of an adaptive algorithm has two steps [A].  

The first one is related to the number of particle contained by the filter and 
the second one is the adaptation of PDM values, more precisely on interpreting the 
value of acceleration. For this step a detailed IDM description of observation model 
was considered [66,67]. 
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Each of the particles contained by the filter is described as successions of 
state vectors. The state at sample time t is represented by xt = { pt, vt, at } where 
pt is used to describe the particle position at time t, vt the velocity and at 
acceleration of the particle.  

A particle filter algorithm consists mainly on these steps: initialization, 
estimation and update. The estimation of the posterior distribution is usually done in 
three main steps: sampling, weighting, and re-sampling. The sampling step consists 
of taking samples from the dynamic prior distribution. Re-sampling step is usually 
applied to avoid the degeneracy of the particle set. 

The idea behind it is to start the filtering process with a relative small 
number of particle, but yet reasonable. In the next steps, the filter will “watch” its 
deviation from the observation, and whenever this will be over a calibration 
threshold, a new infusion of particles will be perform, up to well determined number. 
Also, if the maximum number of allowed particles was reached, the particles with 
minimum weight are trimmed. This way a compromise in terms of computational 
price and filter performance is established. The need of resampling can be shortly 
explained by the fact that keeping old particles around forever without resampling 
them, they will drift around according to observation model. Highly unlikely particles 
will be kept around and transitioned to more unlikely states, in a so-called “particle 
depletion” [68].  

The second adaptation step consists of adapting the meaning of PDM values, 
more precisely on interpreting the value of acceleration. For this step a detailed 
description of observation model is needed. 

The proposed approach relies on a mixture of particle filtering method and 
the classical sequential Markov chain Monte Carlo algorithm for performing state 
estimation. The purpose is to reduce the noise that affects data read from sensors in 
order to determine the correct position of a moving vehicle. 

The approach is different in this case. The state transition between behavior 
patterns has to be predicted instead of just determining next position. Using a fuzzy 
implementation driving behavior is modeled by five major states: strong 
acceleration, smooth acceleration constant movement, deceleration and strong 
break. By considering the transition between the physical states, we have 
implemented the particle filter based on a suitable MCMC approach. Thus the history 
of driver is the main issue considered when the new state is predicted. Particles are 
being considered as ghosts of the cars, having an associated probability density 
matrix, speed and positions. The probability density matrix is used to map the 
transitions to the space states. Indeed, for each particle we use car acceleration to 
establish the possible state transitions. More details on this issue are presented in 
[69]. Basically, the algorithm computes and maintains sets of particles to describe 
the historical and present states of the model. The filtering technique consists of the 
following steps: initialization, prediction, sensor reading and update, filtering error 
and smoothing. In the initialization step the set of particles is created by randomly 
sampling from the observed position of vehicle. In prediction step, the state at time 
t + 1 is estimated using the state at time t. This is done using the probability 
density matrix distributions associated with each particle.  In the filtering procedure 
we use the data from sensors, which arrive at time t + 1 and are being compared 
with the estimated state at time t + 1. For each particle a weight based on the 
values of the observed variables at time t + 1 is assigned. Particles closer to the 
observed values from sensors and with right state transitions receive higher weights 
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compared to the particles that are further from the observed values. Weights are 
normalized so they sum up to 1. In the smoothing step we use the current state 
distribution to correct the state at previous times. This is done via the probability 
density matrix, and thus we update the history of each particle. This is performed to 
reduce variance of the filtering step.  

The key concept of the method is deriving from Markov kernel and transition 
determined on hidden parameters such as acceleration of the observed target. It 
was considered a given space of states based on accelerations and transitions 
between them, and use this model as probability density matrix (PDM). The 
transition between state at time t-1 and t is given by the values from this matrix. 
Also the most likely transitions are determined based on the PDM.  

The need of implementing an adaptive algorithm can be easily justified after 
analysis of Figure 4.1. For this example, a pseudo-chaotic movement of car was 
considered and a non-adaptive implementation of MCMC PF proposed method. 
Jumping through a finite number of states, without adapting particle acceleration 
can lead to a slow convergence of filter in early stages, and also to poor 
performance of filter in the first steps. Also, this is the reason why the filters in not 
convergent to zero but to a finite distribution. 

The implementation of an adaptive algorithm in this case is following two 
orthogonal steps. The first one is related to the number of particle contained by the 
filter and the second one is the adaptation of PDM values. 

 

 

Figure 4.1 The error of the common MCMC filter in combination with driving 
behavior 
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Due to the fact that is known that a significant number of particles will lead to 
an improvement in filter performance, but also will imply a higher computational 
effort, an adaptive SIR algorithm was implemented. 

