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Iterative Techniques for Controller Tuning  
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2011, 176 pagini, 69 figuri, 2 tabele. 

Cuvinte cheie: 

Tehnici iterative de acordare, Iterative Feedback Tuning, Virtual 
Reference Feedback Tuning, Iterative Regression Tuning, 
Simultaneous Perturbation Stochastic Approximation, reglare 
fuzzy, optimizare, LQR, LQG. 

Rezumat: 
În cadrul tezei sunt propuse diverse tehnici iterative dedicate 
acordării sistematice a parametrilor regulatoarelor automate în 
vederea îmbunătăţirii performanţelor sistemelor de reglare 
automată. Rezultatele de cercetare prezentate se referă la două 
direcţii distincte: îmbunătăţirea aspectelor particulare aferente 
fiecărei tehnici în parte şi folosirea acestor tehnici în combinaţie 
cu diferite structuri convenţionale de reglare automată 
exemplificate prin structurile cu reacţie după stare şi cele cu 
regulatoare fuzzy. Ambele direcţii sunt validate pe o gamă largă 
de aplicaţii de laborator urmărind investigarea diferitelor clase de 
procese cărora li se pot aplica tehnicile dezvoltate. Sunt efectuate 
studii comparative privind performanţele şi sunt analizate 
costurile de implementare ale tehncilor iterative. 
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1. Introduction 
 
 

1.1. Motivation behind the research 
 

Model reference control is a paradigm that has evolved in time to capture all 
the developments in control systems (CSs) design from the beginnings till 
nowadays. It has always been representative for the approach on the design phase 
where the control system engineer receives specifications over the CS that has to be 
designed. In many situations, these specifications come as constraints on the time 
response of the output of the controlled process, such as rising time, overshoot, 
settling time, steady-state error. This has always been the most direct way of 
asserting the behavior and the quality of the controlled systems. Other 
specifications can be in the frequency domain such as bandwidth, phase and gain 
margins, etc. 

A common way around with model reference control is formulated as 
follows: given some performance specifications that can be often described by the 
behavior of a (typically second order system) reference model response to a input 
excitation signal, design a CS that makes the output(s) of interest of the process 
behave like the reference model in terms of time response when driven by the same 
exactly input excitation signal. In most of the cases, the difference between the 
output of the CS’s output and the reference model output defines a measure of the 
quality of the match between the two. The cost function (CF) or the objective 
function (OF) expressed that way depends on the parameters of the controller. The 
model reference problem requires finding the suitable set of design parameters that 
minimize the OF, which brings close the responses that form the aforementioned 
error. Thus, the model reference control problem becomes and optimization problem 
that can be solved analytically or by some optimization technique. 

This is also a superficial view of the design problem as it hides important 
aspects. All the approaches to the problem eventually lead to the basic conclusion 
that in automatic control the design boils down to compromise. The central players 
in this game of compromise are of course the process and the controller for it is the 
relationship between them that determine the two other extremely important 
aspects of the CS: the disturbance rejection and the parameter sensitivity (which in 
turn determines the robust stability and the robust performance). 
 With these two objects in hand it has to be stressed the fact that the 
controller is subject to designer’s choice both as structure complexity and 
parameters values whereas the process can only be known partially. We use models 
for the processes which are inherently simplifications of the reality. Therefore, with 
models available, the design task can be carried out and tested but with no 
guarantee that the implementation of the proposed solution would give satisfactory 
results under real conditions.  
 As for obtaining the models, the user always has at hand tools such as first-
principle modeling or system identification for obtaining mathematical models. So, 
one aspect that has always been fixed with respect to the design of CS’s is the 
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model-based approach. Whether we operate on nominal models, simplified models, 
the knowledge of the process model has been essential to the design and analysis of 
the CS’s. Knowing the model allows for a better insight into the limitations of the 
design process and allows testing before implementation through simulation. 

On the shaky grounds of model uncertainty and parameters variations, tools 
had to be developed such that the specifications would be met under a broad range 
of conditions. That is the reason for development of fields such as adaptive control 
and robust control. 

Adaptive control has emerged as a solution to cope with parameter 
variations by means of automatically redesigning the controller. In general, the 
difficulty which arises with this approach is mainly the analysis that has to be 
carried out in a time-varying nonlinear context and possibly the cost of 
implementation. Some variations of the adaptive control include Gain-scheduling, 
Model Reference Adaptive Control (MRAC) (both direct and indirect) and Self Tuning 
Regulators (STR). Even by using approaches like the “MIT rule” or the Lyapunov 
redesign, we still make use of process model and just the thought of bringing 
together the issues of stability analysis, convergence and robustness, all of them in 
the time-varying nonlinear framework, could make the best of control engineers 
tremble. 

In the recent years, some techniques have emerged and earned the 
classification name as “data-based techniques” that claim to help in the design and 
tuning of control structures making no use of the process model, so being 
“model−free”. Such popular techniques investigated in this thesis are Iterative 
Feedback Tuning (IFT), Virtual Reference Feedback Tuning (VRFT), Correlation-
based Tuning (CbT), Iterative Regression Tuning (IRT). At first sight, they throw a 
bold challenge, an idea we could call as “Controlling the unknown”. The logic behind 
these techniques is apparently simple: since the classical two step design procedure 
(modeling and control, respectively) can miss the specifications because of the 
mismatch between the model and the real process, one should skip the modeling 
step and try to make a design (or tuning) without using a model. The idea has been 
advocated by studies showing that the modeling (identification) should not be seen 
as a purpose in itself, but rather a mean to help the unique purpose of control 
design [56]. Only the relevant aspects for control should be captured within the 
model in the model-based design paradigm.  

As it will be seen in the following, the label “model−free” is only valid in 
certain situations, under certain assumptions which can not be made unless some 
insight is available about the process in cause. And, as always, we will eventually 
reach the same position of compromise, but this time, with a new problem in hands: 
how much information about the process is sufficient to reach the specifications in 
design? How can the empirical observations be used to infer limitations in the design 
beforehand? If a model will prove to be necessary, how detailed should it be for the 
design purpose (this is the same as saying: how much are we willing to cut costs in 
identification and relax the quality constraints on the model)? 

From the point of view of the tradeoff between model quality (MQ), design 
complexity (DC) and performance requirements (PR), the data-based control (DbC) 
techniques are focused on achieving performances with no process model at hand 
(or a very crude approximation) and meeting the specifications with simple, easy to 
maintain and interpret controllers such as the one that predominate in the industry 
(e.g., PI, PID). This idea is highlighted in terms of the diagram presented in Fig. 1.1. 
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Fig. 1.1. Data-based control as a tradeoff between model quality, design complexity 

and performance requirements. 
 
 

1.2. Thesis overview 
 
 Iterative Feedback Tuning (IFT) is a data-based technique that tunes the 
controller parameters iteratively along the gradient direction of a given objective 
function and it is applicable when an initial stabilizing controller is given in advance. 

Variations between IFT algorithms are introduced by the choice of the 
objective function and of the adopted structure of the controller as well. IFT 
algorithms are formulated in the discrete time domain. 

The designer selects the controller’s structure and complexity, which means 
that the controller is available in analytical form. The parameterization should be 
such that the transfer function of the controller is differentiable with respect to its 
parameters gathered in the parameter vector ρ. 

IFT usually deals with LQG-like objective functions expressed as 
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where Ly(q-1) and Lu(q-1) are frequency dependent weightings that penalize the 
output difference δy and the control input u according to the designer’s needs. The 
expectation E{.} is taken with respect to the stochastic disturbances that enter the 
process and thus affect the closed-loop. The objective of iterative feedback tuning is 
to determine the optimal set of parameters ρ* which minimizes the objective 
function 
 )ρ(J*ρ

ρ
minarg= .               (1.2.2) 

The major stumbling block for the solution to this optimal control problem is 
the computation of the gradient of the objective function with respect to the 
controller parameters. An estimate of the gradient of the objective function with 
respect to the controller parameters can be obtained by conducting special 
“gradient” experiments on the closed-loop system at each iteration of the IFT. The 

MQ DC 
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PR 
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solution is approached iteratively using different gradient-based search algorithms 
such as 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂−= −+ )ρ(
ρ
Jest)R(γρρ i1i
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It should be pointed out right from the beginning that the technique is not 
only a sensitivity-based tuning but it also holds a stochastic convergence results 
which is of crucial importance in experiment-based tuning where all measurements 
are affected by random effects. 

The thesis has a strong focus on IFT, offering an exhaustive analysis of the 
technique, which serves both as a starting point in the analysis and as a comparison 
basis for the subsequent analyzed techniques. 

Virtual Reference Feedback Tuning (VFRT), viewed in the model-
reference control framework, is a technique that achieves the minimization of an 
objective function which penalizes the difference between the behavior of the 
designed closed-loop system and the behavior of the desired reference model [53], 
[54], [55]. This idea can be expressed as 

2
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where M(z) is the reference model expressed as a discrete time transfer function, 
P(z) and C(z) stand for the process discrete-time transfer function and for the 
controller discrete-time transfer function respectively. W(z) is a weighting filter and 
can be understood in frequency domain while being used as a degree of freedom in 
the design. The criterion makes use of the two-norm of a transfer function in 
discrete form. Another expression in the frequency domain can be employed due to 
the Parseval’s theorem as: 

∫
−
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π
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ωjωj

MR ωd)e(W)e(M
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π2
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To solve the VRFT problem means to try and find the controller which 
minimizes the objective function. The solution reduces to an identification problem 
as explained. The following discussion assumes single input single output linear 
time-invariant process. The time argument is omitted for simplicity. Also, the 
deterministic case is considered leaving the situation when the noise affects the 
signals for another discussion. An excitation for the open loop process is considered 
as u for which the output y is recorded. The same output is considered to have been 
obtained by filtering a reference signal through the reference model M. Although M 
is causal and the inverse of it is not, the filtering can be done to obtain this virtual 
reference signal called r since y is available. A virtual feedback control structure is 
built with the controlled error e = r − y feeding a controller with pre-specified 
structure called C(z). Passing e through C(z) should give us the initial signal used 
for excitation which is u. The parameters of the proposed structure of the controller 
which achieve the best fit between the filtered virtual error e and input signal u are 
the solution to an identification-like problem defined as an optimization problem 
which can be solved via least-squares if the parameterization of the controller is 
linear. Several manipulations lead to the fact that the solution to this problem can 
also be the solution to the model reference following problem. 
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 Correlation-based Tuning (CbT) is another approach to controller tuning 
that has been developed in the past decade. Its aim is to design the controller for 
the closed-loop feedback control structure in a manner which makes the closed-loop 
response to a reference input signal resemble the response of a reference model. 
Thus the same paradigm – that is specific to the objective of the MRAC and to the 
IFT and VRFT techniques – is preserved. The development of the technique does not 
make use of the process model and thus CbT can be considered as a member of the 
“model-free data-based” techniques group. 

An initial stabilizing controller is assumed to exist for the closed-loop and the 
behavior of the closed-loop is assumed to be different from the one of the reference 
model. This can also be called the output error since it is the sample-wise difference 
between the closed-loop output and the reference model output, both of them being 
excited by the same reference input. The model reference tracking error depends on 
one hand on the noise that affects the real closed-loop. On the other hand, it also 
depends on the reference input signal because of the difference between the actual 
closed-loop and the desired closed-loop (which is the reference model). The relation 
between the reference input and the output error can be easily surprised in the 
correlation function of the two signals when the quasi-stationary framework [116] is 
assumed which is a pretty realistic assumption. If the closed-loop system model and 
the reference model were the same, the output error would not be correlated 
anymore with the reference input. Therefore, the idea emerges that in order to 
make the two outputs resemble, a decorrelation procedure is performed. A measure 
for the correlation function of the two signals is chosen to be 

∑
−=

=
N

Nτ

2
ε,r )]ρ,τ(R[)ρ(J oe ,              (1.2.6) 

where )ρ,τ(R oeε,r  is the correlation function between the reference input signal 

r(k) and the output error )ρ,k(εoe . The dependence on the parameter vector ρ is 
emphasized which is the set of parameters that characterizes the linear controller. 
The correlation function for each τ is calculated over a finite time horizon which is 
the length of the experiment and the objective function J is calculated over 2N+1 
samples. 

A particular situation is considered when it can be possible to fiind a 
controller which perfectly decorrelates the output error and the reference input. This 
implies the fact that with an aprioric choice of the controller structure, we need to 
know at least the process model structure (not necessarily the model parameters) in 
order to check if the closed-loop equivalent behavior is a perfect match for the 
reference model structure. This is rarely the case although, because we usually 
choose reference models that are of second order with performance indices 
specifications such as damping factor and rise time. With the prespecified 
parameterization of the controller it may not be possible to achieve the desired 
behavior of a second order model. In an equivalent formulation, given a process 
model, the matching controller that results as an analytical solution may be 
improper. Thus, if we want to eliminate as much as possible the knowledge on the 
process and go for an aprioric selection on the controller structure and 
parameterization, what actually remains is a measure of the degree of correlation 
that can be reduced to the extent which gives a minimal decorrelation of the 
reference input and the output error. This is the most general case and although 
zero decorrelation is not possible, the problem then becomes amenable to numerical 
optimization. Different algorithms can be used such as steepest- descent or Gauss-
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Newton. The gradients that need to be computed can be obtained as in the IFT 
technique by performing special „gradient” experiments on the closed-loop. From 
case to case, one can select a stochastic approximation algorithm or a pure 
deterministic one. This idea is backed-up by the fact that the estimate of the 
correlation function obtained over a finite horizon is itself a random variable but 
depending on the length of the time horizon it gets more or less deterministic. 

The same issues related to any iterative tuning procedure are also specific to 
CbT, namely the convergence analysis of the algorithm and the preservation of the 
stability of the closed-loop along the iterations which has to be checked. 

Frequency-domain Tuning (FdT) has a similar formulation to that of IFT 
with general linear quadratic objective function which penalizes the output tracking 
error of a reference model and the control signal [29], [30], [110], [111], [113]. 
FdT gives a different solution to the gradient-based stochastic approximation 
algorithm, which resides in the computation of the estimate of the gradient of the 
objective function. The objective function is expressed in the frequency domain via 
Parseval’s theorem and by using spectral analysis techniques that allow the 
calculation of different auto and cross-correlation sequences of the signals in the 
closed-loop system. Spectral estimates are obtained for the transfer functions 
involved in the algorithm. The derivatives of the objective function with respect to 
the controller parameters are thus obtained in the frequency domain. This approach 
is appealing since it makes use of the spectral analysis techniques and circumvents 
the problem of using estimated parametric models by instead using non-parametric 
models in the form of the frequency response functions. 

The stability is ensured between iterations by calculating the Vinnicombe 
distance and the generalized stability margin. These quantities that are calculated 
here make use of the same nonparametric models that were obtained via spectral 
analysis. A general issue which is not taken into account for the described technique 
is the concern for quality estimates of the nonparametric models. 

 Iterative Regression Tuning (IRT) is another recent data-based 
algorithm for tuning controllers, and it is based on a computational approach [11], 
[12]. Similar in formulation to the IFT or VRFT approach, the idea behind this 
technique is to minimize a objective function which is dependent on the controller’s 
parameters in a typical negative feedback control structure. The solution to the 
optimization problem however resembles with the one used in IFT. This technique 
uses a similar gradient descent approach to search for the set of parameters which 
minimize the objective function. It also assumes to be model-free in the sense that 
it makes no use of a process model in the tuning procedure. All the fallacies of this 
approach are the same as in the case of IFT since the convergence of the algorithm 
and the stability of the loop have to be tested. Moreover, the algorithm could stop in 
a local minimum instead of finding the global one. 

The typical objective concerning IRT is to find the optimal parameter vector 
*ρ  to minimize the objective function 

 ∑
=

==
M

1i
ii

T qwqw))ρ(q(J ,              (1.2.7) 

where T
m1 ]w...w[w =  is the weighting vector, 0wi ≥ , m...1i = , are the 

weights, m...1i,0qi =≥ , are the empirical CS performance indices, 
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T
m1 ]q...q[q = , and T

n1 ]ρ...ρ[ρ =  is the parameter vector containing the 

tuning parameters of the controller. 
 What is very interesting about the idea behind IRT is the aggregation in the 
objective function of performance indices of different nature which is quite awkward 
at first sight. The performance measures need only be smooth functions of the 
design parameters. 

The problem is solved as in IFT via a gradient-based search of the minimum 
of the objective function and it is done by finding linear local models which express 
the dependency of the indices qi on the design parameters ρ. In the original 
approach these local models were obtain by intensively simulating on the model and 
this fact makes the original approach not amenable to implementation on real 
processes in order to extract information. However, the local linear models can also 
be derived by finite difference approximations by doing experiments on the real 
closed-loop. Accepting the fact that the estimates are affected by noise, a Robbins-
Monro stochastic approximation algorithm can be employed which is the gradient-
based approach but with a stochastic converge results in addition. 

 Simultaneous Perturbation Stochastic Approximation (SPSA) is based 
on the fact that unlike with the deterministic steepest descent, the gradient-based 
stochastic approximation algorithms (including IFT and SPSA) use estimated 
gradients of the OF 

)]ρ(
ρ
J[estaρρ iii1i

∂
∂−=+ .              (1.2.8) 

In IFT it is possible to calculate the gradients by using data from the real 
time experiments. However, when such schemes cannot be employed, according to 
Kiefer-Wolfovitz’s Stochastic Approximation (SA) algorithm the gradients have to be 
estimated on the basis of the noisy measurements of the OF in terms of the 
calculation of finite difference approximations around the current point. Under 
specific conditions regarding the existence of a minimum of the OF, the 

differentiability with respect to the parameters, and a suitable selection of Ni
i }a{ ∈ , 

Robbins-Monro’s SA algorithm and Kiefer-Wolfowitz’s SA algorithm  state that the 

sequence of parameter vectors Ni
i }ρ{ ∈  converges to the parameter vector *ρ  that 

minimizes the OF J. 
The idea behind finite difference approximations is to evaluate the argument 

of the OF around the current iteration argument and to use next the noisy 
measurements to calculate the estimates of the gradient. One-sided approximations 
or two-sided approximations can be used with this regard. For two-sided 
approximations, a general estimated gradient is 

⎥
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⎥
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where 
}

Tpositionthi

i 0...1...0ξ
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−

 is a p-dimensional vector, with p – the 

dimension of the parameter vector, and ic  is the difference magnitude coefficient. 

The variables J
~

 in (1.2.9) represent noisy measurements of the OF The sequences 

Ni
i }a{ ∈  and Ni

i }c{ ∈  are degrees of freedom in the FDSA algorithm. The FDSA-
based estimate is biased due to the random perturbations in the parameter vector 

and the convergence to *ρ  is ensured for a proper choice of the sequences 

Ni
i }a{ ∈  and Ni

i }c{ ∈ , namely: 

∑∑
∞

=

∞

=

∞<∞=

→→>>

0i

2ii

0i

i

iiii

.)c/a(  ,a

,0c  ,0a  ,0c  ,0a

           (1.2.10) 

Another problem of this approach is the fact that 2p measurements of the 
OF are needed at each iteration, and this affects the experiment’s costs. The costs 
increase with the number of parameters. That is the reason why SPSA reduces the 
costs burden by means of only two evaluations of the OF per iteration. With this 
regard the arguments are first randomly disturbed, and next the approximations of 
the gradient are calculated as follows using finite differences: 
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⎥
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⎥
⎥
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Δ

Δ
,          (1.2.11) 

where T
ip1ii ]...[Δ ΔΔ= . 

 The aforementioned characteristics of the SPSA algorithm make it suitable 
for experiments on the real process and obviously for tuning schemes based on 
numerical search like in IFT. 

Other two related techniques are presented as follows because of their 
innovative nature and because of the similarities to the previously mentioned 
concepts: 

Iterative Learning Control (ILC) [202] is similar to the aforementioned 
techniques in the sense that it works batch-wise, between experiments, but its’ 
purpose is not to modify some control parameters. Rather than that, it learns from 
previous experiments, incorporating knowledge on the previously obtained 
performance in order to modify the control such that the process output tracks a 
desired trajectory. In the simplest form, it is used to control open loop processes. 
However the loop can be conceptually regarded as “closed” in the iteration domain 
rather than in the time horizon that is specific to each experiment with the process. 

ILC is designed to work in environments where the control task is repeated 
exactly, with a critical emphasis on the trajectory initial conditions that have to be 
the same every time. This approach can be viewed as a constraint but it can actually 

BUPT



                                                                       1.2. Thesis overview 

 

11

be useful in domains such as robotics. The technique needs the capability of 
memorizing the past control activity in order to being able to transfer it to the next 
iteration. It may frequently use a process model in order to develop the learning 
laws and ensure the convergence to the desired performance. Thus it can not be 
labeled as “model-free”. The algorithm is combined with feedback control structures 
in order to endow the ILC structures with further capabilities specific to the classical 
control. 

Model Free Control (MFC) is a model-free adaptive-based approach to the 
process control. It does not work batch-wise as in the rest of the iterative 
algorithms but instead it advocates the fact that it makes no use of the process 
model and can solve the model reference tracking problem. MFC works in an 
adaptive fashion, employing a phenomenological local model that is valid for a very 
short period of time (typically during one sample time). For a single-input single-
output process, this can be of the form 

u Fy )n( α+= ,              (1.2.12) 
where n is usually 1 or 2 and it represents the derivative of n-th order with respect 
to time, α is a constant and F is to be computed periodically from the previous 
relation and u, y have the usual meaning of input and output respectively. The 
difficulty of the problem however is the calculation of the derivative of the output 
with respect to time. Numerical differentiation of a function with respect to time 
argument is a good approximation when the sample time is small and if the function 
of time is smooth. When this is not the case and even more, when the noise affects 
the measurement, the estimate of the derivative can be extremely erroneous. 
Different solutions were proposed in order to circumvent this problem as, for 
example, the solution given in [203]. 

Next a PI (or PID-type) control is implemented in the form 

∫++
α

+
α

−= eKeKyFu IP
* )n(

,            (1.2.13) 

where y* is the reference trajectory, e=y–y* is the output tracking error. This 
control gives for the closed-loop system a manifold in which the error e goes to zero 
if appropriate choices are made for the parameters in the control law. 

MFC shows a great potential especially when dealing with nonlinear systems. 
However, there is no systematic technique to choose the local model parameters, 
and when it comes to ensuring the stability of the control system the difficulties that 
are specific to adaptive systems arise. 

This thesis is structured in six chapters (with Introduction and 
Conclusions) and two appendices. Some details on these chapters and 
appendices are given as follows. 

Chapter 2 is a comprehensive study of Iterative Feedback Tuning. A 
general presentation of the tuning scheme is attempted for one- and two-degree-of-
freedom controllers (1-DOF and 2-DOF). For the 2-DOF control structure, two 
subsequent situations are detailed for both simultaneous and separate parameter 
tuning. General aspects concerning the reference model selection, the search 
direction of the searching algorithm and issues related to the convergence of the 
algorithm to the solution, are presented. Subchapters 9 and 10 are dedicated to the 
translation of IFT to multiple-input multiple-output (MIMO) systems. Ideas on how 
to reduce the number of experiments at each iteration are suggested, and they are 
important due to the rapidly increasing number of parameters in MIMO controllers. 
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An original tuning scheme using IFT is next presented on a setup using state 
feedback control. The scheme shows to be effective for pole-placement-based 
solutions that need retuning either because of process aging or due to the large 
differences between the model and the real process. A solution to the search 
algorithm convergence is proposed in terms of Popov’s hyperstability analysis 
theory. The results are validated on laboratory equipment represented by a modular 
servo system. These results are the subject of the 11th subchapter. 

Using the same structure with state-feedback control, the approach is 
translated to optimal control systems. The Linear Quadratic Regulator (LQR) and the 
Linear Quadratic Gaussian (LQG) control problems can be casted into optimization 
problems that are amenable for tuning via IFT. The optimality of the model-based 
paradigm in the design of optimal control systems is discussed in the light of the 
discrepancies between the process model and reality. In order to benefit from the 
guaranteed robustness properties of the LQR-based designed CSs, tuning via IFT is 
attempted. The case studies show some important facts: The optimal solution can 
be reached when we start from near a vicinity of the solution even if the process 
model is poor. Also, the optimal solution can be reached from an initial pole-
placement solution which by its nature does not guarantee good robustness 
properties for the state-feedback structure. Thirdly, the inherent noise that affects 
the experimental-based tuning is shown to weaken the robustness of the CS but not 
to a substantial degree. The novel tuning scheme is also validated on laboratory 
equipment with a servo system. All the aforementioned subjects form the 12th 
subchapter. 
 Subchapter 13 deals with the stability issue between the iterations of the 
IFT. The solution makes use of a coprime factor uncertainty representation for the 
controller subject to tuning, and the small gain theorem for linear time-invariant 
(LTI) discrete-time systems is applied with this regard. Bounds on the gain of the 
systems involved in the stability analysis are found from nonparametric models in 
frequency domain, which are typically easier to obtain than the parametric models. 
The frequency response functions can be obtained either via empirical transfer 
function estimate (ETFE) or by spectral correlation-based analysis (SPA). The results 
are supported by a simulation case study. The ideas can be considered to enlarge 
the overview of the iterative schemes and can render the approach into a suitable 
tool for maintaining the stability throughout the iterations. Several other techniques 
fall within the incidence of this approach, such as IRT, SPSA or CbT. 

 Chapter 3 is dedicated to the VRFT used as a tool in CSs design. VRFT and 
IFT can be viewed as counterparts of a complete tool aimed at CS design and fine 
tuning. For a proper formulation of the design objective (i.e., the objective function 
formulation), VRFT and IFT have an identical purpose. Benefiting from the flexibility 
of IFT which consists in the possibility of modifying the objective function along the 
iterations, different aims can be targeted such as control effort penalty or 
translation to control error penalty, and finally all the signals being weighted in time 
(or frequency domain) by using flexible filters. 
 The formulation of VRFT makes it suitable for the design of low complexity 
controllers such as the ones that predominate in industry. They have a major 
advantage which is also the key point of the VRFT algorithm: the linear 
parameterization of the controller. Using a linear parameterization, the combination 
with IFT can be shown to be very effective in terms of obtaining estimates of the 
Hessian of the objective function, which is the major contribution of the chapter. 
This in turn can speed up the convergence of the algorithm since the use of the 
estimate of the Hessian is recommended when close to the solution. The idea is 
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backed-up by simulations and real-time experiments on both angular velocity and 
angular position control for a laboratory servo system. 

 Chapter 4 introduces two additional techniques that can be used in the CS 
tuning. Since their development, IRT and SPSA were seen as more “computational 
approach” tools rather than suitable for experiment-based tuning. The major 
contribution of this chapter is that it indicates different possibilities of adapting these 
schemes to efficient practical real-time application. The substantial advantages of 
the iterative schemes presented in this thesis are pinpointed again in this context 
since they represent more than sensitivity-based tuning schemes. They also hold a 
stochastic convergence results which is a crucial development that is necessary 
whenever we talk about real-time processes inherently affected by measurement 
noise. Concluding, these techniques are situated on the increasingly blurred border 
between the metaheuristic approach in optimization and the data-based approach. 

IRT is translated to a real-process implementation for a servo system 
position control and is shown to be efficient.  

In the same setting as for the IFT and the LQG-based tuning for the process 
plus Kalman filter, the SPSA is also employed with results comparable in terms of 
efficiency with IFT. The tuning setup is novel since it is designed entirely in the 
state-space formulation for the ensemble formed by the process dynamics and the 
Kalman filter dynamics. The results allow for a thorough comparison between the 
two techniques. 

Chapter 5 is devoted to studying the possible improvements that can arise 
from the mixing of fuzzy control with IFT. The main contribution of this chapter is a 
three-step stable design technique for fuzzy control systems (FCSs) with Takagi-
Sugeno PI fuzzy controllers (TS-PI-FCs). This new technique is based on the 
combination of IFT and fuzzy control, and it aims discrete-time input affine Single 
Input-Single Output (SISO) processes. Starting with a poor process model and using 
a linear controller, the CS performance can be improved in two additional steps. The 
first step concerns the IFT, and the second step is related to the use of fuzzy 
control. 

Chapter 6 reiterates the contributions of this thesis both generally and 
punctually. It also suggests future research directions and how the results of this 
thesis were disseminated. 

Appendix A serves the subchapter 2.12, and it concerns the illustration of 
the objectives that pursued in a LQR based problem where all state variables are 
available to measurements, and they are therefore subject to measurement noise. 
The three objectives are the minimization of the state energy, the minimization of 
the control effort and the minimization of the energy transfer from the process noise 
to the state variables. 

Appendix B presents the proof of Theorem 5.1 in Chapter 5 dedicated to 
the globally asymptotically stability of the equilibrium point at the origin of the fuzzy 
control system. 

The new contributions of the current thesis are developed on two 
directions, 1) and 2), pointed out as follows. 