By implementing an adaptive driving model based on observation, and having 
as foundation the IDM [13], acceleration dv/dt of a given particle depends on his 
velocity v, on the distance s to the observation, and on the velocity difference dv 
from own particle velocity and calculated velocity of observation,  
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In case of approaching, this dv is becoming positive. The acceleration is divided 
into a "desired" acceleration needed to come closer to observation 
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introduced by the fact that particle is coming more close to observation. The braking 
term is based on a comparison between the "desired dynamical distance" s*, and 
the actual gap s to the observation. [13] If the actual gap is approximately equal to 
s*, then the breaking deceleration essentially compensates the free acceleration 
part, so the resulting acceleration is nearly zero. This means, s* corresponds to the 
gap when following observation. In addition, s* increases dynamically when 
approaching slower moving observation and decreases when this becomes faster. As 
a consequence, the imposed deceleration increases with decreasing distance to 
observation, increasing own velocity, increasing velocity difference to observation. 
The acceleration coefficient δ affects how the acceleration changes when it 
approaches v0. When δ = 1, we have exponential approach, but when δ is very 

BUPT



4.2 - The Algorithm Steps for Adaptive Implementationl     49 

large, dv is constant with acceleration a, and drops to 0 when it reach v0. The 
parameters for adaptive model are somehow easily intuitive, as we desire to have a 
dv equal to zero, and also s* as close to zero, meaning that the filter relative error 
is becoming zero. Concerning a and b from equation (2) their meaning is given by 
an average acceleration in everyday traffic, respectively a comfortable braking 
deceleration in everyday traffic, s0 minimum distance to observation. [13] 

 

4.2 The Algorithm Steps for Adaptive Implementation 

1). Initialization step 

(1) Particles generated, form a cloud around each car. Each particle has a 
random position in a given range, depending on the sensor error. 

(2) Uniform distribution of particles weights is initially considered. 

(3) Initialize the PDM for each particle 

 

2). Prediction phase  

(4) For each component do: 

• Determine the most probable transition state 

• Based on adaptive observation model determine the value of 
acceleration 

• Calculate position according to the estimated state 

 

3). Sensor reading and update  

  (5) For each component do: 

• Compare the estimated position with the position read from sensor 

• Update the weight of each particle according to the estimation 
accuracy (made in terms of jump state and estimated position) 

• Update the PDM according to the estimated jump accuracy. Use a 
Gaussian distribution to compute the correct factor. 

• Update parameters needed of construction of adaptive observation 
model. 
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• Calculate the position as weights sum from all particles. 

• Determine filter error. 

• If filter error is above desired threshold and particle number is in given 
range increase the number of particles. In case the maximum number 
of allowed particles is reached, regenerate particle with minimum 
weight.  

 
The main purpose was to develop an efficient common platform which will 

work for a filter and also in case of prediction algorithm. The filter is able to reduce 
the noise which affects data coming from sensors. In case of prediction algorithm, it 
should be able to estimate accurate the next parameters of a given car, based on 
observation. The proposed platform is based on a modified Particle Filter Monte 
Carlo Markov Chain. The core is represented by a five state matrix, called Probability 
Density Matrix (PDM) [1]. PDM encapsulates the transitions between states, and 
thus it reflects the driver behavior. PDM it is considered to be stochastic, and during 
adaptation phase, values are being kept normalized. It was proved that integrating 
observation model in platform will reduce filter error [1]. 

The algorithm runs several particles (in case of adapting version, this number can 
vary from a minimum number up a maximum limit. Each of the particles contained 
by the filter is described as successions of state vectors. The state at sample time t 
is represented by xt = { pt, vt, at } where pt is used to describe the particle position 
at time t, vt the velocity and at acceleration of the particle. 

Based on physics law we can consider 

   
2/2

11 attvpp ttt ++= −−   (1) 

and also we note by zt = { pzt, vzt, azt } observation coming from sensors.  

Based on implemented algorithm we can express the calculated (estimated) position 
of the car as: 

 Pୣ ୱ୲ ൌ f൫x୲, εሺtሻ൯ כ  w୲   ,  where εሺtሻrepresents the sensor error, as time distribution (2) 

For each particle, transition between states depends mainly on the previous 
considered state and observation coming from sensors. At each step an update 
based on the received observations is performed, and this is reflected in the next 
considered state of the particle: 

   x୩ ൌ  pሺx୩ିଵ|z୩ିଵሻ  (3) 
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Expanding equation (2), and based on [1] we can state that 

  pሺx୩ሻ ൌ pሺx୩ିଵሻ ൅ μୡሺz୩, x୩ሻ  (4), 

 

  μୡሺz୩, x୩ሻ ൌ  μୡ୮fଵሺ∆ሺp୸୩, p୩ሻሻ ൅ μୡୟfଶሺ∆ሺa୸୩, a୩ሻሻ  (5) 

Bothfଵ,fଶ are functions which return a constant according to a Gaussian distribution. 
Based on the fact that for each next state the most likely transition is made based 
on the best probability possible we can rewrite equation (5) in the following manner:  

  pሺx୩ሻ ൌ max൛pሺx୩ିଵሻ ൅  μୡሺz୩ିଵሻ ൟ ൅  μୡሺz୩, x୩ሻ (6) 

For normalization step, weight of each particle are being computed, and is being 
updated according to the performance of each particle  

 w୩ ൌ  w୩ିଵ  ୮ሺ୸ౡ|୶ౡሻ୮ሺ୶ౡ|୶ౡషభሻ
π ሺ୶ౡ|୶ౡషభ, ୸ౡ ሻ  , w଴ ൌ  ଵN , N ൌ number of particles   (7) 

We introduce following notation: hሺtሻ ൌ  x୸୲ െ x୲ (8), 

as the difference between observation and particle. By introducing IDM in model 
observation and thus in (2), the target is that: 

     lim୲ ՜∞ hሺtሻ ൌ 0 (9), 

Equation (9), in other words, states that particle will tend to follow observation, and 
on weight average will give a better approximation of position. 
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5 Experimental results  

 
 
In order to determine the efficiency and to validate the proposed algorithm 

experiments where performed with a simulation-based system. Simulated sensor 
values provide noisy information about the monitored vehicle position. Different 
types of scenarios were considered in order to analyze the algorithm performances.  

The set of tests for this algorithm is based on driving simulation patterns 
through a Java traffic simulator. This simulator is able to manage multiple behavior 
patterns of drivers, such as constant or free movement constant, mild acceleration 
within a given calibration value combined with a constant motion, including a 
negative acceleration ( deceleration to a limit in order to track a vehicle in traffic), 
and oscillator behavior within two known values of speed. It was designed to 
manage multiple distribution, such as linear, Gaussian or random. Maximum error 
monitoring device falls within a radius of 1 m. It is known that, when implemented 
effectively, particle filters require a cost calculation in proportion to the number of 
particles. Therefore it was considered a variable number of particles, in order to 
determine the influence of this factor in determining the value of absolute and 
relative error.  

 
 

5.1 Scenario for Non-Adaptive implementation 
 

The first set of test sets were constructed in the following conditions. We have 
considered the ideal case of simulating a vehicle with a constant acceleration 
through all simulation period. The PDM was initialized with a constant value of 0.2 
for all the considered states. The test was performed on a PF with 500 and 1000 
particles. This ensures a based for comparison with results from the other test sets. 
The obtained results are presented in Fig 5.1 and Fig. 5.2.  

In order to determine the PDM influence we have done simulations using a 
random PDM, but keeping the matrix normalized. 
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 Figure 1. Filter error for PDM initialized with constant values, 500 particles and 
constant acceleration 

 

 

Figure 2. Filter error for PDM initialized with constant values, 1000 particles and 
constant acceleration 

The results are shown in Fig. 5.1 and Fig. 5.2. In this case we have performed 
tests with 200 and 1000 particles. The car was considered accelerating. These 
diagrams demonstrate a strong dependence between the filter convergence and the 
number of particles considered.  

The next set of tests consists of the same initial conditions for the PDM and the 
same number of particles, but the ideal case that the vehicle is moving with a 
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constant velocity during the simulation time, was considered. Graphs for this 
experiment are presented in Fig. 5.3 and Fig. 5.4. 

 

 

Figure 5.3. Filter error for PDM initialized with random values, 200 particles and 
constant acceleration 

 

 

 

Figure 5.4. Filter error for PDM initialized with random values, 1000 particles and 
constant acceleration 

  

BUPT



5.1 - Scenario for Non-Adaptive implementation     55 

Another set of tests were performed having in consideration that the car has a 
varied acceleration.  The PDM was initialized with random values. Results for both 
500 particles and 1000 particles are shown in Fig. 5.5 and Fig. 5.6.  

 

 

Figure 5.6. Filter error for PDM initialized with random values, 500 particles 
considered, varied velocity of car 

It can be easily observed that in case of a pseudo-chaotic movement, the filter is 
responding with a inertia, and that error correction requires several steps, but still 
filter relative error is maintained mostly under the sensor error. Again, it is proved 
that a bigger number of particle determine a better performance of filter.  

 

Figure 5.7. Filter error for PDM initialized with random values, 1000 particles and 
variable acceleration 
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For all tests presented above we have performed a resource consumption 
analysis. In perspective of implementation on low resources WSN hardware, was 
concentrated on memory and on execution time. The conclusion of this analysis can 
be drawn from Fig. 5.8 and Fig. 5.9. As expected, the resource consumption 
increases directly proportional with the number of particles used. 

 

 

Figure 5.8. Memory consumption for various PF size [B] 
 

 

 

Figure 5.9. Execution time for various PF size [B] 

The particle filter implementation is evaluated towards its accuracy considering 
different parameter choices. All the experiments discussed below use the same 
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Table 1 shows a comparison between SIS and SIR algorithms in terms of RMSE 
and maximum error rates. The experiment was performed ten times and we 
considered that the car was moving with constant velocity and the PDM was 
initialized with constant values. Then we calculated the maximum filtering error for 
different number of particles. 