1) Combination of the different techniques with other control 
structures: 
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• IFT in tandem with state-feedback control design via pole-placement is 
analyzed in Chapter 2. The main new contribution is a direct state-space 
formulation of IFT gradient experiments. The results were published in: 

Rădac, M.-B., Precup, R.-E., Preitl, St., Petriu, E. M., Dragoş, C.-A., Paul, A. 
S. and Kilyeni, St. (2009): Signal Processing Aspects in State Feedback 
Control Based on Iterative Feedback Tuning. Proceedings of 2nd International 
Conference on Human System Interaction HSI’09, Catania, Italy, pp. 40-45, 
indexed in ISI Proceedings. 

Rădac, M.-B., Precup, R.-E., Petriu, E. M., Preitl, St. and Dragoş, C.-A. 
(2009): Iterative Feedback Tuning Approach to a Class of State Feedback-
Controlled Servo Systems. Proceedings of 6th International Conference on 
Informatics in Control, Automation and Robotics ICINCO 2009, Milan, Italy, 
vol. 1 Intelligent Control Systems and Optimization, pp. 41-48, indexed in 
ISI Proceedings. 

Rădac, M.-B., Precup, R.-E., Petriu, E. M., Preitl, St. and Dragoş, C.-A. 
(2011): Convergent Iterative Feedback Tuning of State Feedback-Controlled 
Servo Systems. In: Informatics in Control Automation and Robotics, Eds. 
Andrade Cetto, J., Filipe, J. and Ferrier, J.-L. (Springer-Verlag), pp. 99-111, 
indexed in SCOPUS. 

• IFT and state-feedback optimal control has been tackled in Chapter 2. The 
new contribution is a thorough study regarding the tuning for LQR/LQG 
problems in case of poor model available. The results are not yet published, 
but they belong to a journal paper which is in the review process. 

• IFT in combination with fuzzy control systems are the subject of Chapter 5. 
The results were published in: 

Precup, R.-E., Rădac, M.-B., Preitl, St., Tomescu, M.-L., Petriu, E. M. and 
Paul, A. S. (2009): IFT-based PI-fuzzy Controllers: Signal Processing and 
Implementation. Proceedings of 6th International Conference on Informatics 
in Control, Automation and Robotics ICINCO 2009, Milan, Italy, vol. 1 
Intelligent Control Systems and Optimization, pp. 207-212, indexed in ISI 
Proceedings. 

Precup, R.-E., Rădac, M.-B., Preitl, St., Petriu, E. M. and Dragoş, C.-A. 
(2009): Iterative Feedback Tuning in Linear and Fuzzy Control Systems. In: 
Towards Intelligent Engineering and Information Technology, Eds. Rudas, I. 
J., Fodor, J. and Kacprzyk, J. (Springer-Verlag), pp. 179-192, indexed in 
SCOPUS. 

• The combination of IFT and VRFT is carried out in Chapter 3. The results 
were published in: 

Rădac, M.-B., Grad, R.-B., Precup, R.-E., Preitl, St., Dragoş, C.-A., Petriu, 
E. M. and Kilyeni, A. (2011): Mixed Virtual Reference Feedback Tuning - 
Iterative Feedback Tuning Approach to the Position Control of a Laboratory 
Servo System. Proceedings of International Conference on Computer as a 
Tool EUROCON 2011, Lisbon, Portugal, paper index 453, 4 pp., indexed in 
INSPEC. 

Rădac, M.-B., Grad. R.-B., Precup, R.-E., Petriu, E. M., Preitl, St. and 
Dragoş, C.-A. (2011): Mixed Virtual Reference Feedback Tuning − Iterative 
Feedback Tuning: Method and Laboratory Assessment. Proceedings of 20th 
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IEEE International Symposium on Industrial Electronics ISIE 2011, Gdansk, 
Poland, pp. 649-654, indexed in INSPEC. 

2) Improvements of the different technniques in both theoretical 
and practical implementation aspects together with validation on 
laboratory equipment: 

• IFT’s convergence is studied in the Chapter 2 and the results were published 
in 

Rădac, M.-B., Precup, R.-E., Petriu, E. M., Preitl, St. and Dragoş, C.-A. 
(2011): Convergent Iterative Feedback Tuning of State Feedback-Controlled 
Servo Systems. In: Informatics in Control Automation and Robotics, Eds. 
Andrade Cetto, J., Filipe, J. and Ferrier, J.-L. (Springer-Verlag), pp. 99-111, 
indexed in SCOPUS. 

• Stability of IFT throughout the iterations is also discussed in Chapter 2 and 
the results were published in: 

Rădac, M.-B., Precup, R.-E., Petriu, E. M., Preitl, St. and David, R.-C. 
(2011): Stable Iterative Feedback Tuning Method for Servo Systems. 
Proceedings of 20th IEEE International Symposium on Industrial Electronics 
ISIE 2011, Gdansk, Poland, pp. 1943-1948, indexed in INSPEC. 

• Experimental validations of IFT, VRFT, IRT, ILC on laboratory equipment are 
highlithted in: 

Rădac, M.-B., Precup, R.-E., Preitl, St., Tar, J. K., Fodor, J. and Petriu, E. 
M. (2008): Gain-Scheduling and Iterative Feedback Tuning of PI Controllers 
for Longitudinal Slip Control. Proceedings of 6th IEEE International 
Conference on Computational Cybernetics ICCC 2008, Stara Lesna, Slovakia, 
pp. 183-188, indexed in SCOPUS, INSPEC. 

Precup, R.-E., Moşincat, I., Rădac, M.-B., Preitl, St., Kilyeni, St., Petriu, E. 
M. and Dragoş, C.-A. (2010): Experiments in Iterative Feedback Tuning for 
Level Control of Three-Tank System. Proceedings of 15th IEEE Mediterranean 
Electromechanical Conference MELECON 2010, Valletta, Malta, pp. 564-569, 
indexed in ISI Proceedings. 

Precup, R.-E., Borchescu, C., Rădac, M.-B., Preitl, St., Dragoş, C.-A., 
Petriu, E. M. and Tar, J. K. (2010): Implementation and Signal Processing 
Aspects of Iterative Regression Tuning. Proceedings of 2010 IEEE 
International Symposium on Industrial Electronics ISIE 2010, Bari, Italy, pp. 
1657-1662, indexed in SCOPUS, INSPEC. 

A list of the papers that provide new contributions of the current 
thesis is presented as follows: 

1. Rădac, M.-B., Precup, R.-E., Preitl, St., Tar, J. K., Fodor, J. and Petriu, E. M. 
(2008): Gain-Scheduling and Iterative Feedback Tuning of PI Controllers for 
Longitudinal Slip Control. Proceedings of 6th IEEE International Conference on 
Computational Cybernetics ICCC 2008, Stara Lesna, Slovakia, pp. 183-188, indexed 
in SCOPUS, INSPEC. 

2. Rădac, M.-B., Precup, R.-E., Preitl, St., Petriu, E. M., Dragoş, C.-A., Paul, A. S. 
and Kilyeni, St. (2009): Signal Processing Aspects in State Feedback Control Based 
on Iterative Feedback Tuning. Proceedings of 2nd International Conference on 
Human System Interaction HSI’09, Catania, Italy, pp. 40-45, indexed in ISI 
Proceedings. 
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3. Precup, R.-E., Rădac, M.-B., Preitl, St., Tomescu, M.-L., Petriu, E. M. and Paul, 
A. S. (2009): IFT-based PI-fuzzy Controllers: Signal Processing and Implementation. 
Proceedings of 6th International Conference on Informatics in Control, Automation 
and Robotics ICINCO 2009, Milan, Italy, vol. 1 Intelligent Control Systems and 
Optimization, pp. 207-212, indexed in ISI Proceedings. 

4. Rădac, M.-B., Precup, R.-E., Petriu, E. M., Preitl, St. and Dragoş, C.-A. (2009): 
Iterative Feedback Tuning Approach to a Class of State Feedback-Controlled Servo 
Systems. Proceedings of 6th International Conference on Informatics in Control, 
Automation and Robotics ICINCO 2009, Milan, Italy, vol. 1 Intelligent Control 
Systems and Optimization, pp. 41-48, indexed in ISI Proceedings. 

5. Rădac, M.-B., Precup, R.-E., Preitl, St., Tar, J. K. and Burnham, K. J. (2009): 
Tire Slip Fuzzy Control of a Laboratory Anti-lock Braking System. Proceedings of the 
European Control Conference 2009 ECC’09, Budapest, Hungary, pp. 940-945. 

6. Precup, R.-E., Gavriluţă, C., Rădac, M.-B., Preitl, St., Dragoş, C.-A., Tar, J. K. 
and Petriu, E. M. (2009): Iterative Learning Control Experimental Results for 
Inverted Pendulum Crane Mode Control. Proceedings of 7th International Symposium 
on Intelligent Systems and Informatics SISY 2009, Subotica, Serbia, pp. 323-328, 
indexed in ISI Proceedings. 

7. Rădac, M.-B., Precup, R.-E., Preitl, St. and Dragoş, C.-A. (2009): Iterative 
Feedback Tuning in MIMO Systems. Signal Processing and Application. Proceedings 
of 5th International Symposium on Applied Computational Intelligence and 
Informatics SACI 2009, Timişoara, Romania, pp. 77-82, indexed in ISI 
Proceedings. 

8. Precup, R.-E., Moşincat, I., Rădac, M.-B., Preitl, St., Kilyeni, St., Petriu, E. M. 
and Dragoş, C.-A. (2010): Experiments in Iterative Feedback Tuning for Level 
Control of Three-Tank System. Proceedings of 15th IEEE Mediterranean 
Electromechanical Conference MELECON 2010, Valletta, Malta, pp. 564-569, indexed 
in ISI Proceedings. 

9. Precup, R.-E., Borchescu, C., Rădac, M.-B., Preitl, St., Dragoş, C.-A., Petriu, E. 
M. and Tar, J. K. (2010): Implementation and Signal Processing Aspects of Iterative 
Regression Tuning. Proceedings of 2010 IEEE International Symposium on Industrial 
Electronics ISIE 2010, Bari, Italy, pp. 1657-1662, indexed in SCOPUS, INSPEC. 

10. Precup, R.-E., Rădac, M.-B., Preitl, St., Petriu, E. M. and Dragoş, C.-A. (2009): 
Iterative Feedback Tuning in Linear and Fuzzy Control Systems. In: Towards 
Intelligent Engineering and Information Technology, Eds. Rudas, I. J., Fodor, J. and 
Kacprzyk, J. (Springer-Verlag), pp. 179-192, indexed in SCOPUS. 

11. Precup, R.-E., Preitl, St., Rădac, M.-B., Petriu, E. M., Dragoş, C.-A. and Tar, J. 
K. (online first, Date of Publication: 03 August 2010): Experiment-based teaching in 
advanced control engineering. IEEE Transactions on Education, vol. PP, no. 99, pp. 
1-11, DOI: 10.1109/TE.2010.2058575, ISI Science Citation Index impact factor (in 
2009) = 1.157. 

12. Rădac, M.-B., Precup, R.-E., Petriu, E. M., Preitl, St. and Dragoş, C.-A. (2011): 
Convergent Iterative Feedback Tuning of State Feedback-Controlled Servo Systems. 
In: Informatics in Control Automation and Robotics, Eds. Andrade Cetto, J., Filipe, J. 
and Ferrier, J.-L. (Springer-Verlag), pp. 99-111, indexed in SCOPUS. 

13. Rădac, M.-B., Grad, R.-B., Precup, R.-E., Preitl, St., Dragoş, C.-A., Petriu, E. M. 
and Kilyeni, A. (2011): Mixed Virtual Reference Feedback Tuning - Iterative 
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Feedback Tuning Approach to the Position Control of a Laboratory Servo System. 
Proceedings of International Conference on Computer as a Tool EUROCON 2011, 
Lisbon, Portugal, paper index 453, 4 pp., indexed in INSPEC. 

14. Rădac, M.-B., Grad. R.-B., Precup, R.-E., Petriu, E. M., Preitl, St. and Dragoş, 
C.-A. (2011): Mixed Virtual Reference Feedback Tuning − Iterative Feedback 
Tuning: Method and Laboratory Assessment. Proceedings of 20th IEEE International 
Symposium on Industrial Electronics ISIE 2011, Gdansk, Poland, pp. 649-654, 
indexed in INSPEC. 

15. Rădac, M.-B., Precup, R.-E., Petriu, E. M., Preitl, St. and David, R.-C. (2011): 
Stable Iterative Feedback Tuning Method for Servo Systems. Proceedings of 20th 
IEEE International Symposium on Industrial Electronics ISIE 2011, Gdansk, Poland, 
pp. 1943-1948, indexed in INSPEC. 

 Concluding, the new contributions of this thesis belong to the results 
published in 15 papers. The author of this thesis is the first author of 10 of these 
papers. All papers are classified as follows as function of their indexing and visibility: 

• one paper published in an ISI journal with impact factor (IEEE Transactions 
on Education), 

• six papers published in the volumes of academic conferences indexed in ISI 
Proceedings, 

• five papers published in the volumes of academic conferences indexed in the 
international databases SCOPUS and/or INSPEC, 

• two book chapters published in Springer-Verlag and indexed in SCOPUS as 
well. 

All papers are visible, and this is proved by the organizing societies, IEEE 
(for ten papers), IFAC (for two papers) and EUCA (for one paper, published at 
European Control Conference ECC’09), and by Springer-Verlag (for the two book 
chapters). It is also highlighted that 14 out of the 15 papers are published abroad. 
 

BUPT



 
 
 

2. Iterative Feedback Tuning (IFT) 
 
 

2.1. Introduction to Iterative Feedback Tuning 
 
 Iterative Feedback Tuning (IFT) is a data-based technique that tunes the 
controller parameters iteratively along the gradient direction of a given objective 
function and it is applicable when an initial stabilizing controller is given in advance 
[1]. Variations between IFT algorithms are introduced by the choice of the objective 
function, as well as by the adopted structure of the controller. 
 The control design via IFT is carried out in the discrete time domain. The 
designer selects the controller’s structure and complexity, which means that the 
controller is available in analytical form. The parameterization should be such that 
the transfer function of the controller is differentiable with respect to its parameters. 

In this theoretical part, first the case of one-degree-of-freedom, and then 
the case of two-degree-of-freedom controllers will be discussed. 

The next set of controller parameters are obtained by using a Gauss-Newton 
scheme: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂−= −+ )ρ(
ρ
Jest)R(γρρ i1i

i
i1i ,             (2.1.1) 

where Ni ∈  is the iteration number, γi is a positive real number which determines 
the step size of the current iteration, and Ri is a positive definite matrix typically 
chosen equal to an estimate of the Hessian of J. 
 A separate subchapter is dedicated to the presentation of some options on 
how to choose the matrix R. Subchapter 2.6. Search direction presents aspects 
concerning three techniques to obtain the matrix R. 
 
 

2.2. Criterion minimization 
 

A separate paragraph has been dedicated to the issue of minimization of the 
objective function, because J(ρ) can be chosen of different structure. 

For example in [1], for the two-mass-spring system with friction, two 
objective functions were chosen, a different one for each controller. In [4], for the 
comparison a of PID controller parameters obtained with IFT and with classical 
tuning rules, a particular form of the objective function from [16] was used, viz. the 
control weight was considered to be null. 

For the case studies presented in this work the following quadratic criterion 
was implemented. The form of the objective function is the one suggested in [14] 
and [16]  
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where Ly(q-1) and Lu(q-1) are frequency dependent weightings that penalize the 
output difference δy and the control input u according to the designer’s needs. The 
expectation E{.} is taken with respect to the stochastic disturbances that enter the 
process and thus affect the closed-loop. The objective of IFT is to determine the 
optimal set of parameters ρ* which minimizes the objective function [3] 
 )ρ(J*ρ

ρ
minarg= .               (2.2.2) 

The major stumbling block for the solution of this optimal control problem is 
the computation of the gradient of the objective function with respect to the 
controller parameters [16]. The gradient of the objective function is 

 ∑
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The necessary condition for optimality is 

 0)ρ(
ρ
J

*ρρ
=

∂
∂

=
.               (2.2.4) 

 To solve equation (2.2.4) for ρ*, one has to know how the signals δy and u 
are related to ρ and one has to be able to compute the gradients of these signals in 
respect with ρ. The process is supposed to contain unknown dynamics, therefore the 
required analytical form relations cannot be established. 

The main contribution of IFT is that it offers a technique to calculate the 

gradient )ρ(
ρ
J

∂
∂  directly from the closed-loop system. According to (2.2.3) the 

required data are the signals δy and u and the gradients of these signals, 

)ρ(
ρ
yδ

∂
∂ and )ρ(

ρ
u
∂
∂ . δy and u can be obtained by direct measurements, while the 

gradients are obtained from the closed – loop system.  

After computing the unbiased estimates of the gradients )ρ(
ρ
yδ

∂
∂ and 

)ρ(
ρ
u
∂
∂ , one can calculate the estimate of the gradient of the OF 
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                  (2.2.5) 
The methodology to obtain the gradient of the objective function is the same 

no matter which other quadratic criterion is used. Therefore the particular cases of 
the objective function presented above will not be detailed anymore. 

The methodology to obtain the gradients of the signals y and u or δy and u 
will be presented in the following next sections for different controller structures.
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2.3. Design criterion for one-degree-of-freedom 
controllers 
  

Considering the structure with a one-degree-of-freedom controller given in 
Fig. 2.3.1, the signals in the closed-loop system are all dependent on the actual 
controller tuning, which is explicitly indicated by using the ρ argument. 
 IFT is a technique based on several experiments; therefore we consider 
each experiment of finite length. Then the reference input is {r(k)}k=1,…,N; the 
argument k abbreviates the sampling period Ts. 
 
 
 
 
 
 
 

P(q-1) is a SISO process and C(q-1,ρ) is a feedback controller suitably 
parameterized by some parameter vector ρ=[ρ0 ρ1 … ρn ]T. 
 Let S(q-1,ρ) denote the achieved sensitivity function and T(q-1,ρ) the 
complementary sensitivity function, respectively: 

 
)ρ,q(C)q(P1

1)ρ,q(S
11

1
−−

−

+
= ,          (2.3.1.a) 

)ρ,q(C)q(P1

)ρ,q(C)q(P
)ρ,q(S1)ρ,q(T

11

11
11

−−

−−
−−

+
=−= .        (2.3.1.b) 

Let yd(k) be the desired output response to the reference r(k)  generated by 
a reference model selected by the designer. The system with the tuned controller is 
desired to give a response very close to the response of the reference model (Fig. 
2.3.2). 

 
 

 
Fig. 2.3.2.  Block diagram of the reference model. 

 
The difference between the achieved and the desired response is an output 

error: 
)k(y)ρ,k(y)ρ,k(yδ d−= .              (2.3.2) 

By virtue of Fig. 2.3.1 one can establish the following relations: 
)k(v)ρ,k(S)k(r)ρ,k(T)ρ,k(y += ,          (2.3.3.a) 

))k(v)k(r)(ρ,k(S)ρ,k(C)ρ,k(u −= .          (2.3.3.b) 

The analytical expressions of the gradients of δy and u are obtained using 
relations (2.3.1.a,b), (2.3.2) and (2.3.3.a,b): 

Fig. 2.3.1.  Block diagram of the closed loop system with one-degree-

of-freedom controller. 

 C(ρ)     P r u(ρ) y(ρ) e(ρ)
-

   Td 
r yd 
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The gradient of the controller, )ρ,q(
ρ
C 1−
∂
∂ , can be determined in analytical 

form using the known expression for the discrete controller, )ρ,q(C 1−∂ . )ρ,q(
ρ
C 1−
∂
∂  

is a vector with one column, with as many rows as the number of the controller’s 
parameters: 

⎥
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By assumption, all derivatives in (2.3.5) exist. 
 Without knowing the model of the process, it is obvious that we cannot 
calculate the gradients of δy and u, based on the analytical relations (2.3.4.a,b). The 
formulation of IFT in the case of one-degree-of-freedom controllers needs two 
experiments in order to compute the next set of controller parameters. The 
experiments are described in Table 2.3.1. 
 

Table 2.3.1. Experimental procedure 
 

Experiment (1) “normal” (2) “gradient” 
Reference Input r1(k)=r(k) r1(k)=r(k)-y1(k,ρ) 

Measurements 

u1=C(q-1,ρ)S(q-1,ρ)(r1(k)-
v1(k)) 
y1=T(q-1,ρ)r1(k)+S(q-

1,ρ)v1(k) 

u2=C(q-1,ρ)S(q-1,ρ)(r2(k)-v1(k)) 
y2=T(q-1,ρ)r2(k)+S(q-1,ρ)v2(k) 

 
 The first experiment is also known as the normal experiment. In this first 
experiment the desired reference signal r is applied. During the first experiment the 
control signal u1 the system output y1 and the control error e are measured.  
 The second experiment is called the gradient experiment. The reference 
signal to the second experiment is the control error of the first experiment (e=r-y1). 
During this experiment, the output signal y2 and the control signal u2 are measured. 
 The obtained measurements form the two experiments can be used to 

estimate the derivatives )ρ,k(
ρ
uand)ρ,k(

ρ
yδ

∂
∂

∂
∂ : 
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The disturbances in experiment one and two, v1 and v2, respectively, are 
assumed to be of zero mean and mutually uncorrelated. Under this assumption, the 
given gradient estimate is unbiased. 
 
 

2.4. Design criterion for two-degree-of-freedom 
controllers 
 

Many structures of two-degree-of-freedom controllers are reported in the 
literature. For example, four structures of two degrees of freedom are presented in 
[6], with emphasis on the best implementation for dead-time compensation, and a 
different structure is presented in [4] to aim the achievement of a fast response to 
set-point changes. 

There are several possibilities to apply IFT to different controller structures. 
In this study, two structures were considered. The first structure of two-degree-of-
freedom controller is the one presented in [4] and the second structure is the one 
suggested in [1]. In the following two subparagraphs the methodology of applying 
algorithm to these structures is presented in terms of two approaches. The two 
approaches differ considerably because the controller parameters are tuned 
differently. The first approach tunes the parameters of the feedback and the 
feedforward controller simultaneously and the second approach tunes them 
separately; first the feedback controller parameters and then the feedforward 
controller parameters. 
 

2.4.1. Simultaneous parameter tuning 
 

The structure for simultaneous parameter tuning, illustrated in Fig. 2.4.1.1, 
is the one proposed in the first relevant work related to IFT [14], then further 
developed by the same authors in 1998 [16] and later found in [27]. 
 
 
 
 
 
 

 
 

 

   P 
r u(ρ) y(ρ) 

Cr(ρ) -

Cy(ρ) 

Fig. 2.4.1.1. Block diagram of a two-degree of freedom controller. 
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In regard with Fig. 2.4.1.1 one can write the following process model: 
y(k) = Pu(k)+v(k),            (2.4.1.1) 

where v(k) is a stochastic disturbance. This system will be controlled by a two-
degree-of-freedom controller, therefore the control signal has the expression 
 u(k) = Cr(ρ)r(k)- Cy(ρ)v(k).           (2.4.1.2) 

The controller is operating on the process is C(ρ) = {Cr(ρ), Cy(ρ)}. Cr(ρ) and 
Cy(ρ) are linear time-invariant transfer functions parameterized by a vector 

parameter pnRρ ∈ . In [16] it is stated that it is possible for the two controllers to 

have common parameters. 
 The desired model is described by Fig. 2.3.2 as in the case of one-degree-
of-freedom controllers. The criterion minimization needs to compute the output 
error 

dy)ρ(yyδ −= ,            (2.4.1.3) 
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This error consists of a contribution due to incorrect tracking of the 
reference input r and an error due to the disturbance. 

From Fig. 2.4.1.1 one can write the sensitivity function and the 
complementary sensitivity function.  
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 What is interesting to find out for this case is again the estimate of the 
gradient of the output signal and the estimate of the gradient of the control signal. 

First it is necessary to note that )ρ(
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The second term can be obtained by using the output signal from one 
experiment as a reference signal to another experiment. This means that for each of 
the iterations three experiments are needed. 

The gradient of the output can be estimated in the following way: 
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The next step is to obtain an estimate of the gradient of the control signal. 
The control signal can be written as: 
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Based on the expression of the sensitivity function in (2.4.1.5.b) one can compute 
the gradient of S(ρ): 
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It follows that the expression of the gradient of the control signal is 
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Observing that [ ] yv)ρ(Sr)ρ(T =+ , the following result is obtained: 
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The estimate of the gradient of the control signal has the following expression [16]: 
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The experimental procedure is detailed in Table 2.4.1.1. Experiments 1 and 
3 are the same while experiment 2 has the reference input the output signal from 
the first experiment. 
 

Table 2.4.1.1 Experimental procedure 
 

Experiment (1)(3) “normal” (2) “gradient” 
Reference Input r1(k)=r(k) r2(k)= y1(k,ρ) 

Measurements 
u1=C(q-1,ρ)S(q-1,ρ)(r1(k)-
v1(k)) 
y1=T(q-1,ρ)r1(k)+S(q-1,ρ)v1(k) 

u2=C(q-1,ρ)S(q-1,ρ)(r2(k)-
v1(k)) 
y2=T(q-1,ρ)r2(k)+S(q-1,ρ)v2(k) 

 

2.4.2. Separate parameter tuning 
 

For the presentation of the separate parameter tuning by IFT, we choose a 
structure as the one presented in Fig. 2.4.2.1. This structure consists of two-degree-
of-freedom controller (a feedforward controller and a feedback controller), the 
reference model implemented as a prefilter and the process. 
 

 
Fig. 2.4.2.1.  Block diagram of a system with two-degree-of-freedom controller. 

y(ρa, ρb) 
Model Controller Process 

Feedforward 

y’ ufb(ρa) r 

uff(ρb) 

u(ρa, ρb) e(ρa) 
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By combining a simple controller with a reference model, one can obtain a 

better model following. To improve even more the control signal following, one can 
use a feedforward filter as the one in Fig. 2.4.2.1. 

The reference model is typically chosen as a dynamic system of first or 
second order. It is necessary that the feedback loop be very fast relative to the 
response of the chosen model. 

The feedforward filter has to be chosen in such a manner that the so-called 
conditional feedback property holds. This property states that the closed loop 
transfer function equals the transfer function of the desired model, no matter of the 
feedback controller. This is satisfied whenever the feedforward controller equals the 
product between the transfer functions of the desired model and of the inverse of 
the process model. 

The signal uff will produce the desired output if the models are correct. 
When the output signal deviates from the desired behavior, the control error 

e will be a non zero number. 
It is also possible to combine this structure with an additional feedforward 

from the measured disturbances. In this case, feedforward is used both to improve 
set-point response and to reduce the effect of the measurable disturbances. 

This structure is used when the system has load disturbances or process 
uncertainties. In such cases, the feedback controller is designed so that system 
takes care of these problems while the feedforward controller and the reference 
model are designed to obtain the desired set-point response. 

An IFT controller for a two-mass-spring system with friction, was realised in 
[1], with a structure like the one presented in Fig. 2.4.2.1. The novelty brought by 
this work is the idea of separate controller tuning. 

Supposing that a stabilizing controller structure is given in advance (C(ρa
(0)), 

F(ρb
(0))), in conformity with this approach, one has to tune first the feedback 

controller C(ρa) – in order to achieve low sensitivity, and then the feedforward 
controller F(ρb) – in order to achieve desired tracking property. 

Four experiments are needed to apply IFT to this controller structure. The 
experiments will be described in the following headers called Experiment 1 to 4. 

Through experiments 1 and 2, the feedback controller is being tuned and 
through experiments 3 and 4 the feedforward controller is being tuned. 

The parameters are updated by (2.1.1). 
The objective functions or the minimization direction can be chosen in 

different ways. For example in [1], two objective functions were chosen – a different 
one for each controller tuning, and the minimization direction was chosen to be 
made by Broyden – Fletcher – Goldfarb – Shanno method. 

For the further description of the algorithm through experiments, the 
approach to calculate the gradients of the control signal and respectively, of the 
output signal will be shown. These values are needed in order to compute the 
gradient of the objective function J and R matrix, in order to calculate the next set 
off controller parameters, whichever optimization method is to be chosen. 
 
Experiment 1 
 

The first experiment consists of the setup depicted in Fig. 2.4.2.2. 
Set uff(k) = 0 and yd(k) = 0, and inject a signal d(k), which is white noise of zero 
mean.  
Let u1(ρa) = 0 and y1(ρa) = 0 be the corresponding I/O signals of the process. 

BUPT



Iterative Feedback Tuning (IFT) - 2 

 

26

From Fig. 2.4.2.2, one can write the relations for u1(ρa) and y1(ρa). 

 
Fig. 2.4.2.2. Block diagram of the system used in Experiment 1. 

d
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)ρ(y)ρ(C)ρ(u aaa1 ⋅−= .        (2.4.2.1.b) 
 
Experiment 2 
 

The second experiment is different from the first by the fact that, now the 
test signal is set to zero and to the feed forward, the output signal form the first 
experiment is being injected. Hence, set d(k) = 0, yd(k) = 0 and uff(k) = y1(k, aρ ). 