The results have close values for both SIS and SIR approach. As seen in previous 
experiments, large deviations from the real path are only in the first part of the 
simulations, where particles do not have enough history of the car. Similar to 
experiments results, the RMSE analysis gives better results for the resampling 
algorithm and a large number of particles. We can conclude that even if both filters 
obviate from the true path in early steps, SIR filter corrects its track faster and 
converges to a better pose.  

Table 1.  RMSE and maximum error comparison between SIS and SIR algorithms 
(using constant velocity and constant PDM values) [B] 

Method SIS SIR 

Particles 200 1000 3000 200 1000 3000 

RMSE 0.036 0.032 0.025 0.018 0.016 0.013 

Maximum error 0.058 0.052 0.046 0.051 0.047 0.044 

  

5.2 Scenario for Adaptive implementation 
 

The set of tests for this algorithm is based on driving simulation patterns 
through a Java traffic simulator. This simulator is able to manage multiple behavior 
patterns of drivers, such as constant or free movement constant, mild acceleration 
within a given calibration value combined with a constant motion, including a 
negative acceleration ( deceleration to a limit in order to track a vehicle in traffic), 
and oscillator behavior within two known values of speed. It was designed to 
manage multiple distribution of automobiles, such as linear, Gaussian or random. 
Maximum error monitoring device falls within a radius of 1 m. It is known that, 
when implemented effectively, particle filters require a cost calculation in proportion 
to the number of particles therefore we considered this to vary the number of 
particles, and to see the influence of this factor in determining the value of absolute 
and relative error. Following these experiments, it was determinate that five 
hundred particles to ensure a reasonable computational effort. 

In order to validate the proposed approach we used a simulation-based 
system. Simulated sensor values provide noisy information about the monitored 
vehicle position. Different types of scenarios were considered in order to analyze the 
algorithm performances.  
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The sensor error was distributed with the mean at ground truth and added 
Gaussian noise with a variance of 0.03 meters. At the starting point, the vehicle 
velocity is set to 50km/h. The particles are randomly spread around the vehicle with 
a standard deviation of 0.01 meters. At the end of the scenario the associated PDM 
should reflect the correct behavior of the driver in described conditions. PDM's were 
initialized with pseudo-random values. Initially the number of particles that describe 
the filter is 100. The purpose of the adaptive particle filter is to find an optimal filter 
size as a compromise between accuracy and computational effort.  Figure 5.16 
illustrates the first scenario. We considered a vehicle moving with 50km/h between 
the starting and the ending points. In the first steps of the simulation the inferred 
trajectory is relatively far from the real one. This happened because we assumed 
that particles are spread randomly around the vehicle's initial position. After the 
stabilization time, the filter converges close to the real position and maintains a very 
low error. 

 
 

 
 

Fig. 5.16. Constant movement, 1000 particles, low sensor error 
 
Figure 5.17 depicts results obtained in those conditions. We considered the 

vehicle moving on a free road and thus with constant acceleration. The simulation 
distance was set to 2500 m. The maximum number of particles that describe the 
filter was set to 1000. Also a threshold T = 0.02 m was considered. When the filter 
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error is above this value, new particles are selected in order to increase the 
accuracy of the filter. The starting position for each particle was chosen with a zero 
mean noise and a 0.05 meters standard deviation. Although it presents a slight 
degradation from other experiments, the proposed method still attempts good 
performances in terms of mean absolute deviation. 

 

 
 

Fig. 5.17. Accelerate behavior, 1000 particles, and low sensor error 
 
 
As a baseline for comparison with previous experiment, Figure 5.18 

illustrates the evolution of the filter error in same conditions excepting the driver's 
behavior. Vehicle's motion was set to constant velocity. The error is the Euclidean 
distance of the filter estimation from the car real position. In case of reaching the 
maximum number of particles, as 1000 for this scenario, particles with low 
confidence are re-sampled. Therefore we obtain a compromise between the filtering 
accuracy and computational performance. Indeed, a very high rate of particle 
resampling implies big computational effort. 
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Fig. 5.18.  Constant velocity, 1000 particles 
 

Figure 5.19 shows the RMSE filtering error as a function of maximum 
number of particles allowed and driver's behavior. In order to have a better RMSE 
accuracy we considered the results from 20 experiments with random values for 
each type of movement. 

 
Fig. 5.19. RMSE filtering error
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Fig. 5.20. Variable drivers’ behavior 
 

 
Table 2.  Samples of the maximum computed error and root mean square error  

 

 No Acceleration Constant Acceleration Variable Acceleration

Number of particles 1000 10000 1000 10000 1000 10000 

Maximum Error 
(meters) 

0.13 0.11 0.16 0.13 0.14 0.14 

RMSE (meters) 0.014 0.09 0.028 0.025 0.043 0.041 

 
 
Samples of the maximum computed error and root mean square error are 

listed in Table 1. The obtained values do not show significant improvement in filter 
accuracy when the maximum number of samples was increased to 10000. Moreover 
the computational effort is much higher in that case as the localization speed 
depends on the number of samples. 