The corresponding setup for the second experiment is illustrated in Fig. 2.4.2.3. 

 
Fig. 2.4.2.3. Block diagram of the system used in Experiment 2. 
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The gradient of the output signal can be estimated by the following relation: 
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The gradient of the control signal can be estimated by the following relation: 
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Having these estimates, one can compute the gradient of the objective 
function and the matrix R, of the chosen type and then determine the next set of 
controller parameters. 

After the algorithm starts to converge, with the optimized parameters set 
for the feedback controller, one has to proceed to experiment 3 and 4, trying to 
tune the feedforward filter. 

 
Experiment 3 

 
From this point on, we start with a tuned feedback controller K and a non-

tuned but stable initial feedforward controller F(ρb). The set up for the third 
experiment is described in Fig. 2.4.2.4. 

 

 
Fig. 2.4.2.4. Block diagram of the system used in Experiment 3. 
 
Based on Fig. 2.4.2.4, one can write the input-output relations for the 

process: 

r)q(T
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Experiment 4 
 

Experiment 4 is the second experiment needed to help obtain the next set of 
the parameters of the feedforward controller. The set up for this last experiment is 
the one depicted in Fig. 2.4.2.5. 

 
 
 
 

 
F

 
Fig. 2.4.2.5. Block Diagram of the system used in Experiment 4. 

 
From Fig. 2.4.2.5, one can write the following relations: 

r
)q(C)q(P1

1)ρ(u
11b4 −−+

= ,        (2.4.2.7.a) 
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11
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−

+
= .        (2.4.2.7.b) 

From the the input-output relations of the process in the Experiment 4, one 
can see that they both are independent of the feedforward controller parameters. 
Given this fact, it is enough to perform Experiment 4 only once. 

The derivatives of u(ρb) and y(ρb) 
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The gradient of the control signal can be estimated by the following relation: 
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The gradient of the output signal can be estimated by the following relation: 
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ρ
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2.5. Choosing the reference model 
 

The discussion concerns the case when in the objective function formulation, 
the reference model output tracking is targeted which corresponds to the filtered 
tracking error penalty in the objective function. The reference model should be 

uff=r
d=0 

C P u4yd=0 y4 e 

-
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chosen so that the closed-loop response would not be very different. The reference 
response can be chosen either to increase or to decrease the closed-loop bandwidth. 
In the case when there is a relative big difference between the closed-loop response 
and the reference model response, intermediate reference models should be used in 
order to ensure the convergence step by step. This approach is also known as the 
windsurfing-approach. The reference model is usually taken to be a discrete-time 
normalized second order transfer function, for which the step response incorporates 
performance measures such as overshoot, settling time and rise time. However, this 
is not a constraint and other reference models can be chosen. A typical continuous-
time transfer function representation for the reference model is 

2
00

2

2
0

ωsωζ2s

ω)s(M
+⋅⋅⋅+

= ,              (2.5.1) 

where ζ is the damping factor and ω0 is the natural frequency. Different diagrams 
can then be used such as the ones in [209] in order to illustrate how the choice of 
the performance indices can be made depending on the damping factor and the 
natural frequency. Two examples of such diagrams are given in Figs. 2.5.1 and 
2.5.2. 

 

 
Fig. 2.5.1.  Normalized time response of a second-order system for unit step input. 
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Fig. 2.5.2.  Overshoot in percent as a function of the damping factor ζ. 

 
 

2.6. Search direction 
 

In order to compute the next set of parameters with relation (2.1), the 
matrix R has to be calculated. 

In literature, the matrix R is usually taken as an approximate of the Hessian 
of the objective function J. There are though other possibilities of adopting R. 

For example, if the identity matrix is chosen for R, the resulting gradient 
direction is for sure negative. In spite of this, the authors of different works, who 
applied IFT, have adopted the following form of R: 
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                  (2.6.1) 
The subscript i denotes the iteration number. 

Due to disturbances form the gradient experiment this will give a biased 
approximation of the Gauss-Newton direction. 
 Another interesting choice is to use a quasi-Newton method. One that has 
been used in literature, in [1], is Broyden – Fletcher – Goldfarb – Shanno (BFGS). 
 One of the merits of the quasi-Newton methods is that it a good 
approximation of the Hessian matrix is obtained based on the gradient of the 
objective function and the design of the controller parameters. 
 The update law to estimate the Hessian of the matrix based on BFGS is the 
following: 

iiTi

iTiii

iTi

Tii
i1i

sR)s(

R)s(sR

s)z(

)z(zRR −+=+ ,             (2.6.2) 

where Ri
 =R( iρ ), si= 1iρ + - iρ and )ρ(

ρ
J)ρ(

ρ
Jz i1ii

∂
∂−

∂
∂= +  

The initial value of the matrix can be any positive definite matrix. 
The following facts are known about the BFGS method [1]: 
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- if Ri is symmetric then Ri+1 is symmetric, 
- if Ri is positive definite and (zi)Tsi>0, then Ri+1

. If (zi)Tsi >0 is not satisfied then 
we set Ri= Ri+1. 

Some of the advantages of the BFGS method are: 
- global convergence property, 
- super linear convergence, 
- could be more numerically stable than the Gauss-Newton. 

After knowing how to obtain all the necessary data for the algorithm, one 
can proceed to applying it. The steps of the IFT algorithm are presented in the next 
section.
 
 

2.7. Summary of the Iterative Feedback Tuning 
algorithm 
 

This section is dedicated to the presentation of the general IFT algorithm. 
The methodology to obtain all the necessary data for the algorithm has been 
described in Sections 2.2 to 2.6. 
 The algorithm will be further presented under the structure of eight steps: 
Step1: With the stabilizing controller operating on the process, generate the 
necessary control signals (e.g. u1(k,ρi), u2(k,ρi), in the case of one-degree-of-
freedom controllers) output signals (e.g. y1(k,ρi), y2(k,ρi), in the case of one-
degree-of-freedom controllers) through the corresponding number of experiments. 
Step2: Generate the output signal of the desired model, yd. Compute the output 
error as the difference between the output of the first experiment and the output of 
the reference model d1 yyyδ −= . 

Step 3: Compute the gradient of the output signal )ρ(
ρ
y i
∂
∂ . 

Step 4: The control signal is a perfect realization of the control signal of the first 
experiment. 
u = u1. 

Step 5: Compute the gradient of the control signal )ρ(
ρ
u i
∂
∂ . 

Step 6: Compute the objective function J(ρ) and the estimate of the gradient of the 

objective function )ρ(
ρ
J i

∂
∂ . 

Step 7: Compute the matrix R. 

Step 8: Compute the next set of parameters by 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂−= −+ )ρ(
ρ
Jest)R(γρρ i1i

i
i1i .
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2.8. Convergence analysis of the algorithm and the 
stability issue throughout the iterations 
 

The convergence properties are given in the next theorem, which is 
reproduced from [16]: 

Theorem 2.8.1: Consider the algorithm presented in section 2.7 with 

i,I δRi ∀≥  for some 0δ > . Assume that the procedure is complemented with the 
all-pass filtering procedure described above included if necessary so that we have 

an unconstrained minimization problem, i.e., dRρ ∈ (R is the set of reals and it is 

different from Ri ) for some integer d. Assume that {γi} satisfy the usual conditions 
for convergence. 

∑
∞

=

∞=
1i

iγ  ∑
∞

=

∞=
1i

2
iγ .              (2.8.1) 

Let the reference signal {r} and the disturbances in each experiment {vi
j} 

be realizations of bounded stationary stochastic processes where these processes 
are mutually independent. Then, provided that the signals {yi

j}; j = 1, 2, 3; i =1, 

2, … stay bounded, { }0)ρ('J:ρρi =→  with probability 1. 

The parameters of the controller are updated in several iterations, until the 
estimate of the gradient of the objective function approaches zero to a sufficient 
extent.  

A criterion of stopping the algorithm is given in [1] in a statement similar to 

the following: for a given scalar 0ε >  in advance, if ε)ρ(J)ρ(J 1ii <− + , then one 

stops the algorithm and regards the parameters iρ  as the sub-optimal parameters 
*ρ . 

The most important requirement for convergence is that the closed loop 
signals should stay bounded throughout iterations; the controllers have to remain 
stabilizing for the process. Unfortunately there is no guarantee that the update law 
always provides a stable controller. As a measure of precaution one can examine 
the Bode plot of the controller after each parameter update. If this plot differs 
significantly from the previous one, then the step size of the iteration should be 
decreased. 
 Another more recent approach for ensuring the convergence of the 
parameters to the optimal solution is suggested in [48] where a Lyapunov function 
is used which is a function of the set of parameters that are subject to tuning. The 
update law is then seen as a discrete-time dynamic system for which the stability is 
assessed. For example, the Lyapunov function can be chosen of the form 

)ρρ()ρρ()ρ(V *iT*ii −−= , where *ρ is the set of optimal parameters. A ball of 

radius α centered in *ρ is defined as })ρρ()ρρ(|ρ{)ρ(B *T* α<−−=α . Then, by 

using the Lyapunov stability theory, it is shown that there exists a sequence {γi} 

such that the ball is a domain of attraction for all )ρ(Bρi
α∈ . This translates into 

{ }0)ρ('J:ρρi =→ . However, two issues are mentioned in relation to this 
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approach: one is the fact that *ρ has to be an isolated global minimum for the 

objective function J, and the other fact is that the Lyapunov function is defined with 

respect to *ρ which is unknown if the process is unknown. So these two facts have 

to be asserted by using crude model estimates for the process which in turn violates 
the model-free assumption. 
 A solution to the algorithm convergence will be provided as a contribution of 
the current thesis, using Popov’s hyperstability theory which in turn allows for a 

choice of the step scaling sequence {γi} without the need for knowing *ρ . 

 The stability of the closed-loop during the iterations of the IFT is another 
important aspect that has to be taken into account. The closed-loop should be kept 
stable in order to respect the assumptions of the theorem related to the 
convergence of the set of parameters to the optimal solution. It is of course of 
interest to assert the stability before a new set of parameters of the controller is 
actually used in the experiments. This would require of course a process model in 
order to estimate bounds on the stability margins. Sufficient conditions for stability 
in iterative tuning were developed in [29] in which the Vinnicombe distance (nu-
gap) between the actual and the next controller must be kept smaller than the 
generalized stability margin. In order to evaluate the generalized stability margin, 
an identification step has to be performed for the complementary sensitivity function 
by using standard open-loop identification techniques. Moreover, the generalized 
stability margin and the Vinnicombe metric need to calculate infinity norms for 
matrices, which implies calculating the largest singular value of a matrix over a 
finite grid of frequencies. These operations together with the matrix inversion are 
computationally expensive and thus more difficult to implement on signal processing 
hardware. However, this entire computational burden is connected to the parametric 
models that are used. As another contribution of the thesis, a new technique is 
proposed in order to assert the closed-loop stability, which makes use of non-
parametric models such as frequency response functions (FRFs). FRFs are typically 
easier to obtain than the parametric models. 
 
 

2.9. Iterative-Feedback Tuning in Multi Input-Multi 
Output (MIMO) systems 
 

The Iterative Feedback Tuning problem extended to Multiple Input Multiple 
Output (MIMO) systems is treated in papers such as [18], [19], [20], [40], [204]. 
An LTI MIMO system is described as 

⎥
⎥
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)q(G)k(y
)k(y 1

m
,              (2.9.1) 

where ynRy ∈  is the output vector, ymn
m Ry ∈  is the measured output vector, 

rnRr ∈  is the reference input vector, dnRd ∈  is the disturbance input vector, and it 

is zero-mean stationary and with variance 2
σ , unRu ∈  is the control signal vector. 
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One can consider that ymr nn =  as is references are prescribed for each measured 

output. Also it can be considered, without loosing generality that myy = . )q(G 1−  

is a pulse transfer operator matrix that describes the generalized process (2.9.1) as 
in the robust control context. Let there be a control pulse transfer operator matrix 

)ρ,q(C 1−  of dimension ymu nn ×  that is used in a scheme according to Fig. 2.9.1. 

 
Fig. 2.9.1.  The MIMO control system. 

 

The parameter vector of the controller is ρnRρ ∈ . The disturbance input d  

mainly acts upon the output vector y, and it is suggested by 3d  in Fig. 2.9.1.  

Over the IFT problem, one can define the design of the controller )ρ(C  

based on the minimization of an objective function defined over the time horizon of 
interest. Let the objective function be  
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where )k(y)ρ,k(y)ρ,k(y~ d−=  is the reference model tracking error. The 

objective function can be defined in many ways. It can penalize for example the 
control effort. The particular form (2.9.2) only penalizes the reference trajectory 
tracking error. In (2.9.2) {}.E  is the expectation defined w.r.t to the disturbance d , 
N is the finite time horizon. The goal of the optimization problem is to find an 

optimal controller of parameter vector ∗ρ  which minimizes J . To obtain ∗ρ  one 

must find ρ  as a solution to the equation 
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dJ0 .             (2.9.3) 

The criterion minimizations is carried out by using an algorithm based on the 
update law 

 )}ρ(
ρd

dJ{est)R(γρρ j1j
j

j1j −+ −= .             (2.9.4) 

In (2.9.4), jR  is a positive definite matrix, and it is typically a Gauss-

Newton approximation of the Hessian of J . jγ  is the step size scaling coefficient of 

the search direction and j is the iteration number. 
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From (2.9.3) one can see that the variable est{
ρd

dJ } that is used in (2.9.4) 

should be computed. One can obtain only an unbiased estimate of this variable by 

obtaining unbiased estimates of the products )ρ(y)ρ(
ρ

y
t

T

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
, as seen from (2.9.3). 

It was shown by Robbins and Monro in 1951 [13] that the stochastic optimization 
carried out by (2.9.4) holds in the conditions mentioned above. 

The main concern now is to compute the gradients of the output y  w.r.t. ρ . 
The problem was solved by the means of IFT applied to MIMO. The quantities that 
depend on the controller parameter vector ρ  are )ρ(u),ρ(y),ρ(y m . All the 

considered signals are time dependent. The time index k is omitted in the following. 
Computing the gradient of (2.9.1) w.r.t. one of the parameters of the vector 

let it be iρ , one can obtain: 
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Here, we denote •′=
∂
•∂

iρ
. The control signal can also be expressed as 

follows: 

 ))ρ(yr)(ρ,q(C)ρ(u 1 −= − .              (2.9.7) 

From (2.9.7) the gradient of )ρ(u w.r.t. iρ can be computed: 

 
'.y)ρ,q(C)yr)(ρ,q('C

'y)ρ,q(Cy)ρ,q('Cr)ρ,q('C)'y)ρ,q(Cr)ρ,q(C('u

11

11111

−−

−−−−−

−−=

=−−=−=

                  (2.9.8) 
The last relation brings the idea of the gradient experiment, in which, using 

the same closed-loop scheme from Fig. 2.9., where 'y,'u,)ρ,q(C 1−  are involved 

and adding one additional quantity to the control value, the gradient of y w.r.t. iρ  

can be computed. The quantity that is added is )1(11 e)ρ,q('C)yr)(ρ,q('C −− =−  

and is the error from one initial experiment that is filtered through )ρ,q('C 1− . 

Therefore the setup presented in Fig. 2.9.2 can be used, in which r is set to 0. 
 

 
Fig.2.9.2.  The setup for the gradient experiment. 
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In this gradient experiment, the output is a perturbed version of 'y  since 

disturbance acts on the output. In this form, in every gradient experiment, the 
partial derivate of each component of y is computed w.r.t. one particular iρ . It is 

then needed a total number of ρn1 +  experiments to compute estimates to all 

gradients involved in (2.9.3). 
 
 

2.10. How to reduce the number of experiments for 
MIMO IFT 
 

An approach to reduce the number off experiments for MIMO IFT is 
suggested in [19]. The setup from Fig.2.9.2 is considered, i.e., the context of the 
gradient experiment is considered. Let the pulse transfer operator matrix 
from z to 'y be uyij n..1j,n..1i},P{P === , with i, j meaning general matrix 

indexes. We assume to be known but this will prove to be unnecessary. Then the 
transfer function matrix from e to 'y  will be 
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with ymy n..1l,n..1k == . Here, jl'C  denotes the gradient of each transfer function 

from the matrixC  w.r.t. iρ . The sensitivity function )ρ(S  represents the transfer 

functions from the disturbance to the output. Since e'Cz = , we can consider 

further that zPy = . Let z be chosen of the form 
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Then, from (2.10.1) results that 
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By conducting an additional number of ymu nn ×  experiments, one can 

obtain all the products lkjeP  that appear in (2.10.1). Then it is possible to obtain 

the output vector y  from (2.10.1) because the operators jl'C  commute since they 

represent transfer functions. The output vector that is obtained is a perturbed 
version of the gradient vector of y  w.r.t. iρ . 
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This approach should be very useful when the number of controller’s 
parameters largely exceeds the number ymu nn × . This case is very often when the 

number of the inputs is large and the number of total parameters of the controller 
increases. 

Another approach to reduce the number of experiments is presented in [20]. 
With this regard, Fig. 2.9.1 is referred. In the MIMO case, the sensitivity function 
and the complementary sensitivity function are defined by 

 1111 )]ρ,q(C)q(PI[)ρ,q(S −−−− += ,           (2.10.4) 

and 

)ρ,q(C)q(P)ρ,q(S)ρ,q(T 1111 −−−− = .          (2.10.5) 

The sensitivity function is considered as the transfer function from 
disturbance to output when only the 3d  component of the disturbance input vector 
is considered. The dependency of the output on the inputs from the closed-loop 
system is 

 d)ρ,q(Sr)ρ,q(T)ρ(y 11 −− += .           (2.10.6) 

From (2.9.7) and (2.9.8) it can be shown, considering myy =  and 

eliminating u′  between equations, that 
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          (2.10.7) 

Further, equation (2.10.7) can be written as 
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        (2.10.8) 

In the last equation, one can see that the initial error signal )ρ(e  is filtered 

through the matrix )ρ,q(A 1
i

−  and then filtered through )ρ,q(T 1−  for a number of 

times equal to the number of parameters in the parameter vector. This is the 
general case of MIMO as presented above. 

But if )ρ,q(T 1−  is known to be close to the identity in the pass band, then 

in the equation (2.10.8) a commutation is possible, even with commutation errors. 
This is achieved according to 

 )ρ(e)ρ,q(T)ρ,q(A)ρ(y 11
i

−−=′ ,           (2.10.9) 

and it reduces the number of experiments to two, as in the SISO case. 
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2.11. Convergent Iterative Feedback Tuning of state 
feedback-controlled servo systems 
 

The second-order servo systems with integral component play an important 
role as controlled processes in a large category of industrial applications including 
mechatronics, electrical drives, sub-systems in power process control systems, 
positioning systems in manipulators, mobile robots, machine tools, flight guidance 
and control [62]-[69]. Those controlled processes are viewed as special cases of 
benchmark systems [70]-[72]. A convenient way to develop control solutions 
dedicated to these controlled processes makes use of linearized models at certain 
operating points. Therefore the parameter variation associated with the linearization 
is challenging when very good control system performance indices are required. The 
design and implementation involve more challenges when low-cost automation 
solutions are needed. 

The control solutions based on state feedback control systems are can cope 
with the accepted class of processes. The optimal state feedback control systems 
can fulfill the main control aims i.e. high performance indices in reference input 
tracking and regulation with respect to several types of load disturbance inputs. 
With this regard the improvement of the control system performance indices (e.g. 
settling time and overshoot) is enabled by the minimization of appropriately defined 
objective functions. The Iterative Feedback Tuning (IFT) [14], [16] is an alternative 
to the experiment-based minimization of the objective functions. The IFT algorithms 
employ the input-output data measured from the closed-loop system during its 
operation to calculate the estimates of the gradients and eventually Hessians of the 
objective functions. Several experiments are conducted per iteration and the 
updated controller parameters are calculated on the basis of the input-output data 
and the estimates. 

The extension of IFT according to [38] offers additional steps to improve the 
convergence properties of IFT while rejecting the disturbances. Several extensions 
of IFT to Multi Input-Multi Output (MIMO) systems are discussed in [18]-[20], [58]. 
Linear applications to digitally simulated benchmarks are illustrated in [18], [19]. 
The need for faster gradient approximations and local convergence in IFT for 
multivariable processes are thoroughly discussed in [20]. Recently reported 
industrial applications of IFT include the control of chemical processes [58], servo 
drives [39] and of anti-lock braking systems [206]. 

Many experiments are needed for more state feedback control systems and 
MIMO systems. The need to reduce the number of experiments per iteration has 
been highlighted in [18]-[20], [38], [204], [206]. 

The IFT-based state feedback control meant for second-order servo systems 
with integral component has been suggested in [45]. Building upon [45], twofold 
new contributions are presented. First, original convergent IFT algorithms are 
suggested. They are based on the formulation of the parameter update law in the 
IFT algorithms as a nonlinear dynamical feedback MIMO system in the parameter 
space and iteration domain. Popov’s hyperstability analysis results [73], [74] are 
applied in this context to derive a new stability theorem which guarantees the 
convergence of the IFT algorithms and gives a useful condition to set the step size. 
Second, a thorough discussion of an extensive set of real-time experimental results 
is done. 

The second-order servo systems as controlled processes are characterized 
by the state-space model [45] 
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where T
21 ]ωxx[x =α==  is the state vector, α  is the (angular) position, ω  is 

the (angular) speed, u is the control signal, y1 and y2 are the controlled outputs, I2 
is the second-order identity matrix, and the superscript T indicates the matrix 
transposition. The two parameters in (1) are the process gain 0K ,K ss > , and the 

small time constant or the sum of parasitic time constants 0T ,T ss > . 
The two transfer functions considering the input u and output ω , and the 

input u and output α  are )s(P u,ω  and )s(P u,α , respectively, with the following 

expressions: 

)sT1(s
K

)s(P,
)sT1(

K
)s(P

s
s

u,
s

s
u,ω +

=
+

= α  .          (2.11.2) 

The integral component can be observed in )s(P u,α  when the controlled 

output is α== 11 xy . Such situations correspond to positioning systems. 
The state feedback control system structure is presented in Fig. 2.11.1. The 

dotted connection is used only when the experiments specific to IFT are conducted. 
That connection is not applied during the normal control system operation, therefore 
the control system structure is not a model reference adaptive one. 

 

 
Fig. 2.11.1.  IFT-based state feedback control system structure with integrator in the 

state feedback controller. 
 
The main variables and blocks in Fig. 2.11.1 are: IFTA – the IFT algorithm, 

RM – the reference model, r – the reference input, yre −=  – the control error, 
]KK[k 21c =  – the state feedback gain matrix to be tuned by means of the IFT 

algorithm, )s(P)s(P u,α=  – the transfer function of the controlled process with the 

controlled output α== 1xy , yd – the reference model (desired) output, yye d
t −=  

– the tracking error. 
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The state-space model (2.11.1) can be reconsidered by including one 
additional state variable R3 xx =  which corresponds to the integrator inserted to 
the state feedback controller. Thus its gain KR will be subject to IFT as it is 
illustrated in Fig. 2.11.1. The extended state-space model of the process becomes 
then 
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where T
R

T
RE ]xx[]xω[x =α=  is the extended state vector, I3 is the 

second-order identity matrix, T
321 ]yyy[y =  is the controlled output vector, 

and the parameter Kr is not included in the tuning scheme. Kr is set prior to the 
application of IFT. One way to choose Kr is to keep a connection between the 
steady-state value of r and the steady-state value of rx for which the desired r can 
be tracked by the steady-state value of y. That value of rx can be subject to the 
experimental identification of the state feedback control system. 

For the purpose of the next study, all the continuous time transfer functions 
and signals are substituted by their discrete-time equivalents. 

The objective function J defined over the finite time horizon N is 

∑
=

=
N

1k

2
t ))ρ,k(e(

N2
1)ρ(J ,            (2.11.4) 

where mRρ ∈  is the parameter vector, which for 2m =  is 
T

c
T

2211 k]KρKρ[ρ ==== . 

The IFT algorithms [14], [16], [18]-[20], [38], [39], [45], [58], are applied 

to find the solution *ρ  to the optimization problem 

)ρ(Jρ
SDρ        

*

∈
= minarg ,             (2.11.5) 

where several constraints can be imposed in relation with the controlled process and 
the state feedback control system. One of these constraints concerns the stability of 
the system and SD stands for the stability domain with this regard [75], [76]. 

Solving the optimization problem (2.11.5) requires finding the parameter 

vectors that make the gradient 
ρ
J

∂
∂  equal to zero: 

0]
ρ
J...

ρ
J[

ρ
J T

m1
=

∂
∂

∂
∂=

∂
∂  .            (2.11.6) 

Since the controlled output depends on ρ  as )ρ(y  and yd not, use is made 

of (2.11.4) and equation (2.11.6) becomes 

0]y)ρ(y[
ρ
y

N
1

N

1k

d
T

=−
∂
∂∑

=

.            (2.11.7) 
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The partial derivatives 
iρ

y
∂
∂  should be calculated to obtain the components of 

the gradient, 
iρ
J

∂
∂ , m...1i = . The experiments specific to IFT are conducted to 

obtain those components. Use is made of the notation [45] 

iρ
'

∂
α∂=α               (2.11.8) 

to highlight the partial derivative of the variable α  with respect to the parameter 

iρ , m,1i = . 
To derive the IFT algorithms the following relations can be extracted from 

the state feedback control system structure presented in Fig. 2.11.1: 

, xKrKu

, xKrKr

, u )q(Py

Ecr

RRrx

1

+=

+=

= −

             (2.11.9) 

where the extended state feedback gain matrix cK  is 

]Kk[]KKK[K RcR21c −=−−=  .                    (2.11.10) 

The matrix cK  in (2.11.10) highlights the parameter vector ρ  which for 3m =  is 

T
R21 ]KKK[ρ =  .                      (2.11.11) 

Since y and u are functions of ρ  the first and third equations in (2.11.9) yield 

. 'xKx'K'u

, 'u )q(P'y

EcEc

1

+=

= −
                      (2.11.12) 

Next the second equation in (2.11.3) enables the following transformation of the 
second equation in (2.11.12): 

'yKy'K'u cc += .                      (2.11.13) 

The first term in the right-hand side of (2.11.13), y'K c , needs to be added 

to the control signal to obtain the experimental scheme. That term contains the 
unmodified output vector (in the MIMO framework) obtained from the first 
experiment [16]. The second term in the right-hand side of (2.11.13), 'yK c , is 

measured from the state feedback control system structure. Therefore the 
experimental scheme to calculate the gradients is presented in Fig. 2.11.2 where 
the blocks RM and IFTA (in Fig. 2.11.1) are omitted for simplicity. 

 

 
Fig. 2.11.2.  Experimental scheme to calculate the gradients in the IFT-based state 

feedback control system structure. 
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The first experiment specific to IFT, referred to also as the normal one, is 

conducted with the control system structure presented in Fig. 2.11.1 to measure the 
controlled output y. The next 3m =  experiments, i.e. the gradient experiments, are 
conducted with the experimental scheme presented in Fig. 2.11.2. These 
experiments are done separately for each parameter in cK  considering the zero 

values of the other 21m =−  parameters because their derivatives with respect to 
the currently considered parameter are zero. 

The parameter vector must be updated after the experiments are finished. 
Newton’s algorithm is generally used as a convenient technique which iteratively 
approaches a zero of a function without knowing its expression. The update law to 
calculate the next parameter vector 1iρ +  is 

)]ρ(
ρ
J[est )R( γρρ i1i

i
i1i

∂
∂−= −+ ,                    (2.11.14) 

where i is the index of the current iteration / experiment, 0γi >  is the step size, 

)]ρ(
ρ
J[est i

∂
∂  is the estimate of the gradient, and the regular matrix iR  can be the 

estimate of the (positive definite) Hessian matrix or the identity matrix. 
Popov’s hyperstability analysis results will be applied as follows to the 

parameter update law (2.11.14) in order to derive a condition to guarantee the 
convergence of the IFTAs. First the domain of attraction of the update law as part of 
an IFTA is defined in terms of the following definition which is equivalent to that 
presented in [47]. 

Definition 2.11.1: Let *ρ  be the global minimum of the function 

+→ RR:J m  defined in (2.11.4). The set mR⊂Π  is called a domain of attraction 
of the update law (2.11.14) for the function J  if 

Π∈∀=∞→
0*i

i ρ  ,ρρlim ,                     (2.11.15) 

where 0ρ  is the initial parameter vector. 

The convergence result is next expressed in terms of Theorem 2.11.1. 

Theorem 2.11.1: Let 0i1 ≥  be an arbitrary index of experiments / iterations 

and constε0 = , 0ε0 ≠ . If the condition 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
≥∀−≥

∂
∂== ∑

=

− 0i  ,ερ))R(()])ρ(
ρ
J[est(γ)i(Iρ 1

2
0

i

0j

jT1jTj
j1

1
Π       (2.11.16) 

is satisfied for the isolated global minimum *ρ  then Π  is a domain of attraction of 
*ρ . 

Proof: The relationship (2.11.14) is expressed as follows as a dynamical 
feedback MIMO system in the parameter space and iteration domain in terms of the 
structure presented in Fig. 2.11.3, where the feedforward discrete-time linear time-
invariant (LTI) block is 
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+=+

                      (2.11.17) 

and the nonlinear (NL) feedback block is 

)]v(
v
J[est)R( γw i1i

i
i

∂
∂= − .                     (2.11.18) 

 

 
Fig. 2.11.3. Dynamical feedback MIMO system structure of (2.11.14) used in the 

convergence analysis. 
 
LTI is completely controllable and completely observable. The discrete 

transfer function matrix of the LTI, )z(H , obtains the expression 

, ))1z/(1...,),1z/(1),1z/(1diag(
)IIz(DB)AIz(C)z(H 11

−−−=
−=+−= −−

                   (2.11.19) 

and it is a positive real discrete transfer function matrix. Since NL satisfies the 
Popov type inequality 

0i  ,εv)w()i(I 1
2
0

i

0j

jTj
1

1
≥∀−≥= ∑

=

,                    (2.11.20) 

which is equivalent to (2.11.16), the conditions for the hyperstability of the system 
(2.11.17), (2.11.18) are fulfilled [73], [74]. Thus the convergence of the IFTAs with 
the update law (2.11.14) is guaranteed. 

The new family of IFTAs dedicated to the considered class of stat feedback 
control system consists of the following steps. 

Step 1. Conduct the normal experiment making use of the control system 

structure presented in Fig. 2.11.1, measure x )ρ(y i =  and calculate the reference 

model output vector dy . Next conduct the three gradient experiments in terms of 

the experimental scheme presented in Fig. 2.11.2 and measure the outputs that 

give the gradient of the controlled output )ρ(
ρ
y i
∂
∂

. 

Step 2. Calculate the estimate of the gradient of the objective function 

∑
=

−
∂

∂
=

∂
∂

N

1t

diTii ]y)ρ(y}[)]ρ(
ρ

y
{[est

N
1)]ρ(

ρ
J[est .                  (2.11.21) 

Step 3. Calculate the Popov sums )i(I 1  in (2.11.16) and set the step size 

iγ  such that to fulfill the convergence condition (2.11.16) for any ii0  ,i 11 ≤≤  and 

any 0ε  ,constε 00 ≠= . 
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Step 4. Calculate the next set of parameters 1iρ +  according to the 

parameter update law (2.11.14). 
Some implementation issues are emphasized as follows. Setting the 

reference model (Fig. 2.11.1) is important. This aspect should be related to the 
imposed control system performance indices and the accepted model of the 
controlled process although it is achievable. Over ambitious reference models can 
results in the impossible fulfillment of the performance specifications. 

The first task of the state feedback controller is to ensure an initially stable 
control system. The pole placement design can be used with this regard in order to 

set the initial parameter vector 0ρ . 

The identity matrix is recommended to play the role of the positive definite 

matrix iR  in (2.11.14) for low-cost implementations. Another alternative is to 

calculate the estimate of the Hessian matrix to play the role of iR . That calculation 
should be included in the step 3 of the IFTAs and an additional experiment can be 
employed with this regard. 

In many cases the actuator is characterized by a nonlinear input-output map 
caused by the actuator saturation. That is a problem because it introduces usually 
nonlinear behaviors in the process’s dynamics, thus it must be avoided. When 
making use of the integrator in the controller the importance of the actuator 
saturation is increased because actuators which enter deep saturation regions 
require usually longer time periods to re-enter the active regions of normal 
operation. 

The structure illustrated in Fig. 2.11.2 highlights that when the state vector 
is fed over the control signal it may cause the saturation effects. Therefore the 
experiments will provide estimates of the gradients which are different with respect 
to the correct ones. 

For the sake of simplicity an actuator with the active input range within −1 
to +1 is considered as follows. One solution to solve the actuator saturation problem 
is to design the experiments such that the actuator does not enter saturation. 
Therefore the injected variable (in Fig. 2.11.2) must be in the active region of the 
actuator’s input-output static map. The injected variable can be scaled to its 
maximum value 0M  ,M > , of its measured dynamics. Generally speaking for an 
injected variable N...1t  ,zt = , its scaled value added to the control signal is 

|z|maxM  ,M/z)z( t
N...1k

tts
=

== .                    (2.11.22) 

Therefore it is guaranteed that the new variable to be injected, tsz )( , is 

within the accepted domain of the actuator input. Some details concerning the way 
that the gradient experiments are influenced are offered in [45]. 

The validation of the new state feedback control solution and IFT algorithms 
is done in terms of a case study dedicated to the position control of a DC servo 
system with backlash. The experimental setup illustrated in Fig. 2.11.4 is built 
around the INTECO DC motor laboratory equipment. It makes use of an optical 
encoder for the angle measurement and a tacho-generator for the measurement of 
the angular speed. The tacho-generator measurements are very noisy. The speed 
can also be observed from the angle measurements. The control system 
performance indices such as settling time and overshoot can be assessed easily. 
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It is accepted that α== 1xy  in relation with (2.11.1), (2.11.3) and Fig. 

2.11.1. The process is characterized by the parameters 88.139Ks =  and 

s 9198.0Ts = , obtained in terms of experimental identification. Part of the real-
time experiments is presented here and it makes of the initial parameter vector set 

to set to T0 ]005.00126.00132.0[ρ =  in order to stabilize the control system. 

An rad 150r =  step type modification of the reference input was applied. 
Therefore the parameter rK  was tuned at the value 0133.0Kr =  and dropped out 

of the objective function (2.11.4). That value of rK  was obtained by steady-state 
calculations to ensure a desired gain between r and y. The sampling period was set 
to 0.01 s. The continuous-time RM is characterized by the transfer function 

)1s5.1s/(1)s(G 2
RM ++=                      (2.11.23) 

which is next discretized. 
 

 
Fig. 2.11.4.  Experimental setup. 

 
The real-time experimental results that illustrate the behavior of the control 

system in terms of the evolution of the controlled output before the application of 
the IFT algorithm are presented in Fig. 2.11.5. 

 

 
Fig. 2.11.5.  yd (dotted line) and y (continuous line) versus time considered before 

IFT. 
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The IFTA presented in Section 3 was applied. The parameters in the IFTA 

were set to 0001.0γi =  and 3
i IR = . After 12 iterations the parameter set reaches 

[ ]T0020.00142.00157.0ρ = . The evolution of the controlled output after 12 

iterations is presented in Fig. 2.11.6. 
 

 
Fig. 2.11.6.  yd (dotted line) and y (continuous line) versus time considered after IFT. 
 
The control system performance enhancement due to IFT is highlighted. It is 

reflected by smaller overshoot and settling time. The control system performance 
enhancement is also pointed out in the evolutions of the control signal and speed 

ωx2 =  illustrated in Fig. 2.11.7 and Fig. 2.11.8, respectively. The oscillations in the 
control signal and speed are caused by the backlash. 

 

 
Fig. 2.11.7.  u versus time considered before and after IFT. 
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Fig. 2.11.8.  x2 versus time considered before and after IFT. 

 
The states time responses before and after tuning with IFT are shown in Fis. 

2.11.9 and 2.11.10. The evolution of the parameters throughout the iterations and 
the objective function decrease are presented in Figs. 2.11.11 and 2.11.12 
respectively. 

 

 
Fig. 2.11.9. The states evolution after IFT.   Fig. 2.11.10. The response of the system before 

the IFT tuning being applied on the parameters. 
 

 
       Fig. 2.11.11. Evolution of parameters.        Fig. 2.11.12. The objective function after 12 

iterations. 
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A new approach to the convergent IFT-based design of a class of state 

feedback control systems meant for a class of second-order systems with integral 
component has been presented. The convergent IFT algorithm proposed here is 
sufficiently general to be applied without additional difficulties to the state feedback 
control of systems of arbitrary order. 

The real-time experimental results in the case study validate the optimal 
state feedback control solution. It shows the power of IFT because the IFT-based 
design of the control system offers better performance indices compared to the 
situation prior to the application of the IFT algorithm. The performance indices are 
very good for the nonlinear controlled process although the theoretical approach is 
based on the linear or linearized mathematical model of the controlled process. 
 

2.12. Data-based improvement for Linear-Quadratic 
Regulator (LQR) solution using IFT 
 

 The state feedback control systems (CSs) are widely used due to the 
advantages offered by the state-space mathematical modeling [62], [63], [77]. 
They are highlighted in positioning systems and in servo systems that belong to a 
wide range of applications. 

The improvement and optimization of the CS performance is normally 
obtained by minimizing objective functions (OFs) expressed as integral quadratic 
performance indices [78]-[81]. This also provides a convenient way to deal with the 
degrees of freedom associated to the pole placement design of Multi Input-Multi 
Output (MIMO) systems. 

The Linear-Quadratic Regulator (LQR) approach which is frequently used for 
the tuning of the optimal state feedback CSs can actually be used only when 
linearized or linear models of the process and the knowledge on all state variables 
available for feedback are assumed [82], [83], [84]. 

Alternatively, the Iterative Feedback Tuning (IFT) offers a direct data-based 
offline-adaptive controller tuning approach. IFT performs a gradient-based 
minimization of the OF, and it provides an efficient way to deal with some of the 
specific problems of nonlinear or ill-defined processes. The OF minimization 
algorithm uses data obtained from the real-time experiments conducted with the 
real-world CS. 

Good overviews of the standard IFT are given in [14], [27]. The first 
comprehensive treatment of IFT in a journal paper is conducted in [16]. The 
extension of IFT according to [38] provides additional steps to improve the 
convergence properties of IFT while rejecting the disturbances. Several extensions 
of IFT to MIMO systems are discussed in [18]-[20]. Linear applications related to 
digitally simulated benchmarks are presented in [18], [19]. The need for faster 
gradient approximations and local convergence in IFT for multivariable processes 
are thoroughly discussed in [20]. The input-output signals of the process are 
employed in [85] to identify a linear time-varying model of the process which is 
further used in IFT. IFT applications to industrial control problems are reported in 
the literature, for example, for the control of chemical processes [58] and for servo 
drive control [39], [75]. Discussions of the IFT approach to the nonlinear process 
control are given in [15], [59], [60]. 

As shown in [14], [16], [27], we need to conduct several experiments per 
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iteration in order to collect the input-output data from the closed-loop system, 
which are needed to calculate the gradients of the OFs in order to update the IFT-
based controller parameters. In the case of one-degree-of-freedom IFT-based 
controllers only two experiments per iteration are needed. An additional experiment 
is needed to tune the two-degree-of-freedom IFT-based controllers. Even more 
experiments are needed for more complex CS structures including the state 
feedback and MIMO ones. The need to reduce the number of experiments per 
iteration is emphasized in [18], [20], [38], [43]. 

This section presents an original combination of the IFT and of optimal state 
feedback control techniques. Our state feedback controller estimates the OF 
gradients directly on the basis of measurements during the CS operation. Therefore 
our controller is different from other IFT-based controllers [14], [16], [18]-[20], 
[27], [38], that use the transfer function representation of the system. A new 
approach is proposed here to obtain the partial derivatives needed in the calculation 
of the gradient of the OF. An original experimental technique is then suggested as 
an alternative MIMO approach to IFT with focus on single input processes. 

In our recent paper [43] we discussed the signal processing aspects of the 
IFT-based state feedback control for second-order positioning systems which have 
an integral component. A state-space formulation of IFT is analyzed in [61], and the 
solution converges to the analytical solutions to the state feedback gain matrix and 
to the Kalman gain. The typical experiments specific to one- and two-degree-of-
freedom controllers are conducted in [61], [86], and they are accompanied by 
digital simulation results. 

A recent and very good follow-up of [58] and [61] is offered in [87] using a 
Linear Quadratic Gaussian (LQG) formulation supported by the transfer function 
formulation. The results are validated by digital simulation on a first order process, 
and the IFT-based observer tuning is studied. 

This section presents the following new contributions with respect to the 
analyzed literature: 
- An original IFT-based approach based on a data-based algorithm to improve 

the performance of state feedback control systems for single input processes is 
offered. 

- A comparison between the model-based design for state feedback optimal 
control systems (the LQR problem) and the experimental-based design using 
IFT is carried out. 

- A new IFT algorithm based on an experimental setup to calculate the gradients 
of the OF is proposed. 

The new contributions are important with respect to the state-of-the-art 
analyzed above because the LQR approach is used to ensure the initial tuning of the 
parameters of the state feedback controller, and our approach ensures the further 
improvement of the CS performance. The CS performance improvement is achieved 
by the alleviation of the OF using information from the experiments conducted with 
the real-world CS. 

Our approach is really different from the original IFT algorithm. We develop 
a tuning potential for state feedback optimal control systems which are an 
alternative to the popular pole placement design for state feedback control systems. 
The optimal state feedback control systems are known for their robustness 
properties and stabilizing capabilities. The certainty equivalence principle upon 
which the optimal design is set is merely an idealization since all models are 
imperfect. The improvements are possible under experiment-based tuning using IFT 
and the conditions under which this is possible are discussed. Our tuning via IFT is 
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done initially in the simulation case for the pure deterministic framework while in 
the experimental case the stochastic framework is accounted for, and the 
differences between the results are explained. 

This section deals with the following problems: 
- the discussion of the general framework to tune the state feedback CSs by 

means of IFT, 
- the proposal of a new IFT algorithm (IFTA), 
- the treatment of the representative case study of an IFT-based angular position 

controller for a DC servo system with actuator dead zone and control signal 
saturation; the experimental laboratory setup and real-time experimental 
results are also presented, 

- a discussion on the advantages and limitations of the new approach, 
- the connection between the LQR objective function which drives the analytical 

solutions of the optimization problem and the IFT objective function that is 
subject to practical evaluations in the new data-based algorithm. 

A new IFT algorithm for state feedback control systems is proposed as 
follows. Let us consider a process characterized by the single input discrete-time 
linear time-invariant (LTI) state-space model 

),k(v C)k(x C)k(y

),k(w B)k(u B)k(x A)1k(x

+=

++=+
                     (2.12.1) 

where Nk ∈  is the discrete time argument, u is the control signal, 
nT

n1 R]x...x[x ∈=  is the state vector, n is the system order, ynRy ∈  is the 

controlled output, nnRA ×∈ , 1nRB ×∈ , nnRB ×∈ , 
nnyRC ×∈ , nnyRC ×∈  are 

constant matrices, nRw ∈  and yn
Rv ∈  are the uncorrelated process noise vector 

and measurement noise vector, respectively, which are vectors of normal 
independent identically distributed random variables with zero means and the 

variances 2
wσ  and 2

vσ , respectively. Zero initial conditions are assumed throughout 
this section for the process dynamics without affecting the generality. It is accepted 
that the process is controllable and observable. 

The vector y is the controlled position and speed in the cases of positioning 
systems and of servo systems in several applications [88]-[90], but our approach is 
not limited to positioning systems or servo systems. The transfer characteristics of 
the actuator and of the measurement instrumentation of the state 
variables n...1i  ,xi = , are both included in the process. 

The corresponding deterministic discrete-time LTI state-space model of the 
process is 

).k(x C)k(y
),k(u B)k(x A)1k(x

=
+=+

                      (2.12.2) 

The following infinite horizon quadratic performance index can be imposed 
as performance specification of the CS such that its minimization can ensure very 
good CS performance: 

∑
∞

=

+=
0k

2T )]k,ρ(u λ)k,ρ(x Q )k,ρ(x[)ρ(I ,                    (2.12.3) 
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where T
n1 ]ρ...ρ[ρ =  is a parameter vector, and the weights are 

0λ  ,n...1j,i  ,qq ,]q[Q  ,0Q jiijn,1j,iij >===≥ = .                   (2.12.4) 

The optimization of the state feedback control systems can be formulated as 

the following optimization problem of finding the optimal parameter vector *ρ  which 

corresponds to the optimal gain matrix T* )ρ( : 

)ρ(Iρ
ρ

* minarg= .                       (2.12.5) 

The optimization problem defined in (2.12.5), using the OF defined in 
(2.12.3) and accounting for the pure deterministic process model (2.12.2), is 
essentially the well known discrete-time LQR problem that is appealing for its’ 
general robustness properties with respect to the process parametric variations 
[91]. To apply the state feedback CS designed via LQR, it is necessary that all the 
states are measurable. If this is not the case, then state observers/estimators are 
used in the general framework of optimal estimation and control, commonly known 
as the LQG problem. But, as shown in [92], the robustness properties could be lost 
in this case, and that can be mitigated by using the Loop Transfer Recovery (LTR) 
technique. In this section it is assumed that all the states are measurable and are 
subject to process and measurement noise. 

LQR can be extended in several ways to cover the nonlinear systems when 
the CS performance indices are deteriorated [72], [93], [94]. Due to its experiment-
based characteristics mentioned in the previous section, IFT is particularly well 
suited to deal with these LQR tuning aspects. 

Concluding, LQR is a state feedback control solution to a model-based 
deterministic optimization problem assuming that the real-world process model is 
available. However the many practical applications are far away from this 
assumption and that is the point where IFT plays a significant role. IFT offers a 
solution to a stochastic optimization problem like that defined in (2.12.5), but with 
respect to stochastic disturbances that are inherent to all real-time experiments 
conducted with the real-world CS. IFT works on the real-world process, and it does 
not use the process model in the tuning scheme. 

The solution to the discrete-time infinite horizon optimization problem 

defined in (2.12.5) is the control law )k(xρ)k(u T−=  which together with (2.12.2) 

drives the state vector to zero under the imposed spectrum of the CS prescribed by 

the system matrix Tcl ρ BAA −= . The reference inputs are commonly introduced 

for each state variable when it is needed to drive the state vector to a different point 
in the state. The resulting state feedback controller is defined in terms of the control 
law 

),k(x)k(r)k(e

],ρ...ρ[ρ  ),k(eρ)k(u n1
TT

−=

==
                     (2.12.6) 

where T
n1 ]r...r[r = , is the reference input vector, ir  are the reference inputs 

that correspond to the state variables n...1i  ,xi = , 
T

nnn111 ]xre...xre[e −=−==  is the state control error vector that consists of 

the state variable errors n...1i  ,ei = , Tρ  is the state feedback gain matrix, referred 
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to also as the gain matrix, ρ is the parameter vector, and T indicates the matrix 
transposition. The vector e is applied as an input to the state feedback gain matrix 

Tρ  as shown in Fig. 1, where P is the process and C is the controller, and the 

difference from the matrix C in (2.12.1) will be pointed out in the sequel when 
necessary. 

 
Fig. 1. State feedback control system structure. 

 
Introducing reference inputs for the state variables, the optimization 

problem defined in (2.12.5) makes use of the following modified OF: 

∑
∞

=

+=
0k

2
u

T )]k,ρ(e λ)k,ρ(e Q )k,ρ(e[)ρ(I ,                    (2.12.7) 

where the control signal error )k,ρ(eu  is defined as the difference between the 

control signal and its steady-state value ),ρ(u ∞ : 

),ρ(u)k,ρ(u)k,ρ(eu ∞−= .            (2.12.8) 

The transformation of the OF defined in (2.12.3) according to (2.12.7) is 
needed to ensure the convergence of the OF. Therefore, since step reference inputs 
are used in the sequel and the state feedback CS is asymptotically stable, the state 
feedback control law defined in (2.12.6) will drive the state control errors to zero 
and the state vector to the reference input vector during the accepted infinite time 
horizon. 

In order to apply the IFT to solve the optimization problem defined in 
(2.12.5), using the OF defined in (2.12.7), we will use a modified OF, referred to as 
J, defined as follows over the finite time horizon N for reasons of practical 
evaluations of the OF: 

∑
=

+=
N

0k

2
u

T )]k,ρ(e λ)k,ρ(e Q )k,ρ(e[)ρ(J .                    (2.12.9) 

The OF defined in (2.12.9) can be represented by the approximation 
)ρ(J)ρ(I ≈                (2.12.10) 

if N is sufficiently large to capture all transients in the CS response. 
IFT algorithms can conveniently be employed to find a solution ρ* to the 

optimization problem 

)ρ(Jρ
SDρ

*
∈

= minarg ,                      (2.12.11) 

where SD stands for the stability domain of all state feedback gain matrixes that 
ensure a stable CS. Several other constraints regarding the process and the closed-
loop system can be considered in this context [95]-[99]. 

The two optimization problems defined by (2.12.7) and respectively by 
(2.12.11) essentially are equivalent. However, differences may appear due to: 
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- the infinite and respectively the finite time horizons in the OFs defined in 
(2.12.7) and (2.12.9), 

- the discrete-time nature of the signals considered in the numerical algorithms 
associated with these problems  [100]-[102]. 

- the more general stochastic framework that is necessary to be taken into 
consideration when the IFT problem is set. 

The finite time optimal state feedback control problem is characterized by a 
time-varying gain matrix, while the infinite time state feedback optimal control 
problem is characterized by a steady-state gain matrix Tρ . The calculation of the 
matrices used in both cases requires process models that are affected by modeling 
and identification errors. 

While the LQR solution can not guarantee a global minimum of the OF 
because of the inherent process modeling errors, the IFT-based solution can ensure 
the further reduction of the OF. This reduction is ensured by the gradient 
experiments conducted with the real-world CS that make the IFT approach closer to 
the real-world process behavior. 

Our approach is based on the fact that LQR finds an optimal solution for the 
available process model which is not optimal for the real-world process. Therefore, 
without using the process model the OF defined in (2.12.9) is reduced further using 
the real-world process. In order to provide a fair comparison between the LQR 
solution and the IFT-based solution, the deterministic framework is used in the 
simulations and the stochastic framework is next used in real-time experiments. 

In order to solve the optimization problem defined in (2.12.11) a parameter 
vector ρ has to be found such that 

TT

n1
]0...0[]

ρ
J...

ρ
J[

ρ
J =

∂
∂

∂
∂=

∂
∂ ,                    (2.12.12) 

which, for an OF J defined in (2.12.9), becomes 
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The cases of constrained optimization problems use Karush-Kuhn-Tucker 
optimality conditions instead of the null gradient given by (2.12.12). 
Partial derivatives li ρ/e ∂∂  and lu ρ/e ∂∂  need to be calculated first in order to 

obtain the derivatives n...1l  ,
ρ
J

l
=

∂
∂ , in the gradient of the OF. We will present in 

the next section an experimental technique that we developed to calculate these 
partial derivatives. 

The IFT algorithms are presented as follows in the more general stochastic 
framework. Therefore the OF defined in (2.12.9) and evaluated on a finite-time 
horizon becomes a random variable and therefore is should be defined as 

})]k,ρ(e λ)k,ρ(e Q )k,ρ(e[{E)ρ(J
N

0k

2
u

T∑
=

+= ,                  (2.12.14) 

where E{} is the expectation with respect to the stochastic disturbances. However 
the deterministic case results in the simplification of the IFT algorithms. 

The IFT algorithms can solve the optimization problem defined in (2.12.14) 
by using the Robbins-Monro stochastic approximation algorithm, which iteratively 
approaches a zero of a function without the need to know its complete expression. 
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There is no need for evaluations of the OF, but its first and eventually second partial 
derivatives are important. This result holds not only for the tuning approach based 
on sensitivity functions but also the stochastic convergence is ensured with useful 
consequences when dealing with real world processes. The parameter vector ρ 
values are iteratively updated according to the following equation: 

0R  )],ρ(
ρ
J[est)R(γρρ ii1iii1i >

∂
∂−= −+ ,                   (2.12.15) 

where Ni ∈  is the current iteration/experiment index, 0γ i >  is the step size, 

)]ρ(
ρ
J[est i

∂
∂  is the unbiased estimate of the gradient, and the regular matrix Ri can 

be the estimate of the Hessian matrix, the Gauss-Newton approximation of the 
Hessian, or the identity matrix in the case of less demanding and slower convergent 
computations. 

The step size sequence INi
i }γ{ ∈  should evolve in time such that to satisfy 

some bounds. With this regard the conditions to ensure the convergence of the 
stochastic algorithm are [14], [19], [27], [38], [87] 

∑∑
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∞

=

∞<∞=
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2i

0i

i )γ(  ,γ .                     (2.12.16) 

A good choice of the step size sequence that ensures the divergence of the 
first series in (2.12.16) and the convergence of the second series in (2.12.16) is 

1i  ,Ni  ,
i
γγ

0
i ≥∈= ,                      (2.12.17) 

where the initial step size 0γ0 >  is set such that to ensure a compromise to the 
numerical stability and to the convergence speed. 

A biased estimate of the Hessian matrix can be employed in the update law 
(2.12.15) as the Gauss-Newton approximation 
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∂

∂
∂= ∑

=

,  (2.12.18) 

where the estimates of the gradients are used when the stochastic environment is 
accepted. An example of unbiased estimator is given in [57]. 

The IFT algorithm will be described as follows, and aspects concerning its 
implementation are pointed out as well. LQR requires always a linearized model or a 
collection of local models of the process (e.g., in the gain scheduling approach) in 

order to calculate the optimal parameter vector *ρ  which corresponds to the 

optimal gain matrix T* )ρ( . The identification problem itself is a rather complex 

undertaking in the case of MIMO systems, which requires a special design of the 
experiments. 

On the other hand, the IFT-based approach does not need exact process 
models and special gradient experiments can be conveniently designed to avoid 
abnormal operation regimes. The initial tuning of the gain matrix is not a problem in 
the case of LQR-based approach. However, finding an initial stabilizing controller 
without knowing the process is not a trivial task. Finally, the IFT can be used to fine 
tune controllers for nonlinear processes under constraints [15]. 
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The IFT-based approach offers a notable degree of flexibility. The OF defined 
in (2.12.11) is not only weighting the state variable errors and the control signal 
error associated to the LTI state-space model of the CS defined in (2.12.1), but it 
can weight the reference model tracking error trajectories as well. 

As shown in [60] the IFT can be used as an alternative solution to the 
popular pole placement design of optimal state feedback controllers. However, the 
form in which it is used here is similar to the classical LQR optimization problem. 

As mentioned in the previous section, the main advantage of the IFT resides 
in its gradient computation algorithm together with the stochastic convergence 
result. The MIMO IFT-based approach is particularly well suited to solve the 
optimization problem defined in (2.12.9). This is due to the fact that the state 
feedback CS can be considered as a particular case of a MIMO system with one 
input, which is the control signal, and with many outputs, which are the 
measured/observed variables as shown in the model (2.12.1). 

From (2.12.1) and (2.12.6), the LTI state feedback CS is characterized by 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−=

+= −−

444 3444 21
)k,ρ(e

T

1
x w

1
x u

)]k,ρ(x)k(r[ρ)k,ρ(u

),k(w )q(P)k(u )q(P)k,ρ(x

,                   (2.12.20) 

where 1n1
x u R)q(P ×− ∈  is the process pulse transfer matrix operator from the input 

u to the state vector x, nn1
x w R)q(P ×− ∈  is the disturbance pulse transfer matrix 

operator from the process noise vector v to the state vector, and w, x and u are 
defined in accordance with (2.12.1). The dependence of the variables involved in 

(2.12.20) on T
n1 ]ρ...ρ[ρ =  is underlined in (2.12.20). 

As suggested in (2.12.13), we need to calculate the derivatives 
l
i
ρ
e
∂
∂

. Taking 

into account the state feedback control law defined in (2.12.6) and the fact that r 

does not depend on Tρ , the partial derivatives obtain the expressions 
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The derivative of the CS state vector with respect to a certain process 
parameter n...1l ,ρl = , can be written as 
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∂ − .         (2.12.22) 

Similarly, the derivative of the control signal in the state feedback control 
law expressed in (2.12.6) with respect to the same parameter n...1l ,ρl = , is 
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The derivative of the gain matrix Tρ  with respect to one parameter lρ  is a 

row vector with the same dimension as Tρ , but with a single nonzero element that 

takes the value 1, and when multiplied by e it keeps only the l-th state variable 
error. The derivative of the control signal is then 
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              (2.12.24) 
where el is the l-th state variable error. 

Equation (2.12.24) shows how to conduct the gradient experiments with the 
process: by injecting an additive term in the control signal of the state feedback CS 
and letting the reference input vector r equal to zero, the derivatives of the state 

variables and of the control signal with respect to the parameter lρ  in Tρ  are 

obtained. The injected term is le , i.e., the l-th element of the state control error 
vector obtained in a normal experiment. All specific experiments of IFT are 
described as follows. 

An initial experiment, called the normal experiment, is carried out to record 
the evolution of the state variables and the corresponding state variable errors and 
control signal error respectively, in the state feedback CS shown in Fig. 2.12.1. 