The next experiment addresses a different scenario. The type of movement 
was randomly chosen instead to be fixed. The results show that in this case the filter 
is far for the performance proved in previous case. However the filter initial 
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distribution is very important and if we consider a lower variance of the particles at 
the starting point, the filter slowly converges to the real position and the result is 
maintained on the entire period below sensor's error. Figure 20 depicts this 
situation. 

 

Conclusions  

Several set of tests were performed with different number of particles in order 
to determine the optimal filter reaction and the resource consumption. These were 
necessary due to real-time and limited resources requirements. Moreover, in order 
to obtain an accurate and fast filter response, a considerable number of particles 
should be taken into account. The compromise in terms of reaction time of the filter 
and resource consumption was solved using an average number of particles. 
However, the size of the filter is balanced by resources consumption, like memory or 
computational intensity. Considering the adaptive approach, in both cases the filter 
obtains a relative good performance. If it is taken into consideration only the first 
step, related to a variable number of particles, the benefit comes through the fact 
that filter error is maintained bellow the value of desired threshold. Still, choosing a 
very small threshold value will lead to a high rate of regenerated particles, and as 
result, to a medium performance of the filter.   
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6 Case Study: using Prediction Algorithms 
for Overtaking Assistance  

 

In this chapter it is analyzed and presented the possibility of using the 
above described algorithms in order to design systems for helping a driver to get a 
proper decision in overtaking action on two-lane national roads. Method relays on 
input information like observations received from surveillance devices containing the 
speed or position of each car. Several patterns of overtaking situations were 
investigated.  

One of the most important and risky actions of a driver, is to handle the 
overtaking. A brief overview of action to overcome identified two situations. 
Overtaking conditions are slightly different in the case of motorways, compared with 
the national roads. The first case involves only vehicles running in the same 
direction on both bands involved, and thus a unidirectional flow of traffic. On the 
other hand, the roads common situation involves two bands, and thus a two-way 
traffic flow. A new model to overcome on the road is proposed in [71]. The model 
considers as important factors during the late reaction of the vehicle for measures 
acceleration, deceleration, and change lane safely and away from the car ahead. 
Time to overcome the loss of time and procedure to overcome space-time evolution 
is numerically investigated using the model mentioned above.  

Recent research (e.g. IVSS project, 2007) demonstrates that active safety 
of vehicles to avoid crash and reducing the damage effect of crash relies on 
dependable implementation of driving assistance algorithms. Inadequate driver 
actions, such as overtaking or lane changing with vision obscured by rain, snow, 
fog, sand, dust, or following improperly another car, combined with drowsy or 
fatigued driving can lead to fatal car crashes. Another strong root cause is 
represented by unanticipated action performed by one of the vehicles, and thus 
leaving insufficient time to react. A good estimation of the remaining distance and 
also of the velocity of all involved vehicles can improve significantly road safety. 

Road and passenger safety remained over the years a major concern for 
automotive industry and also for researchers. Accident analyses indicate that 
overtaking on improper conditions can become a dangerous situation for drivers. In 
a public thesis of crash analyses, Clarke et al. [72] concluded that the majority of 
UK accidents arose from a decision to start overtaking in unsuitable circumstances. 
Also they considered that "the problem stems from faulty choices of timing and 
speed for the overtaking maneuver, not a lack of vehicle control skills as such". 
Consequently, high dependable driver assistance systems designed to help this 
maneuver can bring real benefits.  

However, investigation on dependability of these kinds of systems is not a 
trivial problem. As overtaking action relay hardly on human reaction, relevant 
dependability attributes are hard to be identified. Moreover, there are many other 
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external factors that have to be considered, as road infrastructure or traffic 
participants. Considering traffic participants we identify also several aspects that 
have a great impact such as driving skills, emotional factor or age.  Overtaking can 
be considered through the lope of dependable systems as a partially ordered set of 
actions that needs to be performed and then discharged within a specific causal 
relationship. The success of one action determines the following ones [73]. 
Considering this aspect, it is very important to determine the minimal conditions 
and actions that are need to be fulfilled by the investigated algorithms in order to 
provide an accurate answer to driver. These aspects will be detailed in this chapter 
as conditions derived from physical laws applied to instant data received from 
sensors. Research on advanced driver assistance systems (ADAS) allows reducing 
the number of accidents resulting from overtaking actions results. This was done via 
some major projects in past few years. One of them is ROADAS (Research on 
Overtaking and Advanced Driver Assistance Systems) carried by TU Delft, 
Nederland. In this project, observing cameras and instrumented vehicles were used 
in order to gather relevant data on overtaking frequency and overtaking behavior. 
The system is designed as a warning device. A green light on means safe condition 
for overtaking, while a red light means that conditions for a proper overtaking are 
not accomplished [74]. 