Other n gradient experiments are then subsequently carried out in order to 

calculate estimates of the derivatives 
l

i
ρ
x
∂
∂

 and 
lρ

u
∂
∂

, and use is made of equations 

(2.12.20) and (2.12.24). Let l denote as a superscript the l-th gradient experiment 
corresponding to n...1l ,ρl = : 
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                        (2.12.25) 
that provides the basis for the experimental setup (illustrated in Fig. 2.12.2) used to 

calculate iteratively the partial derivatives 
l

i
ρ
x
∂
∂

 and 
lρ

u
∂
∂

 needed in the minimization 

of the OF. We actually obtain at each gradient experiment the estimates of the 
gradient of the state variables with respect to the gain matrix parameters. This is 
because at each experiment the process noise acts upon the CS. It is evident from 

(2.12.25) that 
l

l
ρ
x

}x{E
∂
∂

= . In the deterministic framework these terms are 

dropped out in (2.12.25). 
 

 

Fig. 2.12.2. Experimental setup to calculate 
l

i
ρ
x
∂
∂

 and 
lρ

u
∂
∂

. 
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The IFT algorithm consists of the following steps: 

- Step 0. Set the step size, the initial controller parameters 0ρ  and the weights 

in the OF. 
- Step 1. Conduct the initial (normal) experiment making use of the CS structure 

presented in Fig. 2.12.1 and record the evolution of all state variables. 
- Step 2. Conduct the n gradient experiments making use of the experimental 

setup presented in Fig. 2.12.2 to obtain all partial derivatives 
l

i
ρ
x
∂
∂

 and 
lρ

u
∂
∂

. 

- Step 3. Conduct the normal experiment again such that the states contain 
realizations of noise that differ form the noise at step 2 to ensure the unbiased 
estimate of the gradient. 

- Step 4. Calculate the estimates of the gradient of the OF according to equation 
(2.12.13). 

- Step 5. Calculate 1iρ +  in terms of the update law (2.12.15). 

The step 0 is done only once. The steps 1 to 5 are repeated iteratively. The 
step 0 of the IFT algorithm requires an initial set of parameters that stabilize the 
state feedback CS to be obtained here by LQR. In the case of Single Input-Single 
Output (SISO) systems, we can use the Ziegler-Nichols tuning [39] or other 
techniques like the Virtual Reference Feedback Tuning [48], [103], [104] in order to 
get these parameters. 

There exists a difference between the deterministic case and the stochastic 
case in terms of the objective function and of the objectives that are targeted. 
Specifically, IFT is developed as an experimental-based technique in which the noise 
enters the CS and therefore the objective function also contains a factor that 
depends on the noise. This means that the minimization of the energy transfer 
between the noise and the state variables is also attempted, in addition to the 
minimization of the state control error and of the control signal energy that are 
objectives specific to the LQR deterministic problem. This aspect is illustrated in 
Appendix A. 

The case study that validates the new IFT algorithm is a second-order 
positioning CS for a modular DC servo system with an integral component. The 
process is characterized by the single input discrete-time LTI state-space model 
defined in (2.12.4) with the matrices 

2IC ,
3993.7
1867.0

B ,
9471.00
0487.01

A =⎥
⎦

⎤
⎢
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⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= ,                    (2.12.26) 

and with the angular position and the angular speed as state variables. The 
experimental setup is built around the INTECO DC servo system laboratory 
equipment. The main features of the experimental setup are the rated amplitude of 

V 24 , the rated current of A 1.3 , the rated torque of cmN15 , the rated speed of 
rpm  3000 , the weight of inertial load of kg 03.2 , and the angular speed is 

measured by a tacho-generator. The actuator (in the power interface) is 
characterized by limitation since the DC motor is controlled by pulse-width 
modulation (PWM), and the control signal u for the accepted laboratory equipment is 
the PWM duty-cycle which is constrained to 1u1 ≤≤− . The actuator exhibits a 

15.0±  width insensitivity zone applied to u and it is compensated through an 
inverse nonlinearity. 

The simplified model presented in (2.12.26) was obtained by the parameter 
identification of the first-principle model of the equipment resulting in the simplified 
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process transfer function (considering u as the input and the angular position as the 
output) 

)]sT1(s/[k)s(P ΣP += ,                     (2.12.27) 

where Pk  is the process gain and ΣT  is the small time constant. The values of the 

process parameters were obtained as 88.139kP =  and s 92.0T =Σ . Using the 

notation Ts for the sampling period, the sampling period of s 05.0Ts =  was next 
set. 

The detailed mathematical model of the process is time variant due to the 
interchanging modules (inertial load, encoder and eventually backlash). The re-
identification is not used in our approach. 

One simulation scenario and one experimental scenario are presented as 
follows to illustrate the benefits of the IFT-based approach over the classical LQR-
based approach. 

The model used in the LQR-based approach is (2.12.26) which is obtained 
from (2.12.27) for the process parameters 88.139kP =  and s 92.0T =Σ . Setting 
the weights Q and λ in the infinite horizon quadratic performance index defined in 
(2.12.5) according to 

400λ , 
2.00

02.0
Q =⎥

⎦

⎤
⎢
⎣

⎡
= ,                     (2.12.28) 

the gain matrix is 

]0.020135ρ0.020575ρ[)ρ( 211_LQR
T === .                  (2.12.29) 

The results are obtained for a step angular position reference input of 40 rad 

and zero reference input for the angular speed, i.e., T]040[r = . 
Accepting the time horizon of 200N =  samples, the OF is evaluated to 

42.4243J 1_LQR = . Next, we consider that the real-world process is generated 

from (2.12.27) with the process parameters 130kP =  and s 2.1T =Σ . This is a 
way to suggest that the LQR design is based on a model that is different from the 
real-world process as it is a very crude approximation. With the same LQR design 
resulting in the same gain matrix presented in (2.12.29), the OF is evaluated to 

30.4549J 2_LQR = , which is clearly non optimal since we have a different process 

model. However, the application of the LQR-based approach to the real-world 
process for the weights defined in (2.12.28), the gain matrix is 

]0.022102ρ0.020983ρ[)ρ( 213_LQR
T === ,                  (2.12.30) 

and the OF is evaluated to 42.7645J 3_LQR = . We assume as follows that we do 

not know the real-world process model, but we simulate that IFT-based experiments 
are conducted with it starting with the gain matrix defined in (2.12.29) as initial 

parameter vector. A constant step size of 7i 10γ −=  and 2
i IR =  are used in the 

IFT algorithm implemented in the deterministic framework. These results are very 
good because the gain matrix evolves from (2.12.29) to (2.12.30) and the OF from 

2_LQRJ  to 2_LQR3_LQR JJ < . Hence we are able to find an improvement of the 

OF although we are not using the process model. This in fact shows that the LQR 
optimization problem can be improved when experimenting on the real-world 
process. 
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The evolution of the OF over 25 iterations is shown in Fig. 2.12.3. The time 
responses of the CS with the controller parameters defined in (2.12.29) 
(corresponding to 1_LQRJ ) and (2.12.30) (corresponding to 3_LQRJ ) are 

illustrated in Fig. 2.12.4. The system responses are very similar; therefore the state 
feedback CS is robust with respect to the gain matrix parameter variations and to 
the process parametric variations as well. 

 

 
Fig. 2.12.3. Simulation results: the evolution of the objective function over 25 

iterations, 2_LQRJ  and 3_LQRJ  are marked with +. 
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Fig. 2.12.4. Simulation results: control system responses of the CS with the initial 

controller parameters defined in (2.12.29) and of the CS with the final controller parameters 
defined in (2.12.30). 

 
In order to illustrate how our data-based tuning evolves for a different 

situation, another simulation scenario is conducted. This scenario starts with an 
initial pole placement design, and it will be shown that the tuning actually reaches 
the LQR solution calculated on the basis of the real-world process. The pole 
placement design is based once again on the model that is different from the reality. 
The design is carried out in the discrete time domain. The pole placement design 
uses the gain matrix 3_LQR

T
1

T )ρ()ρ( =  given in (2.12.29). The solution to the 

optimal design, as previously designed, is expressed as the gain matrix 3_LQR
T )ρ(  

given in (2.12.30). For the pole placement design the closed-loop system spectrum 
corresponding to the continuous time case is represented by the poles i44.093.0 ±− , 
and for the optimal design the poles are –0.9 and –3.88. The first design is slower 
than the optimal design, hence the difference in the time response is illustrated in 
Fig. 2.12.5. 

In the IFT design, the first five iterations used the steepest descent with the 
estimate of the Hessian as the unity matrix and then the subsequent five iterations 
used the Gauss-Newton approximation since the solution was close to its minimum. 
The gain matrix parameters converge in ten iterations to the optimal solution 
designed via LQR. The evolution of the OF over these ten iterations is presented in 
Fig. 2.12.6. 
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Fig. 2.12.5. Simulation results: control system responses of the CS with the initial 

controller parameters designed via pole placement and of the CS with the controller resulted 
after the optimal design towards which the tuning via IFT converges. 

 

 
Fig. 2.12.6.  The evolution of the objective function evolution for the tuning via IFT 

with the pole placement solution and converging to the optimal design via LQR. 
 
The robustness properties of the pole placement design are not as good as 

in the case of the optimal design and this can be observed on the open-loop Bode 
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plots, where the phase margin and the crossover frequency get smaller. Therefore it 
can be motivating to use the IFT tuning to reach the optimal design when the model 
is imperfect and the design is based on the pole placement method. 

The deterministic scenario is not acceptable in practice and if the state 
variables are measured the noise has to be taken into account when applying the 
IFT algorithm. As suggested in the Appendix A, an additional objective is targeted, 
viz. the minimization of the energy transfer from the process noise to the state 
variables. The robustness properties of the CS are normally expected to be 
deteriorated but this proves to be insignificant. In order to illustrate this aspect, IFT 
is applied in three additional scenarios, with the process noise now acting upon the 
CS. The noise w is considered to be zero-mean white noise with appropriate 
dimension with respect to (2.12.1) and with each element of equal variance. The 

variances corresponding to these three scenarios are 1σ2
w = , 10σ2

w =  and 

20σ2
w = . Whereas in the deterministic case, the IFT-based solution converges to 

the true optimal state feedback gain matrix in (2.12.30), now IFT reaches 

]0.018580ρ0.019500ρ[)ρ( 21
T === ,                   (2.12.31) 

]0.007201ρ0.012323ρ[)ρ( 21
T === ,                   (2.12.32) 

and 

]0.003569ρ0.009623ρ[)ρ( 21
T === ,                   (2.12.33) 

respectively. Due to the superposition principle the noise contribution in the 
objective function can be calculated for the three cases with process noise to be 
equal to 1.7%, 14.7% and 23.7%, respectively. The open-loop Bode plots are 
presented in Fig. 2.12.7. 

Fig. 2.12.7 shows that with increasing noise intensity the phase margin gets 

smaller but still approximately o90 . The crossover frequency also decreases which 
in turn lowers the closed-loop bandwidth but the decrease is not drastic. The gain 
margin is only reached at the Nyquist frequency and it is high, varying from 25 to 
35 dB. Thus, the robustness properties still hold. This motivates the tuning to find 
the optimal solution that corresponds to the real-world process. 
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Fig. 2.12.7. The open-loop Bode plots of the state feedback CS after tuning with IFT: 

the true optimal solution in the deterministic scenario (solid), the scenario with the process 

noise of variance 1σ2
w =  (dashed), 10σ2

w =  (dotted) and 20σ2
w =  (dash-dotted). 

 
In the deterministic scenario, the tuning via IFT converges to the optimal 

solution calculated with LQR only for constant reference inputs. This is equivalent to 
considering nonzero initial conditions for the process. For other reference inputs 
such as ramp, sine or white noise the solution does not coincide with the solution to 
the LQR problem. Secondly, if zero reference input is considered and the state 
feedback control system is excited only by the process noise and if the control signal 
in the objective function is not weighted anymore by setting 0λ = , the resulting 
system dedicated to noise rejection is not robust anymore. 

A set of real-time experimental results is presented as follows. A first order 
low-pass digital filter with a cut-off frequency of 20 rad/s is used in the experiments 
to reduce the errors and the noise that occurs during the measurement of the 
angular speed. This filter will change the process model, but IFT is independent with 
this regard. This choice also supports the idea that the tuning can be carried out 
whenever the process model changes in time, without the need of identification and 
optimal redesign via LQR. 

The experimental scenario is characterized by the same reference input 
vector, time horizon and sampling period as those used in the simulation. 

The initial state feedback gain matrix is designed in terms of the LQR-based 
approach. The weights specific to this approach are chosen as in the simulations, 
and they do not cause the saturation of the actuator. Thus the undesired behavior 
due to the nonlinearities is avoided; this undesired behavior usually occurs in the 
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LQR-based approach where the nonlinear actuator is not included in the process 
model. 

For benchmarking purposes the control system performance indices that are 
used are the OF, the control signal energy defined as 

∑
=

=
N

0k

2
u ))k(u(E ,                      (2.12.34) 

the 10% to 90% rise time of the position response ( rt ), and the maximum speed 

( maxω ). The IFT-based approach is next used to further reduce the OF taking 
advantage of the experiments conducted with the real-world process of the 
experimental setup. 

In order to provide a relevant improvement, we start with a process model 
that is very different from the identified model. This is the same as assuming that 
the process model is time variant or that the identification is not accurate. The 
starting model for the LQR design uses the process parameters 180kP =  and 

s 2.1T =Σ  in the transfer function (2.12.27). For the weights set in accordance with 
(2.12.28) the state feedback gain matrix is 

]0.021368ρ0.020496ρ[)ρ( 214_LQR
T === .                  (2.12.35) 

The gain matrix 4_LQR
T )ρ(  is further tuned using our IFT algorithm. The 

initial step size in the IFT algorithm employed to minimize the OF defined in (2.12.9) 
is set to the initial value 80 102γ −⋅= , the values of the consequent step sizes are 

set in terms of (2.12.17), and 2
i IR =  is used. 

The reduction of the value of the OF is emphasized to illustrate that our IFT 
algorithm ensures the performance improvement of the state feedback CS. The 
following expression of the gain matrix is obtained after 15 iterations: 

]0.017355ρ0.018900ρ[)ρ( 215_LQR
T === .                  (2.12.36) 

The evolution of the OF with respect to the iteration number (i.e., during the 
tuning) is presented in Fig. 2.12.8. The evolutions of the controller parameters (i.e., 
the elements of the gain matrix) versus the iteration number are presented in Fig. 
2.12.9. The time responses of the CS before and after the application of the IFT 
algorithm are presented in Fig. 2.12.10. 
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Fig. 2.12.8. Experimental results: the evolution of the objective function versus the 

iteration number. 
 

 
Fig. 2.12.9. Experimental results: the evolution of the controller parameters versus 

the iteration number. 
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Fig. 2.12.10. Experimental results: control system responses of the CS before IFT and 

after IFT. 
 
Fig. 2.12.8 illustrates that the OF is affected by random disturbances when it 

is evaluated on the real-world process. The values of the OF for the gain matrices 
defined in (2.12.35) and (2.12.36) are 89.3821J 4_LQR =  and 

10.3772J 5_LQR = , respectively. The following performance indices were 

obtained: 
- for the initial CS response (i.e., before IFT): 5482.2Eu = , s 94.2tr = , 

rad/s 0847.27ωmax = , 

- for the final CS response (i.e., after IFT): 4654.2Eu = , s 53.2tr = , 

rad/s 9519.27ωmax = . 

Since this section does not focus on using a very good model of the real-
world process, the real-time experimental results were not presented in a similar 
style to that used for the simulation ones. As the LQR problem is developed in the 
deterministic case, it does not include the random elements in the design. However 
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the LQR was applied to the real-world process which is subject to random effects. 
That is the reason why the OF defined in (2.12.11) is a random variable. In other 
words, if no reference input is used to drive the state variables and the initial 
conditions are zero, the only inputs that drive the state variables are w and v, 
therefore 0J ≠ . In such cases the minimization of J is dedicated to reduce the 
energy transfer from the process noise to the state variables. Concluding, nonzero 
reference inputs are reflected by targeting three objectives: the minimization of the 
tracking error energy, the minimization of the control effort, and the noise rejection 
problem. The improvements via IFT shown in the previous section ensure the 
reduction of the OF value and of its variance, due to the lower sensitivity to noise. 
This idea is also backed up by the Appendix. 

The time responses of the experimental results shown in Section 4 are not 
very different and this shows the robustness of state feedback CS with respect to 
the controller and process parametric variations. However, the solution is an evident 
improvement of the LQR design and when the noise contribution in the OF is small, 
it is expected that the tuning procedure gets near the optimal gain matrix which 
results in an optimal state feedback CS with robustness properties. When the noise 
contribution is important, the robustness properties of the optimal state feedback 
CS still hold as it is suggested by the simulation scenarios with included process 
noise. 

The scenarios used in the previous section prove that the tuning can start 
with different points in the parameter space. All these different initial points lead to 
better results than those obtained by the LQR-based approach. 

The weights in the optimization problems were set such that to ensure the 
linear operation of the process and of the actuator, viz., without entering saturation. 
The experimental results illustrate that the steady-state error of the position 
response is improved in spite of the process nonlinearities. 

As shown in the previous section, IFT requires 1+n real-time experiments 
per iteration, n of them being successive gradient computation experiments. This 
number cannot be reduced using ideas similar to those presented in [18]-[20] 
because the number of gain matrix parameters is equal to the product between the 
numbers of process inputs and outputs. 

Concluding, this section has presented an original IFT approach to improve 
the performance of state feedback CSs where the performance specifications are 
expressed to aim the minimization of OFs expressed as quadratic performance 
indices. A new IFT algorithm is suggested in this context, and comments concerning 
the implementation of the algorithm in several applications of single input processes 
are given. Our approach is general as it can be applied not only to positioning 
systems and to servo systems but also to other various applications [105]-[109]. 

The IFT approach, which is based on experiments conducted with the real-
time CSs, provides an efficient way to deal with some of the specific problems of ill-
defined processes when the strongly model-dependent LQR design gives solutions 
that are far away from the optimal solution. In such cases, when the LQR approach 
cannot anymore allow finding the minimum of the OF, the IFT approach can be 
applied to further reduce the OF. The experimental results presented in Section 4 
show that the IFT approach, which allows an estimation the OF gradients on the 
basis of sensitivity functions’ manipulation and of real-time measurements during 
the CS operation, can successfully be used. 

A limitation of our IFT approach is that it actually ensures the strong 
improvement of the CS performance and the strong reduction of the OF only with 
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respect to the considered particular reference input. Modifications of the reference 
input will yield different results with different dynamic characteristics. 

Our IFT approach does not use state estimators, being developed for a 
specific situation where all the states are measured. However, the introduction of 
state estimators in future research is not problematic because the estimator gain 
can also be included in the IFT algorithm. 

Future research will deal with the extension of the proposed IFT approach to 
MIMO control systems and to the tuning of state feedback fuzzy control systems. 
Further study of the convergence of the IFT algorithms is needed for all applications 
including the nonlinear processes. 

 
 

2.13. Stable Iterative Feedback Tuning technique for 
servo systems 
 

Iterative Feedback Tuning (IFT) is a model-free direct data-based offline-
adaptive controller tuning approach which has gained a lot of interest recently. It 
offers a solution to a stochastic optimization problem which is the translation of 
different control problems into Linear Quadratic Gaussian (LQG) performance 
criteria. 

Many specific issues regarding IFT are currently solved including the IFT 
algorithm convergence [38], [47], [48] and the stability throughout the iterations 
[29], [110], [111]. Not only was the IFT algorithm merged with different control 
systems (CSs) paradigms but also plenty of applications have been reported that 
would make the subject of a long list. In order to increase the confidence in the 
algorithm, the stability along the iterations of the algorithm had to be tackled as 
already mentioned. 

The idea of studying the closed-loop stability for data-based control is 
suggested in [110], where the objective function (OF) is expressed in frequency 
domain (hence the name Frequency Domain Tuning, FDT) and the gradient of the 
OF with respect to the controller parameters is calculated in terms of a frequency 
domain approach. The stability is ensured by calculating the generalized stability 
margin and the Vinnicombe distance between the old and the new controller. A 
frequency domain-based sufficient condition is proposed in [110] to guarantee the 
closed-loop stability, and a Spectral Analysis Algorithm (SPA) estimates the 
quantities involved in the computation. The need to compute the generalized 
stability margin was first emphasized in [29]. A relaxed sufficient condition 
compared to [110] is given in [111]. This test is devoted in fact to estimating, via 
spectral analysis, the frequency domain magnitudes of the transfer functions (t.f.s) 
of the output sensitivity function (S) and of the product of the process t.f. and S. 

A similar approach for testing the stability under data-driven tuning of the 
controller for a Virtual Reference Feedback Tuning (VRFT) technique is proposed in 
[112]. However the testing requires the closed-loop to be opened and a filtered 
version of the open-loop gain is evaluated. In this approach the loop is maintained 
closed and thus stable, with no concerns about the regimes allowed for testing 
unstable processes. No assumptions are made about the stability of the process. 

The above approaches are conservative in the sense that they provide only 
sufficient conditions for the stability of the closed-loop. Another paper which deals 
with stability of the loop under iterative controller design is [113] where a coprime 
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factor representation is proposed and the phase information derived on closed-loop 
is used to assert the stability through necessary and sufficient conditions. This is 
rather different to the wider-spread approach of using bounds on magnitude of t.f.s 
which give only sufficient conditions. 

The new contribution of this section is a technique to guarantee the CS 
stability throughout the iterations of the IFT algorithm. The proposed technique 
makes use of a coprime factor uncertainty representation for the controller subject 
to tuning, and the small gain theorem for LTI discrete-time systems is applied with 
this regard. Bounds on the gain of the systems involved in the stability analysis are 
found from nonparametric models in frequency domain, which are typically easier to 
obtain than the parametric models. The new stable IFT technique presented in this 
section involves some computations concerning the same two t.f.s as those 
proposed in [110], and it is advantageous with respect to the state-of-the-art 
because of the transparency and simplicity of its three design steps. 

This section gives the following results: 
- The problem setup and the theoretical framework are first presented. 
- Several techniques to estimate the L2-induced gain (i.e., the H∞ norm, 

referred to as the ∞-norm) of SISO Linear Time-Invariant (LTI) systems are 
next discussed from a comparative perspective. The discussion formulates 
recommendations on deciding upon using a particular estimation algorithm. 

- A digitally simulated case study involving the application of the stable IFT 
technique to tune the controller parameters of a servo system is given. 

The process is accepted to be a SISO LTI system described by 

 )k(v)ρ,k(u)z(P)ρ,k(y 1 += − ,            (2.13.1) 

where u is the input, y is the measured output, and v is the measurement noise. 
The process is controlled in a standard closed-loop setting with a discrete-time 

controller )q(C 1−  such that 

 ))ρ,k(y)k(r)(ρ,z(C)ρ,k(u 1 −= − ,           (2.13.2) 

where r is the reference input. The main objective of IFT is to tune de controller to 
achieve perfect reference model (RM) tracking. The goal is achieved as an 
optimization problem in which the controller is parameterized and the parameter set 
is changed from one iteration to another in the main IFT algorithm. The IFT 
algorithm gathers data from the real process and it is offline. Several real-time 
experiments have to be performed during one iteration in order to calculate the next 
set of controller parameters according to the following update law: 

 
∧

+ −=+= )ρ(JdγΔ  ,Δρρ k
kkk

k1k ,           (2.13.3) 

where: kρ  and 1kρ +  – the parameter vector at the current and at the next 

iteration respectively, 
∧
Jd  – the estimate of the gradient of the OF )ρ(J  with respect 

to ρ , kγ  – the step scaling coefficient, and kΔ  is a correction term that includes 

both the estimate of the gradient of the OF and the step scaling coefficient. A 
steepest-descent algorithm in a stochastic approximation framework approach is 
used. The algorithm converges to the true minimum of the OF under certain 
assumptions on the step sequence }γ{ k  [16]. 
T he OF is usually defined as an LQG-type criterion of the general form 
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 })]ρ,k(uλ))k(y)ρ,k(y[({E)N2/(1)ρ(J
N

1k

22
d∑

=

+−= ,         (2.13.4) 

where )k(yd  is the desired RM trajectory, λ weights the control effort in the OF and 
the expectation operator E{.} is taken with respect to the stochastic disturbance 
(which enters in the setup as in (2.13.1)). It can be seen (e.g. in [48]) that the OF 
can be split up in three components which correspond to three objectives of the 
optimization problem: RM tracking, control effort penalty and disturbance rejection. 

The algorithm can only converge to a local minimum of the objective 
function and therefore it can not achieve global optimization. Moreover, it is not 
concerned with the stability of the closed-loop during the tuning procedure 
throughout iterations. Depending on the step size of the algorithm, problems can 
occur such that the closed loop becomes unstable. 

In the following, a stable IFT technique is presented in a robust stability 
theoretical framework where the tuning of the parameters of the controller is seen 
as a coprime factor uncertainty as in [114]. The reason for this choice translates to 
a simple technique to calculated the scaling coefficient in (2.13.3). 

We assume that an initial stabilizing controller exists in the beginning of the 
IFT algorithm that can be represented as the rational filter form 
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The controller is parameterized by the vector 

 T
n0m1 ]a...ab...b[ρ = ,             (2.13.6) 

which is included in an IFT-based tuning scheme subject to (2.13.3), and T indicates 
the matrix transposition. The correction term kΔ  defined in (2.13.3) can be divided 

in two components representing the corresponding corrections for the nominator 
and the denominator of the controller. We can express this as 

 T
ABk ]δδ[Δ = .             (2.13.7) 

These corrections acting on the nominator and on the denominator, 
respectively, will be treated in the following as uncertainties. We should make a 
difference between the current controller and the next controller by using the index 
k and k+1, respectively. The relation between them, expressed as a consequence of 
the IFT algorithm, is represented by 
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All discrete t.f.s are stable in the last form in (2.13.8) because of the 
division with the stable denominator polynomial A(z). The insertion of the next 
controller in the closed-loop together with the corresponding nominator-
denominator perturbations can be manipulated as in Fig. 2.13.1 (a) through the 
manipulation of the t.f. blocks. By aggregating the uncertainty polynomials into the 
line vector t.f. (matrix) 
 )]z()z([)z(Δ BAAB ΔΔ−=             (2.13.9) 

as in Fig. 2.13.1 (b), we are able to manipulate the scheme into the standard upper 
linear fractional transformation (LFT) as suggested in Fig. 2.13.1 (b) in the upper 
right corner. This form is especially useful when analyzing the stability of the closed 
loop system. 
 

 
Fig. 2.13.1.  Next controller built as uncertainty for the current controller (a), and 

reconfiguration to the standard upper LFT (b). 
 

From the block algebra, it can be shown that the equivalent column transfer 
matrix H represents the transfer matrix from the scalar input x to the scalar outputs 
q1 and q2, expressed as 

 ⎥
⎦

⎤
⎢
⎣

⎡
−

=
)z(S)z(P

)z(S
)z(H .                      (2.13.10) 

The output sensitivity function denoted by S(z) is 
 ))z(P)z(C1/(1)z(S k+= .                     (2.13.11) 

A sufficient condition for the closed-loop stability for the LFT in Fig. 2.13.1 
(b) is provided by a version of the small-gain theorem (e.g. [115]) applied for 
input/output stable (L2 finite gain stable) discrete-time LTI systems which states 
that if 
 1)z(Δ)z(H AB <

∞∞ ,                      (2.13.12) 

then the closed-loop system is stable. The ∞-norm is the L2-induced norm over the 
elements of the Hardy space H∞. 
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We are sure that H is stable since we assumed previously that the current 
controller stabilizes the closed-loop. The term )z(ΔAB  was set to be stable by 

construction. 
In order to calculate the ∞-norm for the two transfer matrices involved in 

(2.13.12) it is first observed that both operators are vectors (column and line 

respectively) and that for a column vector T
21 ]vv[v =  or for a line vector 

]vv[v 21= , we have a single singular value equal to 2
2

2
1 |v||v|σ += . In this 

case, the ∞-norms for the two operators are 

 

).)e()e((sup)z(Δ
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+=

∞

∞
                   (2.13.13) 

Whereas the term corresponding to the uncertainties in (2.13.8) is known, 
and it can be calculated analytically, the first term depends on the process model 
which is unknown. However, by using an extra experiment at the current iteration of 
the algorithm, an estimate of the ∞-norm can be obtained experimentally. This is 
obtained by estimating the magnitude frequency response for the complementary 
sensitivity function denoted by T=1–S, which is in fact 
 ))z(P)z(C1/()z(P)z(C)z(T kk += .                    (2.13.14) 

The magnitude of S can next be calculated. Moreover, since we know )z(Ck  
we can calculate the magnitude of 
 )z(S)z(P)z(C/)z(T k = ,                     (2.13.15) 
which is exactly what we need in order to obtain the ∞-norm of H, let it be α . 
Then, (2.13.12) results in the following sufficient condition for the closed-loop 
stability: 
 α<

∞
/1)z(ΔAB .                      (2.13.16) 

This can be ensured since )z(ΔAB  contains the step scaling coefficient from 

the update law in the IFT algorithm, namely 0γk >  which can be chosen such that 

to satisfy the condition (2.13.16). Thus, the norm of )z(ΔAB  can be made 

arbitrarily small and this translates to scaling each correction term in the correction 
vector of the parameters of the controller. 