Researcher Geertje Hegeman has developed a warning system which 
displays a green light when it is safe to perform a maneuver to overcome another 
vehicle. If action is unsafe, a red light is displayed. She tested this in a driving 
simulator on a two-lane road. A conclusion is that the assistant driver's leadership 
gives a sense of ease in making overtaking maneuver and can have a positive effect 
on road safety and efficiency. Hageman has used in his project of overcoming 
behavioral observations maneuver on the road N305 between Almere and Zeewolde 
in the Netherlands. Following these comments concluded that a move to overcome 
may take on average about eight seconds. Ten percent of cases are less than three 
seconds between lanes on the retreat and meeting with the opposite vehicle. [75] 
The study is part of her ROADAS (Research on Overtaking and Advanced Driving 
Assistant Systems), which is a project of the six subprojects of the research 
program under Dutch leadership, BAMADAS (Behavioral Modeling Analysis for the 
Design and Implementation of Advanced Driver Assistance Systems). BAMADAS 
intended to improve knowledge about the behavior of drivers of road vehicles in 
interaction with ADAS. For this project that incorporates advanced navigation 
systems, is developed in collaboration with BMW. ADAS commercial version is 
expected in the market over the next 10 years. 

Other solutions for maintaining an active safety on roads are based on 
restraint systems. One example is the Intelligent Speed Adaptation (ISA) system 
[76]. It is based on a device that knows the speed limitation and gives feedback to 
the driver or limit maximum speed automatically. Technically, it enables an external 
regulation of the car velocity [77]. Based on how permissive the systems are, we 
can identify several categories. The first one is called advisory and assumes 
displaying of the speed limit to line out its changes. Next one is called voluntary, or 
“driver-select”, which allows the driver to enable or disable control of the vehicle 
maximum speed. Finally, a mandatory variant means that the vehicle is limited at 
all times.  Another possible classification is based on the speed. Relying on that we 
identify the following categories: fixed speed limits; variable, where the speed limits 
are current spatially; and dynamical, where speed limits are expressed in terms of 
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time. Usage of such system has impact on traffic congestion, speed distribution and 
thus is very likely to have a positive impact also on safety. Liu and Tate propose in 
[78] an intelligent adaptation speed system that uses in-vehicle electronic devices 
to enable the speed of vehicle to be regulated automatically, with impact on slow 
moving queues and higher emission of pollutants gases.   

Another important factor in designing an advance driver assistance system 
is time to collision (TTC), one main indicator of traffic flow. Because this directly 
depends on distance and velocity of involved cars, the result can be quite accurate. 
The driver or ADAS must simultaneously estimate the time to collision with an 
oncoming car and monitor it to avoid a rear-end collision. Then it have to estimate 
the time required to complete overtake based on the current speed, road conditions, 
and knowledge on the capabilities of own vehicle. Some other devices [79], will 
display a warning when the TTC is between 10 seconds and the human reaction 
time - about one second. Moreover, when TTC estimation is almost one second, it 
switches from the warning to active driving assistance. Based on this coefficient the 
Forward Collision Warning (FCW) [80] system is designed to reduce rear-end vehicle 
collisions. 

Another aspect that needs to be considered is the road itself. We can 
distinguish between two different situations represented by highways and national 
road. First case implies only interacting vehicles running in the same direction, both 
on current and overtake lanes. On the other side, on national roads a common 
situation implies multi-lane (usually two-lane) bidirectional traffic flow. 

In the category of active safety, one that is gaining more and more 
importance is represented by car-to-car communication systems.  Besides the ability 
of wireless communication between cars, these systems provide also communication 
with road infrastructure. Some technical aspects and problems of ad-hoc wireless 
car-to-car and also car-to-road infrastructure are presented in [69].  Due to its 
potential to enhance the safety and also passengers’ comfort, many solutions and 
protocols are proposed also by automotive industry or by researchers [81], [82]. 
Reference [81] presents concepts and prerequisites for car-to-car communication 
defined by a team belonging to BMW Corporation. Reference [82] describes a 
possible cooperative solution based on car communication for collision avoidance 
systems. 

Prediction of human reactions from sensory observations is an extremely 
challenging task. The complexity resides in the interaction between two main 
behavioral levels as individual behavior and group dynamics. Overtaking action 
directly derives from emerging interactions between the individuals. A decision and 
a success of an action can determine the following activity. For example, slowing 
down of the leading vehicle can determine next vehicle to slow down or to overtake. 
MCMC methods have been intensively studied over the last years due to their ability 
of estimating samples from basically any distribution. Also, a wide variation of this 
algorithm is known so far, such as Metropolis-Hastings Random Walk, resampling 
(RMCMC), and Reversible Jump (RJMCMC). As best fitted for overtaking application 
it was chosen the Metropolis Hastings Random Walk. In this approach a random 
walk is performed through the configuration space of interest based on a probability 
distribution. At each point on the walk a random trial move from the current position 
in configuration space is selected. This trial move is then either accepted or rejected 

BUPT



70     Case Study: using Prediction Algorithms for Overtaking Assistance - 6 
according to a simple probabilistic rule. In our implementation we have used a 
rejection mechanism, with a local-proposal, in our case a probability density matrix. 
We let the newly proposed X depend on the previous state of the chain X(t-1). The 
samples (X(0),X(1),…) are derived from a Markov chain and represent the state of 
the system at a given moment. The classical Metropolis-Hastings Random Walk 
algorithm [83] is briefly summarized in figure 6.1. 

 

 

 

 

 

 

Fig. 6.1 The Metropolis-Hastings Random Walk algorithm 

Using the MCMC algorithm it was determined whether an overtake action 
can be performed in safe conditions or not.  This action depends directly on several 
parameters and conditions.  One of the most important issues is the clearance of the 
road. If the road is clear on opposite direction, the major condition for a successful 
action is to have a greater speed than overtaken car. Another scenario implies a fix 
obstacle or a car coming from opposite direction. In this it was considered the 
distance to the car and also the velocity of all three cars. 

After having several observations on all involved participants we can 
determine a movement prediction matrix for each car. This is based on all possible 
transitions from any considered states noted with “++”, “+”, “0”, “-”, “--“, and 
which code a particular coefficient of acceleration. These states and transitions 
between them, together with constructions of probability density matrix are 
presented in details in reference [31]. We use an adaptation of the algorithm 
described in figure 1. Considering the physical characteristics of an average car, the 
upper limit for “--” was set to -0.34 m/s2. An acceleration up to -0.14 m/s2 was 
coded with “-“. The state “0” designates a constant speed. A smooth acceleration up 
to 1.12 m/s2 was coded by “+”. And finally, a strong acceleration “++” was 
considered any value over 2.4 m/s2. In any moment the system read from sensors 
the position and also the velocity of cars. Considering the most probable transition 
and having the last position we can determine the most likely next location of a car. 
Having this information is easy to determine from physical laws if a collision can be 
avoided or not. To achieve this we have to consider also the error rate from sensor. 
In general the sensor manufacturer provide it as a given range (e.g. +/-0.3%). 
Based on the observation we can estimate that every resulting difference less than 
10m can lead to a very likely collision. Between 10-20 m we have a possible 
collision. Between 20-30 m is only small chance for collision. Finally, every distance 
greater that 30 m can be considered a premise of a safe overtakes.
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7 Conclusion and future work 

7.1 Concluding remarks  

 

This thesis is concentrated on algorithms for data filtering in traffic systems.. It 
contains studies on the opportunity of using Particle Filters, and especially MCMC 
methods in the context of dynamical conditions and restrictive resources. It also 
briefly presents the available state-of-the-art in this field. Based on this, it was 
determined that dynamic and adaptive model of observation based on vehicle 
acceleration could be a promising approach. Possible problems introduced by the 
presence of continuous probability space are solved by discrete based on driver 
behavior observation in order to make more efficient resource consumption. This 
approach was used for development of an adaptive version of the algorithm. The 
two steps of adaptation are useful in obtaining superior results of filter. 

Several set of tests were performed with different number of particles in 
order to determine the optimal filter reaction and the resource consumption. These 
were necessary due to real-time and limited resources requirements. Moreover, in 
order to obtain an accurate and fast filter response, a considerable number of 
particles should be taken into account. The compromise in terms of reaction time of 
the filter and resource consumption was solved using an average number of 
particles. However, the size of the filter is balanced by resources consumption, like 
memory or computational intensity. Data intensive systems like a video traffic 
surveillance platform capable of 30 frames/second [70], or in case of night mode 
with 12 frames/second [85], imply higher error rate and thus require more particles 
to improve the error corrections. However, considering results from graphs 
presented above, we can conclude that the proposed solution is competitive in 
terms of real-time systems like WSN. In that case a special attention should be paid 
also to intra-network information exchange. This information is needed to keep the 
history of the car together with other information about PDMs implemented at the 
level of different network nodes. 

Moreover, we can observe that the worst case represented by variable 
acceleration test sets requires, as expected, a higher number of samples to obtain a 
good result.  Considering exploration of methods like reversible jumps and 
resampling [40] in the second part we have implement and performed a set of 
experiments for comparison. The vehicle state vector has been estimated by 
considering noisy measurements coming from sensors. A first conclusion drawn 
from the experiments we made is that both algorithms provide reliable estimation of 
the vehicle’s position. Simulation results show that the SIR particle filter 
outperforms the SIS algorithm in terms of root mean square error. It was also 
inspected and discussed how tracking accuracy is affected by choosing of 
parameters in the particle filter. It has been observed that both algorithm SIS and 
SIR particle filter depend on their initialization and succeed better as the number of 
particles increases. 
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Considering the adaptive approach, in both cases the filter obtains a relative good 
performance. If it is taken into consideration only the first step, related to a variable 
number of particles, the benefit comes through the fact that filter error is 
maintained bellow the value of desired threshold. Still, choosing a very small 
threshold value will lead to a high rate of regenerated particles, and as result, to a 
medium performance of the filter.   