If we use an uncertainty model for the updating controller such as 
 )z(C)z(C)z(C k1k Δ+=+ ,                     (2.13.17) 

it is not possible to pull out the scaling coefficient kγ  out of the uncertainty )z(CΔ  
when the denominator is also subject to tuning and thus a more complicated 
(expensive) search algorithm would have been necessary in order to calculate kγ  
that satisfies (2.13.12). 

A frequently used approach to controller design and tuning makes use of 
linear parameterization as in VRFT [53]. In this case, only the numerator of the 
controller t.f. is parameterized. This simplifies the stability analysis from our 
framework in the sense that )z(ΔAB  consists only of )z(BΔ  and 

)z(S)z(P)z(H −= . The ∞-norm becomes more easily to calculate for )z(H  since it 
can be obtained experimentally from the magnitude-frequency characteristic. In the 
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case where H is a transfer matrix as in (2.13.13), one has to estimate successively 
the magnitude responses for T(z), S(z) and )z(S)z(P− , and next to conduct a 
search over the grid of frequencies at which the estimates were found to find the ∞-
norm. In this case, the estimation errors add up and eventually give poor estimates. 
The focus should be on other approaches to estimate the ∞-norm in the MIMO case. 

For the stochastic optimization to work it is necessary that [16] 

 ∑
∞

=0k
kγ  is divergent and  ∑

∞

=0k

2
kγ  is convergent.                   (2.13.18) 

Proceeding this way when getting close to the minimum the steps are 
smaller in order to prevent making large steps that could emerge from the noise-
perturbed estimates of the gradient. A common choice for the sequence }γ{ k  is 

 N,1k  ,k/γγ 0k == .                      (2.13.19) 

If the whole kγ  is subjected to the stability condition (2.13.16) then the 
steps would not respect the constraints of the stochastic algorithm. Instead of that 
the following choice is proposed here: 
 k/cγ kk = ,                       (2.13.20) 
where only ck is subjected to (2.13.16) and it is supposed to be an upper bounded 
positive quantity. Hence the proposed sequence still respects the conditions. 

The proposed stable IFT technique can be summarized as follows. 
1) Start with an initial stabilizing controller for the closed-loop system. 
2) At each iteration, do the following: 

- The normal experiment. 
- The subsequent gradient experiments needed in the estimation of the 

gradient of the OF and eventually of the Hessian of the OF 
- One additional experiment in order to estimate α  (the ∞-norm of H). Find 

0γk >  that satisfies (2.13.16) and calculate the next set of parameters using 
(2.13.3). Since the current controller stabilizes the loop so should the next 
controller given the small gain theorem. 
3) Test the stopping condition which translates to only marginal 
improvements in the OF, or by calculating the Hessian of the OF near the 
minimum. If the condition is met, terminate the algorithm, otherwise go to 
step 2). 

The burden is left to the gain-estimating algorithm from experimental data 
on the real process. Two widely spread approaches can be used to find the 
magnitude of the frequency response, i.e., to estimate the H∞ norm from 
experiments. The advantages and drawbacks of these methods are discussed as 
follows. 

Two popular approaches to estimate the ∞-norm are the Empirical Transfer 
Function Estimate (ETFE) [116] and the Frequency Response Function (FRF) [117]. 
The estimate of the nonparametric t.f. is basically the ratio of the Discrete Fourier 
Transform (DFT) (calculated using the Fast Fourier Transform (FFT) version) of the 
output and the input signals respectively. Under certain circumstances, this estimate 
is very accurate. Namely, the input is periodic and deterministic, the SNR is high on 
the measurement channels of the input/output, the noise acting upon the 
measurement channels is independent of the input/output. The periodic input 
eliminates the spectral leakage. The other requirements can be satisfied using high 
power at each input frequency so that the contribution of the noise at each 
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frequency is small compared to the deterministic signals. This however can be 
difficult and that is why the ETFE estimate is better used in narrowband systems, 
where it is easier to concentrate the power. One drawback is that this approach 
does not provide confidence intervals. 

On the other hand, the Spectral Analysis Algorithm (SPA) [116] does 
provide confidence intervals for the estimate. It basically computes spectrum 
estimates of the input/output signals using a smoothed version of the (cross)-
covariance functions for the input/output signals which is then Fourier transformed. 
The smoothing is done using a Hamming lag window of a certain width. The 
advantage of this approach is that it also estimates the spectrum of the noise and 
provides confidence bounds such as variance on the frequency response estimate. 
This can be used in checking the stability of the closed loop under controller tuning 
when estimating the gain of H is needed. The threshold of the inequality given in 
(2.13.12) can be lowered to account for estimation errors. 

Two different approaches to estimation of the ∞-norm are presented in 
[112], [118]. In the first one, the ∞-norm of the systems is found as the solution of 
a convex optimization problem even in the presence of noise. A convex noise set is 
defined to keep the problem amenable to convex optimization. It makes use of only 
one input-output data set measured on the process. 

The second solution uses successive experiments in a gradient-based search 
framework that aims at reshaping the input signal in order to maximize the input to 
output gain. The gradient of the gain objective function does not depend on the 
process model. The drawback in this context is that more experiments on the real 
system are needed. 

There is an evident trade-off to these estimation algorithms to be accounted 
for when using different operating regimes in testing. Since the cost of the 
experiments on real processes can be prohibitive involving many calculations the 
choice of a certain estimation algorithm is subjective. 

This section is dedicated to the presentation of a case study to apply the 
new IFT technique proposed in this section. The process is a servo system for which 
the angular position control is aimed. The continuous t.f. of the process is 
 )]sT1(s/[k)s(P pp += ,                     (2.13.21) 

with 8.139kp =  and s 92.0Tp =  [17]. This model was not used anywhere in the 

application of the new IFT technique, but only for the sake of comparison. This servo 
system corresponds to a laboratory equipment with a DC motor and an inertial mass 
of 2 kg connected to the motor, and it is similar to other servo system applications 
[76], [121]-[123]. 

An initial discrete-time controller with the t.f. and the parameter vector 

 
,]8181.0ρ03.0ρ044.0ρ[ρ

),zρ1/()zρρ()ρ,z(C
T

321

1
3

1
21

−=−===

++= −−
                   (2.13.22) 

was used. The controller design and tuning concerned only the improvement of the 
system response with respect to step reference inputs and not with respect to 
external disturbances. The pure deterministic case is considered. The CS 
performance specifications are expressed as RM tracking with no penalty on the 
control effort. The RM chosen for the achievable CS structure in terms of (2.13.21) 
and (2.13.22) was the discrete time equivalent of the continuous time model t.f. 

)56.15s78.23s11.21s/()56.15s556.1()s(M 23 ++++= , and the sampling period 
was set to s 01.0Ts = . 
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The tuning was performed only for the numerator parameters of the 
controller, i.e., 1ρ  and 2ρ , while the denominator is kept constant. The sequence 

}γ{ k  was implemented right from the first iteration according to (2.13.20). Since 
only the numerator is involved in tuning, the problem simplifies the estimation of 
the ∞-norm of H(z) which consists only of )z(S)z(P−  as mentioned in Section II. 
Its norm is obtained by estimating the closed-loop magnitude Bode plot response 
from the load disturbance input to the output using Matlab’s SPA. A pseudo-random 
binary signal was applied at the reference input. 

The step response of the closed-loop with the initial controller is given in Fig. 
2.13.2 (a) along with the response of the RM and the response of the CS after IFT. 
The estimated norm and the real norm of )z(S)z(P−  throughout the iterations are 
shown in Fig. 2.13.2 (b). The evolution of the OF is illustrated in Fig. 2.13.2 (c). The 
real and estimated magnitude Bode plots of the closed-loop t.f. with the initial 
controller are presented in Fig. 2.13.2 (d). 

Fig. 2.13.2 (d) shows that the closed-loop has a resonant mode and the lag 
window in the SPA algorithm was chosen so that the peak in the response is 
revealed. The uncertainty at high frequencies is evident. The norm is 
underestimated at all iterations. This could affect the stability conditions. More 
importance was given to estimating the response at low frequencies. The peak of 
the initial closed-loop frequency response is matching the time response in Fig. 
2.13.2 (a) for the initial controller. 

The evolution of the parameters over the surface of the OF during the tuning 
is presented in Fig. 2.13.3. The steps lengths are suggested by segments delimited 
by circles. The algorithm runs in the valley where it bounces around with 
continuously decreasing step lengths. 

The decreasing sequence }γ{ k  is very effective when abrupt slopes of the 
OF occur around the minimum, and it also prevents the possible bounces of the OF 
because of the stability test. 
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Fig. 2.13.2.  Step response of control system as controlled output versus time (a), estimated 

and the actual norm at each iteration (b), OF evolution versus iteration number (c), and 
magnitude Bode plot of the closed-loop t.f. with the initial controller (d): real (solid) and 

estimated (dotted). 
 

 
Fig. 2.13.3.  Evolution of the parameters during tuning. 

 
The proposed technique assists very well the tuning procedure of IFT. The 

stability condition sufficient, thus the result is conservative in the sense that better 
design choices are available. However the estimation of a nonparametric model in 
frequency domain is typically simpler than identifying parametric models, and this 
can be achieved using different techniques like ETFE or SPA. Just an additional 
experiment per iteration is needed to measure the frequency response. When the 
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experimenting conditions are restrictive, the testing could be done with the closed-
loop in steady state by injecting a signal over the reference signal. 

Concluding, the stable IFT technique proposed in this section is 
advantageous since it experiments on the closed-loop, so there are no concerns on 
experimenting unstable processes. In normal settings, the difference between the 
initial response and the desired response is not very large and thus we would not 
expect a very large number of iterations. It would be a mistake to require extreme 
performance from the closed-loop since it can not be guaranteed that the tuning 
performs in the desired direction without introducing some knowledge about the 
process. This implies additional information on the process leading to the existence 
and the uniqueness of the global minimum of the OF [48]. 

There is a certain need for better estimates of the ∞-norm of LTI systems in 
order to make them completely trustworthy. This however should be done without 
too much expense, and the compromise is to put an effort into a parametric model 
identification of the process that can be used throughout the iterations. 

A limitation of our technique is the gap between the norms of the sampled-
data systems which represent the true experimental conditions and the norms of 
their discrete-time equivalents. This can be mitigated in our case by appropriate 
constraints although a complicated approach is given in [119]. 

The future research will be focused on finalizing the laboratory 
implementation of the IFT algorithm developed on the basis of the stable IFT 
technique. The laboratory setup is characterized by the simplified mode given in 
(2.13.21), and it includes a motor-inertial mass setup, a backlash before the 
position encoder, and a dead-zone specific to the control signal. The application of 
our IFT algorithm is enabled by the frequency response estimation that works for 
smooth nonlinear processes. 
 
 

2.14. Chapter conclusions 
 

A brief summary of the results is presented in this section. 
A comprehensive study of Iterative Feedback Tuning has been presented in 

Chapter 2. A general presentation of the tuning scheme was accomplished for one- 
and two-degrees of freedom controllers (1-DOF and 2-DOF). For the 2-DOF control 
structure, two subsequent situations are detailed for both simultaneous and 
separate parameter tuning. General aspects concerning the reference model 
selection, the search direction of the searching algorithm and issues related to the 
convergence of the algorithm to the solution, are presented. Subchapters 9 and 10 
are dedicated to the translation of IFT to multiple-input multiple-output (MIMO) 
systems. Ideas on how to reduce the number of experiments at each iteration are 
suggested, due to the rapidly increasing number of parameters in MIMO controllers. 

In subchapter 11, an original tuning scheme using IFT was presented and 
formulated in terms of a setup using state feedback control. The scheme shows to 
be effective for pole-placement-based solutions that need retuning either because of 
process aging or due to the large differences between the model and the real 
process. A solution to the search algorithm convergence is proposed in terms of 
Popov’s hyperstability analysis theory. The results are validated on laboratory 
equipment represented by a modular servo system. 
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In subchapter 12, using the same structure with state-feedback control, the 
approach was translated to optimal control systems. The Linear Quadratic Regulator 
(LQR) and the Linear Quadratic Gaussian (LQG) control problems can be casted into 
optimization problems that are amenable for tuning via IFT. The optimality of the 
model-based paradigm in the design of optimal control systems is discussed in the 
light of the discrepancies between the process model and reality. In order to benefit 
from the guaranteed robustness properties of the LQR-based designed CSs, tuning 
via IFT is attempted. The case studies show some important facts: The optimal 
solution can be reached when we start from near a vicinity of the solution even if 
the process model is poor. Also, the optimal solution can be reached from an initial 
pole-placement solution which by its nature does not guarantee good robustness 
properties for the state-feedback structure. Thirdly, the inherent noise that affects 
the experimental-based tuning is shown to weaken the robustness of the CS but not 
to a substantial degree. The novel tuning scheme is also validated on laboratory 
equipment with a servo system. 
 Subchapter 13 deals with the stability issue between the iterations of the 
IFT. The solution makes use of a coprime factor uncertainty representation for the 
controller subject to tuning, and the small gain theorem for LTI discrete-time 
systems is applied with this regard. Bounds on the gain of the systems involved in 
the stability analysis are found from nonparametric models in frequency domain, 
which are typically easier to obtain than the parametric models. The frequency 
response functions can be obtained either via empirical transfer function estimate 
(ETFE) or by spectral correlation-based analysis (SPA). The results are supported by 
a simulation case study. The ideas can be considered to enlarge the overview of the 
iterative schemes and can render the approach into a suitable tool for maintaining 
the stability throughout the iterations. Several other techniques fall within the 
incidence of this approach, such as IRT, SPSA or CbT. 

 The new contributions of this chapter are: 
1) The experimental validation of IFT on different laboratory equipment. 
2) A novel IFT tuning scheme for state feedback controlled systems. 
3) The implementation of IFT on MIMO systems with saturation on the 

actuator. 
4) A novel approach to ensuring the search algorithm convergence by using 

Popov’s hyperstability theory, which does not need in the formulation the 
knowledge of the minimum of the OF 

5) A stable IFT technique that guarantees the closed-loop stability throughout 
IFT tuning by using a robust stability framework with the small gain theorem 
applied to a linear fractional transformation of the closed-loop when the 
modifications of controller’s parameters are treated as uncertainties. 

6) Solving the LQR design problem on experimental basis in terms of using the 
IFT technique, which is different to the model-based approach. 

These new contributions were presented in the following papers: 

Rădac, M.-B., Precup, R.-E., Preitl, St., Tar, J. K., Fodor, J. and Petriu, E. M. 
(2008): Gain-Scheduling and Iterative Feedback Tuning of PI Controllers for 
Longitudinal Slip Control. Proceedings of 6th IEEE International Conference on 
Computational Cybernetics ICCC 2008, Stara Lesna, Slovakia, pp. 183-188, indexed 
in SCOPUS, INSPEC. 

Precup, R.-E., Moşincat, I., Rădac, M.-B., Preitl, St., Kilyeni, St., Petriu, E. M. and 
Dragoş, C.-A. (2010): Experiments in Iterative Feedback Tuning for Level Control of 
Three-Tank System. Proceedings of 15th IEEE Mediterranean Electromechanical 
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Conference MELECON 2010, Valletta, Malta, pp. 564-569, indexed in ISI 
Proceedings. 

Rădac, M.-B., Precup, R.-E., Preitl, St. and Dragoş, C.-A. (2009): Iterative 
Feedback Tuning in MIMO Systems. Signal Processing and Application. Proceedings 
of 5th International Symposium on Applied Computational Intelligence and 
Informatics SACI 2009, Timişoara, Romania, pp. 77-82, indexed in ISI 
Proceedings. 

Rădac, M.-B., Precup, R.-E., Petriu, E. M., Preitl, St. and Dragoş, C.-A. (2009): 
Iterative Feedback Tuning Approach to a Class of State Feedback-Controlled Servo 
Systems. Proceedings of 6th International Conference on Informatics in Control, 
Automation and Robotics ICINCO 2009, Milan, Italy, vol. 1 Intelligent Control 
Systems and Optimization, pp. 41-48, indexed in ISI Proceedings. 

Rădac, M.-B., Precup, R.-E., Preitl, St., Petriu, E. M., Dragoş, C.-A., Paul, A. S. and 
Kilyeni, St. (2009): Signal Processing Aspects in State Feedback Control Based on 
Iterative Feedback Tuning. Proceedings of 2nd International Conference on Human 
System Interaction HSI’09, Catania, Italy, pp. 40-45, indexed in ISI Proceedings. 

Rădac, M.-B., Precup, R.-E., Petriu, E. M., Preitl, St. and Dragoş, C.-A. (2011): 
Convergent Iterative Feedback Tuning of State Feedback-Controlled Servo Systems. 
In: Informatics in Control Automation and Robotics, Eds. Andrade Cetto, J., Filipe, J. 
and Ferrier, J.-L. (Springer-Verlag), pp. 99-111, indexed in SCOPUS. 

Precup, R.-E., Preitl, St., Rădac, M.-B., Petriu, E. M., Dragoş, C.-A. and Tar, J. K. 
(online first, Date of Publication: 03 August 2010): Experiment-based teaching in 
advanced control engineering. IEEE Transactions on Education, vol. PP, no. 99, pp. 
1-11, DOI: 10.1109/TE.2010.2058575, ISI Science Citation Index impact factor (in 
2009) = 1.157. 

Rădac, M.-B., Precup, R.-E., Petriu, E. M., Preitl, St. and David, R.-C. (2011): 
Stable Iterative Feedback Tuning Method for Servo Systems. Proceedings of 20th 
IEEE International Symposium on Industrial Electronics ISIE 2011, Gdansk, Poland, 
pp. 1943-1948, indexată INSPEC. 
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3. Virtual Reference Feedback Tuning (VRFT) 
 

The idea behind the VRFT technique in model-reference control framework is 
related to the minimization of an objective function that penalizes the difference 
between the behavior of the designed closed loop and the behavior of the desired 
reference model [53], [54], [55]. This idea can be expressed as 

2

2
MR )z(W)z(M

)ρ,z(C)z(P1
)ρ,z(C)z(P

)ρ(J ⎟
⎟
⎠

⎞
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⎝

⎛
−

+
= ,    (3.1) 

where M(z) is the reference model expressed as a discrete-time transfer function, 
P(z) and C(z) stand for the process discrete-time transfer function and for the 
controller discrete-time transfer function respectively. W(z) is a weighting filter and 
it can be understood in the frequency domain while being used as a degree of 
freedom in the design. The criterion makes use of the two-norm of a transfer 
function in discrete form. Another expression in the frequency domain can be 
employed due to the Parseval’s theorem is 
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1)ρ(J .  (3.2) 

To solve the VRFT problem means to try and find the controller which 
minimizes the objective function. The solution reduces to an identification problem 
as explained. The following discussion assumes single input single output linear 
time-invariant process. The time argument is omitted for simplicity. Also, the 
deterministic case is considered leaving the situation when the noise affects the 
signals for another discussion. An excitation for the open loop process is considered 
as u for which the output y is recorded. The same output is considered to have been 
obtained by filtering a reference signal through the reference model M. Although M 
is causal and the inverse of it is not, the filtering can be done to obtain this virtual 
reference signal called r since y is available. A virtual feedback control structure is 
built with the controlled error e = r − y feeding a controller with pre-specified 
structure called C(z). Passing e through C(z) should give us the initial signal used 
for excitation which is u. The parameters of the proposed structure of the controller 
which achieve the best fit between the filtered virtual error e and input signal u are 
the solution to an identification-like problem defined as an optimization problem 
which can be solved via least-squares if the parameterization of the controller is 
linear. Several manipulations lead to the fact that the solution to this problem can 
also be the solution to the model reference following problem. The discrete-time 
transfer function and the pulse transfer operator are used interchangeably for a 
correct notation. 

Let the finite-time horizon criterion that describes the identification problem 
be defined as the objective function 
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where uL(k)=L(z)u(k) and eL(k)=L(z)e(k). The use of the filter L(z) will be explained 
later. The objective function used in (3.3) has a solution that is denoted  Nρ̂  to 

show that it is an estimation obtained over a finite sequence of data. In the long 

run, as ∞→N we no longer speak about )ρ(JN
VR but we consider )ρ(JVR  as being the 

asymptotic counterpart of )ρ(JN
VR  which has the solution ρ̂ . The solution Nρ̂  

converges to ρ̂ for the sequence length going to infinity. )ρ(JVR  is defined as 
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Parseval’s theorem can only be used for infinite length signals as is the case 
for the expression of the objective function in (3.4). 

An important assumption is made for the analysis to follow. The existence of 
a controller which achieves perfect reference model following is assumed, let it be 

)z(C0 . Then it is valid to say that 
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)z(C)z(P
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A frequency domain expression for )ρ(JVR  in (3.4) using Parseval’s theorem leads 

to 
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          (3.6) 
We choose to omit the frequency dependent argument for simplicity. Recall that the 
filter L(z) was intended to be used at choice. Let this choice be 

[ ]π;πω,
φ
1

)ρ(PC1

WM
L

u2

22
2 −∈∀

+
= ,    (3.7) 

It can be seen that with this choice of the prefilter L(z), the two objective functions 
in discussion become equal, MRVR JJ = . Using this setting for the prefilter, while 

minimizing VRJ we also minimize MRJ . The only problem with this selection is that it 

depends on the process model P(z) which is supposed to be unknown. To avoid this, 
another suggestion is made in choosing the prefilter as 

[ ]π;πω,
φ
1WMM1L
u

2222 −∈∀−= ,    (3.8) 

which is equivalent to 
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The difference between (3.7) and (3.9) is that we use 0C  instead of )ρ(C . 

So, the equality of the two criteria becomes only an approximation. In the original 
papers on VRFT, it is shown however that this advocated choice is in fact optimal by 
providing a connection between the two objective functions. 

There are a few aspects that must be underlined: 

- For a linear parameterization of the controller in the form ρ)z(β)ρ,z(C T= , 

the identification problem (3.3) rewrites: 
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 where )t(e)z(β)t(θ LL = . In this case, the well known least squares 

solution is 

∑∑
=

−

=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

N

1t
L

1N

1t

T
LLN )t(u)t(θ̂)t(θ)t(θρ̂ .              

(3.10) 
This choice is at the same time restrictive but it renders the optimization 
problem convex in the space of the parameters, with unique solution. As will 
be seen, it is a good way of reaching somewhere nearby the global 

minimum of MRJ , which is by no means convex and may have more 

extremum points in which algorithms like CbT, IFT or IRT can get stuck. 

- From the practical viewpoint, the technique requires pre specified 
parameterization of the controller while at the same time being model-free, 
as we don’t need a model for the process. Chances are big that with such a 
parameterization, there is no possible combination of the parameters such 
that perfect reference model following is achieved. In the situation when we 
find ourselves in the class of the controllers that can achieve perfect 

following, the minimum of )ρ(JN
VR  and also the one of )ρ(JMR  are both 0 

and for the same minimizing argument. 

- In case we are not in the aforementioned class of controllers, because of the 

choice given in (3.8), the minimum of )ρ(JN
VR  does not coincide with the 

minimum of )ρ(JMR , neither do their minimizing arguments. This is an 

apparent obstacle but in fact creates the premises of using IFT further with 

the MRJ  criterion. 

- The theory was presented in a deterministic framework. When the stochastic 
case is also considered, noise acts on the process and therefore affects the 
measurements. The problem can be circumvented by the use of 
instrumental variable method to get the solution to the least squares 
identification in (3.10). One simple way is to use uncorrelated observation 
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vectors coming from different experiments upon which uncorrelated noise 
act. The effect of the noisy disturbance is that it makes the objective 

function )ρ(JVR  even more different than )ρ(JMR . This aspect is discussed 

in [53]. 

- A simple choice for the excitation signal u that affects the computation of 
the prefilter in (3.8) is a pseudo random binary sequence (PRBS) which 
approximates white noise. Apart from the fact that is has a constant 
spectrum − and no spectral factorization is needed to find a discrete transfer 
function that corresponds to this spectrum − and can be employed simple in 
(3.8), it also is persistently exciting helping in the identification problem. 

- We must never forget that there is a difference between )ρ(JN
VR and )ρ(JVR  

(which of course have different minimizing solutions due to the difference in 

the time horizon) and there is also a difference between )ρ(JVR  and 

)ρ(JMR , which is because of the choice given in (3.8). 

- There is no guarantee that the obtained set of parameters keeps the loop 
stable. In critical situations when stable operation is required, a crude model 
is the minimum that should be used to test stability margins, not to mention 
the possibility of not meeting the design specifications with the simple 
structure of the controller. However, the mismatch between model and 
reality is a constant source of problem for every control design strategy 
when tight specifications are required and data-based techniques become a 
valuable tool at hand. 

 
 

3.1. Where VRFT and IFT meet 
 

IFT differs from VRFT in the sense that it operates in closed loop and 
requires several “gradient” experiments per iteration. VRFT is typically a “one-shot” 
technique but it is limited in performance by the mismatch between the criteria. 
Moreover, the objective function is fixed and it is only dedicated to model reference 
following, with issues like disturbance rejection and robustness to parameter 
variations being only superficially asserted within the reference model. The 
sensitivity functions analysis is of course possible when process model is available. 
On the other hand, IFT is very flexible when it comes to formulating objective 
functions. One simple example is that the criterion can penalize the control effort 
which is important from the point of view of robust stability and robust performance. 
Several attempts have been made to use different objective functions [24], [25], 
[35]. Another very important feature of IFT is the ability of changing the objective 
function at any intermediate iteration, approach that has been called “windsurfing”. 
For example, at one point the user could be interested only in model reference 
following and then find appropriate the penalization of the control effort. The major 
issues related to IFT are the need for an initial controller that stabilizes the loop and 
the stability analysis at each step, plus the convergence of the tuning algorithm. 
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The following analysis is employed in the framework of SISO time-invariant 
discrete-time systems, with stochastic elements. This analysis can be found in detail 
in [48]. 

Assume a process described as follows with (colored) noise acting on the 
output: 

)k(v)k(u)q(P)k(y 1 += − ,               (3.1.1) 
which in a closed loop negative feedback control structure with reference excitation 
on the input can be expressed as: 

)k(v)q(S)k(r)q(T)k(y 11 −− +=               (3.1.2) 
The discrete transfer functions T(q-1) and S(q-1) are the complementary sensitivity 
function and the sensitivity function, respectively. The disturbance can be coloured 

noise obtained from white noise through linear filtering, like in )k(e)q(H)k(v 1−= . 
In this setting, an infinite-time horizon criterion for the purpose of applying 

IFT to tune the controller parameters can be expressed as 

( ) )}ρ,k(uλ)k(y)ρ,k(y{E
N
1lim)ρ(J 2

N

1k

2
d

NIFT +−= ∑
=

∞→
,          (3.1.3) 

although from obvious reasons, in practice we deal with finite-time horizon criterion 

( ) )}ρ,k(uλ)k(y)ρ,k(y{E
N
1)ρ(J 2

N

1k

2
d

N
IFT +−= ∑

=

. 

The expression (3.1.3) includes both the model reference tracking and the 
control effort penalty. The operator E{.} is the mathematical expectation taken with 
respect to the stochastic disturbance. 

When the reference signal r and the disturbance v are uncorrelated, 

)ρ(JIFT  can be written as 

),ρ(J)ρ(J)ρ(J

)k(v)ρ,q(S)ρ,k(uλ)k(r)q(M)ρ,q(TEN/1)ρ(J

euy

N

1k
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                  (3.1.4) 
where the three components in (3.1.4) are 

.)k(v)ρ,q(SEN/1)ρ(J

,)ρ,k(uλEN/1)ρ(J

,)k(r)q(M)ρ,q(TEN/1)ρ(J

N
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           (3.1.5) 

In the previous expressions, M(q-1) stands for the reference model. 
In one of the simplest situations, the designer could aim for model reference 

closed-loop shaping. In absence of the disturbance acting on the output )ρ(JIFT  is 

only comprised of )ρ(Jy . A frequency domain expression using Parseval’s theorem 

is 
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∫
−

−=
π

π
r

2ωjωj
y ωd)ω(φ)e(M)ρ,e(T

π2
1)ρ(J .            (3.1.6) 

If the reference input spectrum 
2ωj

r )e(W)ω(φ =  then )ρ(J)ρ(J MRy = , 

with MRJ  from the VRFT setting. With this point of meeting between the two 

techniques, the idea is clear: since VRFT can not find the minimum of MRJ  because 
of several reasons like 

− the finite-time horizon in )ρ(JN
VR , 

− the contribution of the noise (in stochastic context) in )ρ(JN
VR , 

− the choice of the prefilter L(z), 
the search for the minimum of MRJ  can be pursued using IFT. One thing that should 
not be changed at this point is the linear parameterization employed with VRFT, 
since the minimum of MRJ  is yet to be found. So, in summary, VRFT helps IFT to 

reach somewhere close to the global minimum of MRJ  (and saving iterations and 
possibly the IFT algorithm getting stuck), and then IFT carries the job further on. 
The advantages of using the current parameterizations are especially appealing as 
can be seen in the next section. 
 The equipment used to test and validate the VRFT technique is a INTECO DC 
servo system with backlash laboratory equipment. The experimental setup is 
illustrated in Fig. 3.1.1. An optical encoder is used for the measurement of the angle 
and a tacho-generator for the measurement of the angular speed. The speed can 
also be estimated from the angle measurements. The PWM signals proportional with 
the control signal u are produced by the actuator in the power interface, and use is 
made of the constraint 1u1 ≤≤− . 
 

 
Fig. 3.1.1.  Block diagram of experimental setup. 

 
The purpose of the control is to make the position output follow a reference 

model trajectory for a step reference input. The reference model that is used is 
obtained through discretization from a second-order continuous transfer function for 
which the time response characteristics depend on the damping coefficient and the 
natural frequency as in 
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= ,              (3.1.7) 

for which 8.0ς = , 1ω0 = , and the sampling period is 01.0Ts = s. 
The controller structure which contains an integrator is of the form 

)q1/()qρqρqρρ()ρ,q(C 13
3

2
2

1
10

1 −−−−− −+++= .           (3.1.8) 

For the purpose of calculating the virtual signals, an input signal that has a 
rich spectrum is used, namely a PRBS as shown in Fig. 3.1.2. 

 

 
Fig. 3.1.2. PRBS input signal. 

 
The position output that is collected in open-loop is presented in Fig. 3.1.3. 
 

 
Fig. 3.1.3. Recorded position for the specific PRBS input. 

 
To alleviate the effect of the noise on the estimate of the parameters in the 

least-squares solution, two observation vectors are used that come from two 
different experiments such that the noise coming from these experiments are 
uncorrelated. 
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The prefilter L is chosen of the form u
2222 φ/WMM1L −= , with the 

input spectrum of the PRBS signal being constant since it is assumed to approximate 
white noise. For the choice of W we also choose it to be the spectral factorization of 
a white noise used as reference input. This choice is easier but it also implies that 
the JMR is satisfied over the whole frequency range, and it means that any reference 
signal can be used since its spectrum is derived from the white noise’s flat 
spectrum. 

The obtained set of parameters with the proposed technique is 
T] 0.0107   0.0276-   0.0177   -0.0008[ρ = , for which the position response 

compared to the response of the reference model is presented in Fig. 3.1.4. 
 

 
Fig. 3.1.4. Controlled position and the reference model output. 

 
 The precision is affected by the existence of a dead-zone in the 

actuator with a relatively large zone (spanning the interval -0.15…+0.15, about one 
third of the entire active zone of the actuator, that is -1…+1). This fact however was 
not used. The results can be further improved by the means of IFT, with inclusion of 
the penalty on the control input. 

 
 

3.2. Computation of the estimate of the Hessian of the 
objective function with linear parameterized controller 
 

Results with the computation of an unbiased estimate of the Hessian are 
available in the literature, but in a different context [57]. In the case of linear 
parameterization of the controllers and when combining IFT and VRFT, the 
advantages in tuning can be extremely effective. 

In the following, the time argument is omitted when it necessary to simplify 
notation but keeping in mind it is there. Only the parameter dependency is 
suggested. It is assumed that 

)k(v)ρ,q(S)k(r)ρ,q(T)k(y 11 −− += ,             (3.2.1) 
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where: 

))ρ,q(C)q(P1/()ρ,q(C)q(P)ρ,q(T 11111 −−−−− += , 

))ρ,q(C)q(P1/(1)ρ,q(S 111 −−− += ,  

and ρ  is the set of parameters. The partial derivative with respect to one parameter 
from the set of parameters is denoted as 

i
iρ

•′=
∂
•∂ .                (3.2.2) 

It follows that: 

  

.e)q(T
)ρ,q(C

)ρ,q(C

)v
)ρ,q(C)q(P1

1r
)ρ,q(C)q(P1

1(
)ρ,q(C)q(P1

)ρ,q(C)q(P

)ρ,q(C

)ρ,q(C

v
))ρ,q(C)q(P1(

)ρ,q(C)q(P

r
))ρ,q(C)q(P1(

)ρ,q(C)q(P)ρ,q(C)q(P))ρ,q(C)q(P1)(ρ,q(C)q(P
y

)1(1
1

1
i

e

111111

11

1

1
i

211

1
i

1

211

111
i

1111
i

1

i

)1(

−
−

−

−−−−−−

−−

−

−

−−

−−

−−

−−−−−−−−

′
=

=
+

−
++

′
=

=
+

′
−

−
+

′−+′
=′

44444444444 344444444444 21

                  (3.2.3) 
From (3.2.3), the well-known approach for computing the derivatives with 

respect to one parameter. These quantities are needed in the estimation of the 
gradient of the objective function. The way of experimenting is to inject the error 
from a normal experiment with usual reference input in the closed loop and then 
filter it through C/Ci′  which can be calculated since it is known beforehand. Taking 
into account the fact that uncorrelated disturbances act on the closed loop at each 
experiment, we would obtain from the gradient experiment a perturbed version of 
the gradient of the objective function. Therefore, in the gradient experiment where 
the subscript suggests the experiment number, we have 

C
Cv

)ρ,q(C)q(P1

1e
)ρ,q(C)q(P1

)ρ,q(C)q(P
y i)2(

11
)1(

11

11
)2( ′

⋅
+

+
+

=
−−−−

−−
,        (3.2.4) 

and since the second term in the sum is still a noise with zero mean but with 

modified variance, it is valid to say that i
)2( y}y{E ′= . This can be used in the 

estimate of the gradient of the objective function. 
The transformation of the recursive stochastic approximation IFT algorithm 

to a mixed stochastic Newton-Raphson algorithm could improve the convergence 
since we would have an estimate of the Hessian of the objective function. Including 
more information in the optimization scheme should be useful. Let the notation for 

partial second derivatives be ij
ji

2

ρρ
• ′′=

∂∂
•∂

. To compute the Hessian of the objective 
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function we would need terms of the form ijJ ′′  which accounts for having computed 

ijy ′′ . The general term for the Hessian is 

)yεyy(
N
2

ρρ
J

ij

N

1k
ji

ji

2
′′⋅+′⋅′=

∂∂
∂ ∑

=

,             (3.2.5) 

where )k(y)k(y)k(ε d−= is the reference model tracking error. The notation is 
further simplified by ommiting the dependance on ρ and q-1. Continuing the 
calculations from (3.2.3) we will get the result 
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                  (3.2.6) 
where we have used the fact that because of the linear parameterization of the 
controller, the second derivative of the controller with respect to any parameter is 
zero. This simplifies the expressions in (3.2.6) showing how to do the experiments. 
The error from the initial normal experiments is fed as reference to the closed loop 
and then the output of this experiment is once more fed as reference. The resulting 
quantity is then filtered by a known computable filter. The useful fact is that the first 
gradient experiment has already been done in order to compute the first order 
partial derivatives and can be used in the final experiment. Now, we have to 
consider the noise contributions in this setting. After the first gradient experiment 

we obtain )2()1()2( v
PC1

1e
PC1

PCy
+

+
+

= . After the third gradient experiment we 

obtain 
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                  (3.2.7) 

Then, by appropriate filtering with 2
ji C/CC2 ′′− , we obtain an estimate of 

the second-order derivative of the output. It can be seen that ij
)3( y}y{E ′′= . 

The issue that remains to be solved is concerned with the forming of 
unbiased second-order derivatives of the objective function in (3.2.5). We see that 
we have two adding terms, namely ji yy ′⋅′  and ijyε ′′⋅ . In the second term, the 

quantity ijy ′′  is correlated with the noises from the experiments, )3()2()1( v,v,v . To 

obtain an unbiased term, the error ε should be obtained from another normal 

experiment, so correlated with none of )3()2()1( v,v,v , but with a noise, say )4(v . 
As for the first term of the sum, we have both iy ′  and jy ′  correlated with 

)2()1( v,v . To avoid the problem here, the normal experiment for the error ε  
should be further used for a gradient experiment in order to obtain first-order partial 
derivatives of the output with respect to a parameter. Then, jy ′  would be correlated 
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with the noises )5()4( v,v , thus solving the unbiasedness property of the estimate 
of the hessian of the objective function. In this setting, two normal experiments and 
three gradient experiments are needed, with one gradient experiment of slightly 
different nature, in order to obtain both an unbiased estimate of the gradient of the 
objective function, and an unbiased estimate of the hessian of the objective 
function. In respect with the Robbins-Monroe stochastic approximation algorithm, 
what we would need for the algorithm to converge is an unbiased estimate for the 
gradient, a properly chosen sequence of step-scaling coefficients, and a positive 
definite matrix Ri. It does not say anything about the matrix being an 
unbiased/biased estimate of the hessian of J. But this choice should be very efficient 
since it includes more information about the shape of the objective function. 

One simple example is provided as follows to illustrate the efficiency of the 
combination between IFT and VRFT. Let the process be described by a discrete 
transfer function, P(q-1)=q-1/(1-0.6q-1) and a linearly parameterized controller with 
integrator component with a single parameter, C=ρ/(1- q-1). The reference model is 
chosen as M=0.6q-1 / (1 – 0.4q-1). The controller that achieves perfect reference 
model following is C*= (0.6 – 0.36q-1)/(1 – q-1) so we are not in the case where our 
controller belongs to the class of the controllers that solve perfectly the model 

tracking problem. With VRFT, the minimum of N
VRJ  is ρ=0.44. With exhaustive 

search, the minimum of MRJ  is shown to be ρ*=0.34. Clearly, VRFT has a limitation 
but still has lead near the true minimum. Next, we employ IFT with hessian 
computation and without noise, with initial step-scaling coefficient being 1γ0 = . In 
just one iteration, IFT hits the true minimum, ρ*=0.34 showing the strength of the 
technique. Although the example is simple, it can be assumed the combination 
would work efficiently for more complex situations. 

From this point, different directions can be pursued with modified criterion 
to include penalty on the control effort and/or modified reference model. 
 
 

3.3 Chapter conclusions 
 

In the following, a brief summary of the issues that are dealt with in this 
chapter are presented together with the new contributions list and the list of the 
disseminated results. 

Chapter 3 was dedicated to the VRFT technique used as a tool in CSs tuning. 
VRFT and IFT can be viewed as counterparts of a complete tool aimed at CS design 
and fine tuning. For a proper formulation of the design objective (i.e. the objective 
function formulation), VRFT and IFT have an identical purpose. Benefiting from the 
flexibility of IFT which consists in the possibility of modifying the objective function 
along the iterations, different aims can be targeted such as control effort penalty or 
translation to control error penalty, and finally all the signals being weighted in time 
(or frequency domain) by using flexible filters. On the other hand, IFT can help 
VRFT to reach the minimum of the original objective function, an objective that is 
prohibited because the solution to the VRFT formulation is per se suboptimal. 
 The formulation of VRFT makes it suitable for the design of low complexity 
controllers such as the ones that predominate in industry. They have a major 
advantage which is also the key point of the VRFT algorithm: the linear 
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parameterization of the controller. Using a linear parameterization, the combination 
with IFT can be shown to be very effective in terms of obtaining estimates of the 
Hessian of the objective function, which is the major contribution of the chapter. 
This in turn can speed up the convergence of the algorithm since the use of the 
estimate of the Hessian is recommended when close to the solution. The idea is 
backed-up by simulations and real-time experiments on both angular velocity and 
angular position control for a laboratory servo system. 

The new contributions of this chapter are: 
1) A new tuning technique that combines the VRFT and IFT techniques to form 

a powerful tool to be used in controller tuning mainly for linear systems. 
2) An exploitation of the linear parameterization of some very used controllers 

(PI, PID) used in the mixed VRFT-IFT technique, that allows for an easy 
computation of the Hessian estimate. This allows in turn the acceleration of 
the convergence of tuning and thus the reduction of the number of gradient 
experiments that is typical to IFT. 

The results obtained in this chapter were published in: 

Rădac, M.-B., Grad, R.-B., Precup, R.-E., Preitl, St., Dragoş, C.-A., Petriu, E. M. 
and Kilyeni, A. (2011): Mixed Virtual Reference Feedback Tuning - Iterative 
Feedback Tuning Approach to the Position Control of a Laboratory Servo System. 
Proceedings of International Conference on Computer as a Tool EUROCON 2011, 
Lisbon, Portugal, paper index 453, 4 pp., indexed in INSPEC. 

Rădac, M.-B., Grad. R.-B., Precup, R.-E., Petriu, E. M., Preitl, St. and Dragoş, C.-A. 
(2011): Mixed Virtual Reference Feedback Tuning − Iterative Feedback Tuning: 
Method and Laboratory Assessment. Proceedings of 20th IEEE International 
Symposium on Industrial Electronics ISIE 2011, Gdansk, Poland, pp. 649-654, 
indexed in INSPEC. 
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4. Iterative Regression Tuning (IRT) and 
Simultaneous Perturbation Stochastic 

Approximation (SPSA) 
 
 Iterative Regression Tuning is another recent data-based algorithm for 
tuning controllers and is based on a computational approach [11], [12]. Similar in 
formulation to the IFT or VRFT approach, the idea behind this technique is to 
minimize a objective function which is dependent on the controller’s parameters. 
The solution to the optimization problem however resembles with the one used in 
IFT. This technique uses a similar gradient descent approach to search for the set of 
parameters which minimize the objective function. It also assumes to be model-free 
in the sense that it makes no use of a process model in the tuning procedure. All 
fallacies of this approach are the same as in the case of IFT since the convergence 
of the algorithm and the stability of the loop have to be tested. Moreover, the 
algorithm could stop in a local minimum instead of finding the global one. 
 
 

4.1. Overview of the IRT technique 
 
 The typical objective concerning IRT is to find the optimal parameter vector 

*ρ  to minimize the objective function (OF) 

 ∑
=

==
M

1i
ii

T qwqw))ρ(q(J ,              (4.1.1) 

where T
m1 ]w...w[w =  is the weighting vector, 0wi ≥ , m...1i = , are the 

weights, m...1i,0qi =≥ , are the empirical CS performance indices, 
T

m1 ]q...q[q = , and T
n1 ]ρ...ρ[ρ =  is the parameter vector containing the 

tuning parameters of the controller. The objective can be formulated according to 
the definition of the optimization problem solved by IRT: 

 ))ρ(q(Jρ
ρ

* minarg= .              (4.1.2) 

The IRT algorithms are employed to solve iteratively the optimization 
problem (4.1.2) where several constraints can be imposed, like the preservation of 
the closed-loop stability throughout the iterations. Measuring k samples of pairs 

k...1j)),j(ρ),j(q( = , after several experiments / simulations done with the CS in 

the so-called k local iterations [11] the following two matrices are expressed: 
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where the superscript T stands for matrix transposition. 
The data preprocessing is important in the signal processing applications 

concerning IRT. Therefore a Gaussian assumption is made stating that the sets of 
data samples are centered locally and scaled to the unity variance [11], [12]. 

Starting with a set of data obtained by experiments / simulations, a linear 
model F can be estimated such that 

 ρ Fq T= ,                (4.1.4) 

where TF is the matrix of the linear map between the two linear input and output 
spaces: 

 mnT RR:F → .                (4.1.5) 
The application of the linear map to the set of k samples leads to the matrix form of 
(4.1.4): 
 F ΘQ = .                (4.1.6) 

The linear models (4.1.4) or (4.1.6) are valid only in the vicinity of the 
current parameters referred to as nominal ones and considered as the elements of 
the vector ρ . Consequently the solution to (4.1.2) can not be found in a single step, 

and the iterative solving by means of IRT algorithms is needed. 
The use of gradient descent in IRT algorithms is convenient. The 

approximated gradient 
ρd

dJ  is calculated from (4.1.1) and (4.1.4): 

 w F)ρFw(
ρd

d
ρd

dJ TT == .              (4.1.7) 

The update law to calculate the next parameter vector )1K(ρ +  in IRT 

algorithms makes use of the negative direction of the gradient: 

 w )K(F γ)K(ρ
ρd

dJγ)K(ρ)1K(ρ −=−=+ ,            (4.1.8) 

where K is the index of the global iteration and γ  is the step size. The notation 
)K(F  in (4.1.8) illustrates the fact that the matrix F is estimated in several local 

iterations at each global iteration step. 
The values of γ  and w can be variable during the operation of the IRT 

algorithm accounting for the robustness and convergence analyses. Besides (4.1.8) 
can be viewed as Newton’s algorithm which is generally used as a convenient 
technique to iteratively approach a zero of a function without knowledge of its 
expression. The stochastic environment must be considered in all analyses.  
 The unimodality of the data is crucial for the approach and is used to infer 
the validity of the linear local model and also throws the constraint on the 
smoothness of the chosen performance indices as function of the parameters. The 
unimodality is tested by doing a lot of simulations with different combinations of the 
design parameters. These combinations are chosen on a stochastic basis such that 
each individual parameter is chosen from a normal distribution. The performance 
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indices are calculated after each simulation. The resulting distribution of each 
performance index should be Gaussian. This should occur because a linear 
combination of gaussian random variables is a gaussian random variable too. There 
is also another case when one can obtain a gaussian distribution from linear 
combinations of different kinds of distributions of random variables, and this is 
guaranteed by the central limit theorem. This however can be shown for a large 
number of samples.  
 IRT fails to solve the problem of the existing gap between the model and the 
real process since the data is supposed to be collected during simulations rather 
than experiments. This is an issue whenever tight specifications are required. Local 
linear models are developed under the unimodality assumption of data and a large 
numbers of simulations are necessary to test the assumptions and to derive the 
gradients. However, the novelty of the technique is that the objective function can 
be defined in a very flexible way, by aggregating performance indices of different 
nature, not constrained to LQG-type criteria. This is the reason for which the IRT 
technique could be seen as a generalization for IFT. The flexibility of the objective 
function is important because the performance indices can address problems like 
model reference tracking, sensitivity shaping for improving robustness of the CS. 
One other advantage could be the use of IRT on complex systems, with nonlinear 
behavior.  

It is also important that a domain-related expert helps in defining the 
performance indices that form the objective function. The expertise is necessary to 
respect the constraints of the technique. The indices need to be continuous and 
relatively smooth functions of the parameters in order to approximate the 
derivatives. At top level, the indices that are aggregated in the objective function 
will usually be of contradictory nature. The solutions of the optimization could be 
pareto-optimal and the expertise is needed again in selecting among the best ones 
in order to facilitate the implementation. 

It would be of great importance to use the increased flexibility of IRT when it 
comes to objective function definition, but use data from the real-time experiments 
[120]. For obvious reasons, the validation of the data unimodality of the data in the 
context of real experiments is prohibitive. Moreover, the real-time experiments are 
affected by random disturbances that we may not know of and therefore can not be 
modeled and included in simulations. This brings us again to the problem of the 
stochastic approximation theory that was employed in IFT by the Robbins-Monro 
procedure. Fortunately, a technique that brings the meta-heuristics to help solving 
optimization control problems is available: Simultaneous Perturbation Stochastic 
Approximation (SPSA). Otherwise, the convergence conditions of the stochastic 
approximation algorithms have to be proven, that is the estimate of the gradient of 
the objective function is unbiased and the step scaling sequence has to be chosen 
carefully to ensure the convergence. 

The validation of the IRT algorithm is done in terms of a case study dealing 
with the angular position control of the INTECO DC servo system with backlash 
laboratory equipment [120]. An optical encoder is used for the measurement of the 
angle and a tacho-generator for the measurement of the angular speed. The speed 
can also be estimated from the angle measurements. The PWM signals proportional 
with the control signal u are produced by the actuator in the power interface, and 
use is made of the constraint 1u1 ≤≤− . The equipment is described in Fig. 4.1.1. 

The process is modeled as 
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              (4.1.9) 

with the t.f. 
)]sT1(s/[K)s(P ss += .            (4.1.10) 

The process modeled in (4.1.9) and (4.1.10) is characterized by the 
parameters 174Ks =  and s 7.0Ts =  obtained by experimental identification. The 
overshoot and the rise time are aggregated in the objective function. The applied 
weights are 1ww 21 == . Accepting the quasi-continuous digital control with the 
sampling period of 0.01 s, the initial parameters of the PI controller  of the form 

)]sT/(11[k)s(C iC +=  with parameter vector being T
iC ]Tk[ρ = , tuned by 

Ziegler-Nichols’s method, are 1.0kC =  and s 7.0Ti = . 
The behavior of the CS with the initial controller parameters with respect to 

the step type modification of the set-point is illustrated in Figs. 4.1.2 and 4.1.3. The 
corresponding value of the OF is J=0.9294. 

 

 
Fig. 4.1.1.  Block diagram of experimental setup. 

 
Using the step size 001.0γ =  the OF obtains the value J=0.9005 after the 

first global iteration. The behavior of the CS after the first iteration of the IRT 
algorithm is shown in Figs. 4.1.4 and 4.1.5. A rather small improvement of the CS 
performance indices can be observed. 
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Fig. 4.1.2.  Set-point and controlled output versus time for the CS with the initial parameters 

of PI controller parameters (before the application of the IRT algorithm). 

 
Fig. 4.1.3.  Control signal versus time for the CS with the initial parameters of PI controller 

parameters (before the application of the IRT algorithm). 
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Fig. 4.1.4.  Set-point and controlled output versus time for the CS with the values of PI 

controller parameters after the first iteration of the IRT algorithm. 

 
Fig. 4.1.5.  Control signal versus time for the CS with the values of PI controller parameters 

after the first iteration of the IRT algorithm. 
 

The controller parameters after three global iterations obtain the values 
004.0kC =  and s 8.2Ti = . The OF obtains the value J=0.8885. The behavior of the 

CS after the three iterations of the IRT algorithm is presented in Figs. 4.1.6 and 
4.1.7. 

The CS performance enhancement, characterized by reduced overshoot and 
settling time can be observed. The performance with respect to the set-point can be 
enhanced further if set-point filters are included. The behavior with respect to the 
disturbance input is not presented because the integral component in the controller 
ensures the disturbance rejection. 
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All signal processing aspects mentioned in the previous section were used in 
the implementation of the IRT algorithms for the considered conventional CS 
structure with linear PI controller. The controller is implemented as a quasi-
continuous digital controller with anti-windup measure. 

The conditions (4.1.12) and (4.1.13) were applied to set the value of the 
step size. The saturation of the actuator is shown in Figs. 4.1.3, 4.1.5 and 4.1.7, 
and the backlash yields oscillations in u. 
 

 
Fig. 4.1.6.  Set-point and controlled output versus time for the CS with the values of PI 

controller parameters after the application of the IRT algorithm. 
 

 
Fig. 4.1.7.  Control signal versus time for the CS with the values of PI controller parameters 

after the application of the IRT algorithm. 
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4.1.1 A solution to the convergence of the IRT algorithm 
 

To ensure the convergence of the gradient method in order so search the 
minimum of the OF the value of the step size γ  in (4.1.8) is of crucial importance. 
From one application to another the step size may vary during the global iterations 
of the IRT algorithms. In the case of IFT algorithms the problem is mentioned in 
[48] and solved in [47] ensuring the convergence by guaranteeing the stability of 
the algorithm. 

The following quadratic Lyapunov function candidate is defined to guarantee 
the convergence of the IRT algorithm for the nominal parameters ρ : 

m*T* RDρ ),ρρ()ρρ()ρ(V ⊂∈−−= .           (4.1.11) 

The Lyapunov stability approach requires that the set D is a domain of attraction if 
*ρ)K(ρ ,D)K(ρ   0))K(ρ(V))1K(ρ(V ≠∈∀<−+ .         (4.1.12) 

Use is made of (4.1.8), (4.1.11) and (4.1.12) to calculate 

,ρ)K(ρ ,D)K(ρ   0w )K(F]w )K(F[γ

w )K(F]ρ)K(ρ[ γ2))K(ρ(V))1K(ρ(V

*T2

T*

≠∈∀<+

+−−=−+
         (4.1.13) 

and (4.1.13) leads to the following condition guaranteeing that D is a set of 
attraction and the IRT algorithm is convergent: 

,ρ)K(ρ ,D)K(ρ   }w )K(F)]K(F[w/{

/w )K(F]ρ)K(ρ[2γ

*TT

T*

≠∈∀

−<
          (4.1.14) 

which is enabled by the following sufficient condition to ensure 0γ > : 
*T* ρ)K(ρ ,D)K(ρ   0w )K(F]ρ)K(ρ[ ≠∈∀>− .         (4.1.15) 

The inequalities (4.1.14) and (4.1.15) are useful in setting the value of the 
step size. Moreover the step size can be variable but controlled during the global 
iterations of the IRT algorithms such that the conditions (4.1.14) and (4.1.15) are 
fulfilled. 

The vector *ρ  is not known in (4.1.14) and (4.1.15). The parameter vector 

which ensures an ideal controller can be used instead of *ρ . However the ideal 

controller can be obtained assuming a poor model of the controlled process is known 
and making use of a reference model which ensures the best possible CS 
performance indices for the given CS structure. This approach leads to a set of 
attraction which is different to D in (4.1.11). 
 
 

4.2. Overview of the Simultaneous Perturbation 
Stochastic Approximation (SPSA) 
 
 Using the steepest descent recursive form expressed as 

)ρ(ĝγρρ k
kk

k1k −=+ ,              (4.2.1) 
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we usually have the gradient of the objective function at the k-th iteration, at the 

current point in the parameter space, kρ . Unlike with steepest descent, the 

stochastic approximation algorithms use estimates gradients of the objective 
function, kĝ . In IFT, it is possible to calculate the gradients by using data from the 

real time experiments. However, when such schemes can not be employed, the 
gradients have to be estimated on the basis of the objective function noisy 
measurements by forming finite difference approximations (FDA) around the current 
point. Proven the fact that this estimates are unbiased, under specific conditions 
regarding the existence of a minimum of the objective function, the differentiability 
with respect to the parameters, and a suitable selection of the step-scaling 
coefficient sequence }γ{ k  , the Robins-Monroe stochastic approximation states 

that the sequence of parameters }ρ{ k  converges to the set of parameters that 

minimize the objective function J, let it be *ρ . The idea behind finite difference 

approximations is to evaluate the argument of the objective function around the 
current iterate argument and then to use the noisy measurements to form estimates 
of the gradient. One can use one-sided approximations, or two-sided 
approximations. For two-sided approximations, a general estimated gradient is 
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)ξcρ(y)ξcρ(y

)ρ(ĝ ,            (4.2.2) 

where iξ is a p-dimensional vector, with p the dimension of the parameter vector 

which has 1 on i-th place and 0 elsewhere and kc is the difference magnitude 
coefficient . The quantities y represents noisy measurements for the objective 
function. The sequences }c{},γ{ kk are degrees of freedom in finite difference 
stochastic approximations (FDSA) algorithm. One problem with this approach is that 

the estimate is biased due to the noise and the convergence to *ρ is ensured for 

gains respecting the conditions: 0γk > , 0ck > , 0γk → , 0ck → , ∞=∑∞

=0k kγ , and 

∞<∑∞

=
2
k0k

2
k c/γ  [9], [10]. Another problem is the fact that 2p measurements of 

the objective function are needed every iteration which comes in contradiction with 
the experiment’s costs. The costs increase with the number of parameters. This is 
why SPSA has emerged to reduce the costs burden with the idea to use only two 
evaluations of the objective function per iteration. The idea is to randomly perturb 
the arguments and then to form the approximations to the gradient by finite 
difference: 
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Δ

Δ
.            (4.2.3) 

The numerator in (4.2.3) is the same for all the components in the gradient 
vector and only the denominator is different, proportional to the variation of the 
corresponding parameter in the set. The standard condition about the elements kiΔ  
is that they are independent, identically distributed with symmetric distribution 
around zero, and of bounded magnitude. Moreover, there is a condition related to 
the inverse moments of these random variables so that a suitable distribution that 
respects all these requirements is a Bernoulli distribution. A normal distribution is 
shown to reduce the performance of the algorithm [10]. The same constraints are 
preserved as in the case of FDSA for the gain sequences. Also, a modified search 
that is similar to the deterministic Newton-Raphson algorithm can be employed, 
when in the same manner, attempts are made to estimate the Hessian of the 
objective function. 
 The SPSA algorithm can be employed on minimization of various objective 
functions, not constrained to LQG-type criteria, and maybe most important, it can 
be applied on nonlinear systems. These two advantages over IFT make it a very 
useful tool. It can only be used for tuning but not for CS design. This means that we 
have to start with a fixed structure used for control which stabilizes the closed-loop. 
The same problems that are related to the convergence speed of the algorithm and 
the stability of the closed-loop during iterations need to be addressed. Although it is 
model-free in the tuning step, asserting the robust stability and performance still 
needs a process model. For example, using the ν -gap distance like in [29], the 
stability can be checked at each step. Ideas to use SPSA with IFT are already 
present in the literature [51]. 
 