This thesis presents a study regarding parameters optimization for data 
filtering algorithms based on particle filters. It was investigated the opportunity of 
using MCMC methods in the context of dynamical conditions and restrictive 
resources. Several tests were performed considering different filter size in order to 
determine the optimal filter reaction and also the influence of several parameters on 
the adaptive algorithm. As revealed by experiments, a considerable number of 
particles should be used to obtain an accurate and fast filter response. However, in 
all the cases the filter error was significantly maintained under the sensors error.  

The investigated solution behaves satisfactorily, in case of a known pattern, 
due to the Markov chain incorporated.  If the initial conditions deviate far from the 
actual and the system is not accordingly to a well known model, the probability of 
particles approaching the true state can be very small in the early stages. Therefore, 
the filter may converge slowly in this case. However, the MCMC method is proven to 
generate samples from almost any distribution. 

 

7.2 Contributions  

According to the defined objectives, the author has studied the opportunity of 
using MCMC PF based on driver behavior in the scope of filtering errors, but also in 
sense of short term prediction.  

Contributions were brought in determination the appropriate variation of PF 
algorithm, in combination with driving behavior. The author has studied and 
synthesized the state-of-the art work in the field of prediction algorithms, filtering 
and error correction algorithms (here including PF, MCMC methods, Kalman filters 
and so on), traffic flow model and also modeling of driving behavior. 

 Main contribution was introduced by proposing and implementing an adaptive 
MCMC algorithm type PF able to estimate continuing value (acceleration of a car), 
with a discrete state space (PDM), and reducing resource consumption. It was also 
studied the applicability of the proposed algorithm assistance system such as for 
overtaking actions. The results were compared with a conventional fuzzy 
implementation. Simulations have proved significant improvements when 
implementing predictive. 

 This thesis presents a study on optimization of parameters for data filtering 
algorithms based on particle filters. It was investigated whether PF MCMC methods 
used in the context of dynamic conditions and with restrictive available resources 
can perform with satisfying results. Several tests were performed considering 
different filter sizes in order to determine optimal filter reaction and also the 
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influence of several parameters on the adaptive algorithm. As shown by the 
experiments, a considerable number of particles should be used to obtain an 
accurate and fast response of the filter. However, in each case presented, the filter 
error was significantly retained under the value sensor errors. 

The proposed algorithm model assumes a continuous motion, based on a 
matrix that summarizes the finite state space (mesh), and return to the 
continuously distribution, all this in the presence of observations affected by noise. 
Based on these assumptions, the filter is forced to perform well in the presence of 
three possible sources of error: error sensors, sampling and adaptation in discrete 
time acceleration. Another aspect that was considered was the rate of convergence. 

Contributions are made in the implementation of an adaptive algorithm based 
on multi scale Markov Chain Monte Carlo model that includes a longitudinal 
observation, intelligent driver model (IDM). 

Adaptability of the algorithm consists of two orthogonal aspects: the first of 
them is represented by the number of particles. They are determined through a 
calibration value. A minimum number of particles needed for convergence of the 
filter is set in the initial phase of the algorithm, and also convenient for the error 
threshold filter. In light of these issues more particles can be introduced for a better 
approximation performance of the filter, and when it reaches the maximum number 
of particles, re-sampling is performed for particles with low weight. With these 
values, it is easy to determine the ratio of computation effort and accuracy. 

The second aspect concerns the adaptability value of acceleration. For this 
integration model has been considered a model of microscopic observation, IDM. 
Acceleration value was adjusted to better reflect reality. Thus, the values were 
discretized, and used for finite state space in order to reduce computation effort and 
then were again adapted to continuous variation. In the early stages of the 
implementation of the algorithm, using a fixed value for acceleration for each state 
was taken into account, but this resulted in a non-optimal filter performance for the 
limit states entering values deviations from true values. By integrating IDM in the 
model of observation, each particle could "follow" the observation, by adapting 
acceleration value. Given the fact that each particle has the objective to better 
predict the position of observation, based on weighted mediation is performed and 
thus get a better filter performance. 

 

7.3 Future research directions  

Future work will be focused of development of a distributed version of 
proposed algorithm and optimization in order to fulfill low resources consumption 
request from wireless sensors. 

It will be considered also the opportunity of adapting the algorithm in order to 
run it on PSoC sensors available in the SENT Laboratory. Also it will be studied the 
opportunity of using smart agents in context of distributed algorithms. Also 
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theoretical considerations regarding strong and weak convergence criteria will be 
study for the proposed model.  

It will be studied, from the mathematical point of view, the dependency 
between input parameters such as: sensor error, number of particle, initialization of 
PDM and distribution of particles and the settling time of the filter. Also another fact 
that will be taken into consideration it will be the determination of the function 
which gives the time point where the filter error goes under a set values and 
remains under that calibration value.  

 

7.4 Published papers 
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