4.2.1. Data-based optimization of state feedback control 
systems for Single Input-Single Output processes 
 

The data-based control paradigm has evolved consistently over the last 
years with the purpose of helping the control engineers in the design task of control 
system (CS) structures. The main aspect that characterizes the techniques that 
belong to this category is the fact that no process model is needed in the controller 
design and tuning. The idea could, at least theoretically, compensate for the 
identification efforts in trying to find a very good model or for the process 
complexity and some times for the modeling effort which requires multidisciplinary 
efforts. 

An important feature of data-based control techniques is the use of 
additional in formation on the process by inspecting the data collected from the 
process’s operation in terms of conducting less informative experiments that affect 
the normal functioning conditions. This idea narrows the general gap between the 
theory and the practice of control design. 

The most frequently used data-based control techniques are Iterative 
Feedback Tuning (IFT), Virtual Reference Feedback Tuning (VRFT), Correlation-
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based Tuning (CbT), Frequency Domain Tuning (FDT), Iterative Regression Tuning 
(IRT), and Simultaneous Perturbation Stochastic Approximation (SPSA). Two of the 
representative techniques, viz. IFT and SPSA, are based on Stochastic 
Approximation (SA) results that are used in the general context of stochastic 
optimization. That is really important since the stochastic effects should be 
considered if the data-based control techniques are applied in real-world processes. 

IFT and SPSA have similar roots in gradient-based stochastic approximation 
algorithms. IFT uses the Robbins-Munro’s SA and uses an unbiased estimate of the 
gradient of the objective function (OF) through experiments. SPSA starts with 
Kiefer-Wolfowitz’s SA algorithm where an estimate of the gradient of the OF is 
obtained via finite differences. IFT and SPSA were developed for slightly different 
purposes, i.e., IFT was developed within the area of CS design and SPSA was 
developed for more general-purpose optimization applications. 

The drawing of the complete connections of these data-based algorithms 
with all the related disciplines of control engineering is a tremendous effort, and it is 
not the intended aim of this contribution. The intended purpose of this study is to 
reveal the applicability of these algorithms on a large class of control design 
problems with focus on the data-based optimization of state feedback control 
systems for Single Input-Single Output (SISO) processes using Linear-Quadratic-
Gaussian (LQG)-based OFs. 

The state feedback CSs are widely used due to the advantages offered by 
the state-space mathematical modeling highlighted in various applications [124]-
[126]. The improvement of the CS performance is normally obtained by optimization 
in terms of the minimization of OFs expressed as integral quadratic performance 
indices [79], [127]-[133], that also provides a convenient way to deal with the 
degrees of freedom associated to the pole placement design of Multi Input-Multi 
Output (MIMO) systems. 

The Linear-Quadratic Regulator (LQR) method which is frequently used for 
the tuning of the optimal state feedback CSs can actually be used only when 
linearized or linear models of the process and the knowledge on all state variables 
available for feedback are assumed [134], [135]. The similar LQG problem concerns 
both optimal estimation and optimal control. The separation principle allows for 
separate design of the optimal Kalman filter and the optimal control gain. 

IFT offers a direct data-based offline-adaptive controller tuning approach. 
IFT performs a gradient-based minimization of the OF, and it provides an efficient 
way to deal with some of the specific problems of nonlinear or ill-defined processes. 
The OF minimization algorithm uses data obtained from the real-time experiments 
conducted with the real-world CS. 

A good overview of the standard IFT is given in [27]. The extension of IFT 
according to [38] provides additional steps to improve the convergence properties of 
IFT while rejecting the disturbances. The input-output signals of the process are 
employed in [85] to identify a linear time-varying model of the process which is 
further used in IFT. IFT applications to industrial control problems are reported in 
the literature, for example, for the control of chemical processes [58] and for servo 
drive control [39], [75]. Discussions of the IFT approach to the nonlinear process 
control are given in [15], [59], [60]. 

SPSA was introduced in [8],[136] as an efficient alternative to Finite 
Difference Stochastic Approximation (FDSA) algorithm in which the number of 
evaluations of the OF per iteration is equal to the number of the variables of the OF, 
viz. the number of tuning parameters in case of optimal control. SPSA uses only two 
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OF evaluations per iteration resulting in reduced costs with advantages when the 
measurements associated to the evaluations are conducted on real-world processes. 

Many attractive applications of SPSA algorithms are reported in the 
literature in relation with parameter estimation of neural networks [137], [138], 
drive systems [139], model predictive control [140], intelligent control [141], neural 
network-based fault detection and isolation [142], filter design [143] or motion 
planning for mobile robots [144]. The reduction of the number of evaluations of the 
OF per iteration to only one is suggested in [145]. 

The new contributions of this section are: 
- The performance comparison of IFT and SPSA is offered. These two data-

based model-free gradient-based stochastic optimization techniques are 
analyzed in the general framework of state feedback control meant for a 
class of SISO processes aiming the minimization of LQG-based OFs. 

- New IFT and SPSA algorithms based on a new experimental setup in the 
gradient experiments to calculate the gradients of the OF are proposed. 

- Our theoretical approaches are validated by simulation and experimental 
results that correspond to the angular position of a DC servo system 
laboratory equipment. 

This section treats the following aspects: 
- The discussion of the LQG servo controller problem. 
- The proposal of a new IFT algorithm and its formulation in terms of the 

control problem defined previously. 
- The description of SPSA and of the algorithm to solve the same control 

problem. 
- The implementation of our IFT and SPSA algorithms in a case study. Digital 

and experimental results concerning the optimal state space control of the 
angular position of a DC servo system laboratory equipment are included. 

- The discussion of IFT versus SPSA. 

The definition of the LQG servo controller problem uses a process 
characterized by the continuous-time Linear Time-Invariant (LTI) SISO state-space 
model 

),k(v)k(w D)k(u D)k(x C)k(y

),k(w B)k(u B)k(x A)1k(x

+++=

++=+
         (4.1.2.1) 

where k, Nk ∈ , is the discrete time argument, u is the control signal, 
nT

n1 R]x...x[x ∈=  is the state vector, n is the system order, y is the 

controlled output, nnRA ×∈ , 1nRB ×∈ , nnRB ×∈ , n1RC ×∈ , n1RD ×∈  are constant 

matrices, Rconst D ∈= , nRw ∈  and Rv ∈  are the uncorrelated process state 
noise vector and measurement noise, respectively, that include the normal 
independent identically distributed random variables with zero means and the 

variances 2
wσ  and 2

vσ , respectively. Zero initial conditions are assumed throughout 
this section for the process dynamics without affecting the generality. It is accepted 
that the process is controllable and observable. 

The corresponding deterministic discrete-time LTI SISO state-space model 
of the process is 

).k(u D)k(x C)k(y
),k(u B)k(x A)1k(x

+=
+=+

           (4.1.2.2) 
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Our discussion is restricted as follows to the class of strictly causal processes 
with 0D =  and 0D = . 

The LQR optimal control problem accounting for the deterministic system 
(4.1.2.2) is used in an iterative fashion, and it offers an alternative for the popular 
pole placement method. In this setting, the optimal control is concerned with 
minimizing infinite-horizon discrete-time quadratic performance index )K(I  

∑
∞

=

+=
0k

2T )]k),k(K(u λ)k),k(K(x Q )k),k(K(x[)K(I ,       (4.1.2.3) 

subject to process dynamics (4.1.2.2), where T indicates the matrix transposition, 
0λ  ,n,...,2,1j,i  ,qq ,]q[Q  ,0Q jiijn,1j,iij >===≥ = ,       (4.1.2.4) 

are the weights and n1R)k(K ×∈  is the time-varying state feedback gain matrix in 
the state feedback control law 

)k(x)k(K)k(u −= .            (4.1.2.5) 
Equations (4.1.2.3) and (4.1.2.5) highlight that the evolution of the signals 

involved in (4.1.2.2) depend on the choice of the matrix n1R)k(K ×∈ . The 
argument k will be dropped out in the sequel, but we will keep in mind that it 
influences the process dynamics. 

The optimization of the state feedback control systems can be formulated as 

the problem of finding an optimal gain matrix *K  defined as 

)K(IK
K

* minarg= .            (4.1.2.6) 

The optimization problem (4.1.2.6) subject to the equality-type constraints 
(4.1.2.2) without noise essentially is the well known discrete-time LQR problem. The 
solution to this optimization problem is the solution of a Discrete time Algebraic 
Riccati Equation (D-ARE). For practical purposes, the steady-state solution for this 
equation is used very often. 

The LQR is known to be very robust with respect to process parameter 
variations [91],[92]. It also assumes that full state feedback is employed while all 
state variables are measurable. However this situation is rare in practice, and the 
state variables should be observed or estimated using either state observers 
designed via pole placement or state estimators which are optimal with respect to 
the estimation error. This leads to the LQG estimation and control problem and the 
solution of it (that is also obtained as a solution to a D-ARE) finds an optimal 
estimator gain, further denoted L, that offers a compromise between the speed of 
the estimator and the noise alleviation and an optimal state feedback gain. The LQG 
design does not guarantee generally the robustness of the CS structure. 

The OF for the LQG problem formulated in a stochastic framework is defined 
as 

})]k,L,K(u λ)k,L,K(x Q )k,L,K(x[{E)L,K(I
0k

2T∑
∞

=

+= ,       (4.1.2.7) 

where the expectation E{} is taken with respect to the stochastic disturbances w 
and v. In order to design the optimal filter (i.e., the Kalman filter), the noise 
intensities have to be supplied, that is the covariance matrices of the noises 

R)}k(v{ERN  ,R)}k(w)k(w{EQN 2nnT ∈=∈= × ,        (4.1.2.8) 
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and the cross-covariance matrix 
1nR)}k(v)k(w{ENN ×∈= .           (4.1.2.9) 

The measurement noise stochastic properties acting on the output are easier 
to determine. However the properties of the state noise are more difficult to 
estimate, and )k(w  is usually considered to be white noise in order to account for a 
large class of possible disturbances, model uncertainties, but also for the 
simplification of the optimal estimation solution. 

The resulting state estimate x̂  minimizes the steady-state error covariance 

}))k(x̂)k(x))(k(x̂)k(x{(ElimP T
k

−−=
∞→

.                  (4.1.2.10) 

The discrete time steady-state Kalman filter equations are 
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                  (4.1.2.11) 

where the first equation in (4.1.2.11) is the time update, the second set of 
equations are the measurement update, L is the estimation gain, and M is the 
innovation gain. The notations )k|k(x̂  and )1k|k(x̂ −  outline the state vector at 
time k, given measurements up to time k and to time k–1, respectively. The state 
vector )k|k(x̂  is used for feedback in the optimal control law of type (4.1.2.5) as it 
is the true state vector. 

In practical situations it is desired to drive the state vectors to a desired 
point in the state space and the introduction of input references for reference input 
tracking is required. In addition, the zero steady-state control error is targeted, 
hence an integrator is used as shown in Fig. 4.1.2.1, where an additional state 
variable (viz., the integrator state variable) Ix  is added to the dynamics defined in 
equation (4.1.2.1). 
 

 
Fig. 4.1.2.1.  The state-feedback control system structure with reference input and integrator 

to ensure zero steady-state error. 
 

The dynamics of the integrator is expressed as follows using Fig. 4.1.2.1 and 
equation (4.1.2.1): 

),1k(v))k(w B)k(u B)k(x A(C               

)1k(r)k(x)1k(y)1k(r               
)k(x)1k(e)k(x)1k(x
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                 (4.1.2.12) 
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where r is the reference input and e is the control error. 
The dynamics of the state feedback control system results by the 

combinations of equations (4.1.2.1), (4.1.2.8) and of the optimal control law 
obtained with LQR: 
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where the matrices are 

],KK[K

, 
BC

B
H  , 

1AC
0A

G  , 
)k(x
)k(x

)k(x

Ia

I
a

=

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
=

                  (4.1.2.14) 

and the subscript a stands for the augmentation of the state vector and state 
feedback gain matrix. 

The steady-state analysis of equation (4.1.2.14) for the step reference input 
of the magnitude )(r ∞  that respects 

const)(r)1k(r...)1(r =∞=+== ,                   (4.1.2.15) 
thus the result is 
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     (4.1.2.16) 

where the argument ∞ associated to a variable points out the steady-state value of 
that variable. The stochastic character with respect to w and v is preserved. 

Next we define the state error with respect to the steady-state value )(xa ∞  

and the control signal error with respect to the steady-state value )(u ∞ : 
)(u)k(u)k(u  ),(x)k(x)k(ε εaa ∞−=∞−= .                  (4.1.2.17) 

The subtraction of (4.1.2.16) out of (4.1.2.14) and the use of (4.1.2.17) 
lead to the following error dynamics: 
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The LQG problem for this dynamical system can be formulated such that to 
minimize the OF 
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2
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T
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∞

=

,  (4.1.2.19) 

where the weights Q and λ are defined similar to the ones in (4) and with 
appropriate dimensions. The solution is expressed as the optimal estimator gain L 
and the optimal state feedback gain matrix aK , referred to as follows as the LQG 

servo controller problem. 
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In the view of applying data-based optimization to the aforementioned 
problems, one would have to be able to evaluate the OFs for finite time-horizon and 
using the estimated states when measurements are not available. A suitable OF 
used in this context is 
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2
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aa

T
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=

,    (4.1.2.20) 

where we use the state estimates to define their steady-state errors, except for the 
integrator state which does not need to be estimated. If the OF defined in (4.1.2.19) 
is minimizes by data-based optimization and the Kalman filter is already designed 
such that the filter gain L is fixed then the new system dynamics will be again 
augmented with the filter dynamics. Equations (4.1.2.13) and (4.1.2.11) are 
expressed as the following 2n+1 order system: 
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      (4.1.2.21) 

In other words, if we design an optimal control law on the LQR servo 
controller but in (4.1.2.20) we use the state estimates to evaluate the OF, this is 
equivalent to using only partial state feedback for the system with the dynamics 
augmented with those of the Kalman filter. The following notation is introduced in 
order to highlight the parameterization of the optimization problem to be solved by 
IFT and SPSA: 

1)1n(T
a R)K(ρ ×+∈= .                     (4.1.2.22) 

For OFs defined in accordance with (4.1.2.20), the use of the argument 
vector defined in (4.1.2.22) leads to the new expression 
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.                 (4.1.2.23) 

The IFT and the SPSA algorithms will conveniently be employed in the next 

sections to find a solution *ρ  to the optimization problem 
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)ρ(Jρ
SDρ

*
∈

= minarg ,                     (4.1.2.24) 

where SD stands for the stability domain of all state feedback gain matrices that 
ensure a stable CS. 

In order to solve the optimization problem defined in (4.1.2.24) a parameter 
vector ρ has to be found such that 
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which, for the OF J defined in (4.1.2.23), becomes 
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The cases of constrained optimization problems use Karush-Kuhn-Tucker 
optimality conditions instead of the null gradient given by equation (4.1.2.25). 
These constraints account for technological and/or economical conditions related to 
the operation of the real-world processes [72], [76], [93], [99], [102], [146]. 

IFT is a gradient-based stochastic approximation technique meant to find 
the minimum of a (objective) function that can only be known through noisy 
measurements. It was developed to cope with LQG like performance criteria, in a 
variety of problems such as combinations of reference model tracking, control effort 
penalty, noise rejection, optimal tracking. 

The partial derivatives li ρ/ε̂ ∂∂  and lε ρ/u ∂∂  need to be calculated first in 

order to obtain the derivatives n,...,2,1l  ,ρ/J l =∂∂ , in the gradient of the OF What 

can be obtained however are estimates of the gradients, n,...,2,1l  ],ρ/J[est l =∂∂ , 
by obtaining estimates of the gradients involved in the right side of (4.1.2.19). 
Having this gradient estimate calculated, the minimum of the OF can be aimed 
through iterative steps in the gradient direction in terms of the update law 

0R  )],ρ(
ρ
J[est)R(γρρ ii1iii1i >

∂
∂−= −+ ,                  (4.1.2.27) 

where the superscript i, Ni ∈ , is the current iteration/experiment index, iγ , 0γ i > , 

is the step size, )]ρ(
ρ
J[est i

∂
∂  is the unbiased estimate of the gradient, and the 

regular matrix Ri can be the estimate of the Hessian matrix, the Gauss-Newton 
approximation of the Hessian, or the identity matrix in the case of less demanding 
and slower convergent computations. 

The step size sequence Ni
i }γ{ ∈  should evolve in time such that to satisfy 

some bounds. With this regard the conditions to ensure the convergence of the 
stochastic algorithm are [27], [38] 
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A good choice of the step size sequence that ensures the divergence of the 
first series in (4.1.2.28) and also the convergence of the second series in (4.1.2.28) 
is 
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,                   (4.1.2.29) 

where the initial step size 0γ , 0γ0 > , is set such that to ensure a compromise to 
the numerical stability and to the convergence speed. 

A biased estimate of the Hessian matrix can be employed in the update law 
(4.1.2.27) as the Gauss-Newton approximation 
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where the estimates of the gradients are used when the stochastic environment is 
accepted. An example of unbiased estimator is given in [57]. 

In order to apply IFT to the OF defined in (4.1.2.32) using the dynamics 
defined in (4.1.2.21) with fixed L, the derivatives of the estimated states steady-
state errors have to be calculated. The definition of these errors is 
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and their derivatives with respect to one parameter 1n,...,2,1i ,Ki += , in the matrix 
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Since the partial derivatives of the state estimates are needed together with 
the derivative of the integrator state, and taking into account that the derivation of 
r, w and v with respect to the parameter iK  are zero, the derivation of the 

equations (4.1.2.21) with respect to iK  leads to 
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                  (4.1.2.33) 

Equations (4.1.2.33) represent the deterministic dynamics with the state 
feedback gain, with zero reference input and with an additive perturbation on the 
control signal u(k). The derivative of the gain matrix in the last equation in 
(4.1.2.33), calculated with respect to one of its parameters, is a gain matrix with 1 
on the position of the respective parameter and 0 otherwise. Therefore, by injecting 
the recorded state of a normal experiment (with a reference input different from 
zero) into the state feedback scheme with zero reference input we obtain the 
derivatives of the state variables in (4.1.2.32) that are needed in order to evaluate 
the OF. 

If i as a superscript denotes the i-th gradient experiment and as subscript 
the i-th state variable, then all state variables of the new dynamic system are in fact 
the estimates of the derivatives of the initial state variables with respect to the i-th 
parameter in the parameter vector aK  or ρ (via (4.1.2.22)). We talk about 

estimates because at each real-time experiment the dynamics are subject to the 
random disturbances w and v. Consequently, equations (4.1.2.21) and (4.1.2.23) 
result in 
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                 (4.1.2.34) 
The corresponding experimental setup is presented in Fig. 4.1.2.2. 

Proceeding this way we obtain the estimates of the gradients of the steady-state 
errors. Using the unbiased estimate of the gradient of the OF, several steps can be 
made in the gradient direction towards the solution. 
 

 
Fig. 4.1.2.2.  The setup for the gradient experiment where a disturbance is added to the 

control signal. 
  

The new IFT algorithm consists of the following steps: 

- Step 0. Set the step size, the initial parameter vector 0ρ  and the weights in 

the OF The vector 0ρ  is obtained as the solution to the LQR servo 

controller problem applied to (4.1.2.19) in a deterministic framework. 
- Step 1. Conduct the initial (normal) experiment making use of the CS 

structure presented in Fig. 4.1.2.1 and record the evolution of all state 
variables. 
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- Step 2. Conduct the n gradient experiments making use of the experimental 
setup presented in Fig. 4.1.2.2 to obtain all partial derivatives li ρ/ε̂ ∂∂  and 

lε ρ/u ∂∂ . 
- Step 3. Conduct the normal experiment again such that the states contain 

realizations of noise that differ form the noise at step 2 to ensure the 
unbiased estimate of the gradient. 

- Step 4. Calculate the estimates of the gradient of the OF according to 
equation (4.1.2.26). 

- Step 5. Calculate 1iρ +  in terms of the update law (4.1.2.27). 

- Step 6. If no significant decrease in the OF with the new set of parameters is 
obtained, stop the algorithm, otherwise go to step 1. 

The parameter vector obtained by this IFT algorithm, referred to as the optimal 

parameter vector *ρ , corresponds to the optimal state feedback gain matrix *
a )K(  

expressed as (via (4.1.2.22)) 
)1n(1T**

a R)ρ()K( +×=∈= .         (4.1.2.35) 

To express the SPSA algorithm the use of the steepest descent recursive 
form [148] 

)ρ(
ρ
Jaρρ iii1i

∂
∂−=+ ,                     (4.1.2.36) 

usually leads to the gradient of the OF defined in (4.1.2.23) at the i-th iteration. 

Ni
i }a{ ∈  in (4.1.2.36) is the step-scaling coefficient sequence. 

Unlike with steepest descent, the gradient-based stochastic approximation 
algorithms including IFT and SPSA use estimated gradients of the OF The parameter 
update law in these algorithms is 

)]ρ(
ρ
J[estaρρ iii1i

∂
∂−=+ .                    (4.1.2.37) 

In IFT, it is possible to calculate the gradients by using data from the real 
time experiments. However, when such schemes cannot be employed, according to 
Kiefer-Wolfovitz’s SA algorithm the gradients have to be estimated on the basis of 
the noisy measurements of the OF in terms of the calculation of finite difference 
approximations around the current point. Under specific conditions regarding the 
existence of a minimum of the OF, the differentiability with respect to the 

parameters, and a suitable selection of Ni
i }a{ ∈ , Robbins-Monro’s SA algorithm and 

Kiefer-Wolfowitz’s SA algorithm state that the sequence of parameter vectors 

Ni
i }ρ{ ∈  converges to the parameter vector *ρ  that minimizes the OF J. 

The idea behind finite difference approximations is to evaluate the argument 
of the OF around the current iteration argument and to use next the noisy 
measurements to calculate the estimates of the gradient. One-sided approximations 
or two-sided approximations can be used with this regard. For two-sided 
approximations, a general estimated gradient is 
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 is a p-dimensional vector, with p – the 

dimension of the parameter vector, 1np +=  in our algorithms, and ic  is the 

difference magnitude coefficient. The variables J
~

 in (4.1.2.38) represent noisy 

measurements of the OF The sequences Ni
i }a{ ∈  and Ni

i }c{ ∈  are degrees of 
freedom in the FDSA algorithm. The FDSA-based estimate is biased due to the noise 

and the convergence to *ρ  is ensured for parameter vectors (i.e., state feedback 

gain matrices) that fulfill the conditions [148] 
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                    (4.1.2.39) 

Another problem of this approach is the fact that 2p measurements of the 
OF are needed at each iteration, and this affects the experiment’s costs. The costs 
increase with the number of parameters. That is the reason why SPSA reduces the 
costs burden by means of only two evaluations of the OF per iteration. With this 
regard the arguments are first randomly disturbed, and next the approximations of 
the gradient are calculated as follows using finite differences: 
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where T
ip1ii ]...[Δ ΔΔ= . The numerator in (4.1.2.40) is the same for all 

components in the gradient vector, but the denominator is different and proportional 
to the variation of the corresponding parameter in the set. The standard condition 
imposed to the elements p,...,2,1k ,ik =Δ , is that they should be independent, 
identically distributed with symmetric distribution around zero, and of bounded 
magnitude. In addition, there is a condition related to the inverse moments of these 
random variables so that a suitable distribution that respects all these requirements 
is a Bernoulli distribution. A common choice is that the random variables 

p,...,2,1k ,ik =Δ , take the values ±1 with probability 0.5. A normal or uniform 
distribution is shown to reduce the performance of the algorithm. The same 
constraints are preserved as in the case of FDSA for the gain sequences. Also, a 
modified search that is similar to the deterministic Newton-Raphson algorithm can 
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be employed, when in the same manner, attempts are made to estimate the 

Hessian of the OF A suitable selection of the sequences Ni
i }a{ ∈  and Ni

i }c{ ∈  is 
[148] 

γ0iα0i i/cc  ,)Ai/(aa =+= ,                    (4.1.2.41) 

where 0a0 > , 0c0 > , 0A > , 10 ≤α<  and 0γ > . 
Only two evaluations of the OF defined in (4.1.2.23) are needed in the 

application of SPSA algorithms to the LQG servo controller problem. The design is 
started with the LQR solution accounting for deterministic dynamics of the process 
augmented with the integrator, and the OF defined in (4.1.2.23) is next minimized 
using SPSA algorithms. 

The new SPSA algorithm consists of the following steps: 

- Step 0. Set the parameters 0a0 > , 0c0 > , 0A > , 0>α  and 0γ > , the 

initial parameter vector 0ρ  and the weights in the OF The vector 0ρ  is 

obtained as the solution to the LQR servo controller problem applied to 
(4.1.2.19) in a deterministic framework. 

- Step 1. Calculate iΔ , ia  and ic . 

- Step 2. Evaluate )Δcρ(J
~

i
ii +  and )Δcρ(J

~
i

ii − , and find an estimate of the 

gradient according to (4.1.2.40). 
- Step 3. Calculate 1iρ +  in terms of the update law (4.1.2.37). 

- Step 4. Test the decrease of the OF using one of the two evaluations of the OF 
with the corresponding perturbed parameters. If no significant decrease is 
revealed then stop the algorithm, otherwise go to step 1. This is valid if the 
perturbed parameters are close to the current set of parameters. 

In other words, the parameter vector is randomly disturbed only two times 
per iteration to evaluate the gradient in the SPSA algorithm. The parameter vector 

*ρ  obtained by this SPSA algorithm leads to the optimal state feedback gain matrix 

*
a )K(  expressed in (4.1.2.37). 

The case study aims the design of a CS dedicated to the angular speed 
control for a modular DC servo system with an integral component. The process is 
characterized by the discrete time LTI SISO state-space model defined in (4.1.2.2) 
with the matrices 

],00[D ,0D ],01[C ,IB

, 
3993.7
1867.0

B , 
9471.00
0487.01

A

2 ====

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

                   (4.1.2.42) 

where 2I  is the second order identity matrix, the angular position and the angular 

speed are the state variables x1 and x2 respectively. 
The model defined in (4.1.2.2) with the matrices according to (4.1.2.40) is a 

simplified model of the process that corresponds to an experimental setup built 
around an INTECO DC servo system laboratory equipment. However similar 
processes are used in several applications [88], [90], [149]-[152]. 

The main features of the experimental setup are [63] the rated amplitude of 
V 24 , the rated current of A1.3 , the rated torque of cmN15 , the rated speed of 
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rpm  3000 , the weight of inertial load of kg 03.2 . The angular speed can be 
measured by a tacho-generator, but only the position is measured here and the 
angular speed is estimated via a Kalman filter. 

This simplified model was obtained by the parameter identification of the 
first-principle model of the equipment resulting in the simplified process transfer 
function (considering the control signal u as the input and the angular position as 
the output, 1xy = ) 

)]sT1(s/[k)s(P ΣP += ,                    (4.1.2.43) 

where Pk  is the process gain and ΣT  is the small time constant. The values of the 

process parameters were obtained as 88.139kP =  and s 92.0T =Σ . A sampling 

period of s 05.0Ts =  was next set. 
As it is usually the case, the model-based design makes use of a model that 

is different from the real process. It is assumed that an initial LQR servo design is 
desired for the deterministic process augmented with the integrator in (4.1.2.19). 
Since the quadratic OF has to be convergent, the difference between the state 
variables and their steady-state values are weighted. Since the position 
measurement is available and it is affected by noise and the integrator state 
variable is already available, an estimation of the state variables is required in the 
LQR design. An optimal estimation design is carried out in order to obtain a Kalman 
filter. With the filter’s fixed parameters, and because the estimated states are 
available to the user, an attempt is made to minimize the LQG-like OF defined in 
(4.1.2.20) over a finite time-horizon of 10 s. 

A rather crude model is used to design the LQR controller and the Kalman 
filter, which starts from the process parameters 150kP =  and s 2.1T =Σ . We used 
the following weights in the LQR design: 

300λ  , 
100
02000
00100

Q =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= .                    (4.1.2.44) 

A white noise disturbance is acting on the state with the state noise intensity 
matrix QN and the measurement noise intensity matrix RN: 

T2
v2

1w

2
1w ]00[NN ,06.0σRN , 

1σ0

02σ
QN ===

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

=

=
= .     (4.1.2.45) 

Therefore the noise effect on both estimated states is alleviated. In this 
setup, we account for the additional estimator dynamics in the process model in the, 
so we are sure that the LQR-based initial solution is not optimal as far the 
minimization of the OF defined in (4.1.2.20) is concerned. Next, the two data-based 
techniques, viz. IFT and SPSA, are employed in the minimization of the OF defined 
in (4.1.2.15). The estimator and the innovation gains for the Kalman filter are 

[ ]T0025.00157.0ML == . 
A number of 30 iterations was conducted for the IFT algorithm presented 

above for 1000N =  samples. The initial step size in the IFT algorithm was set to the 

initial value 100 10γ −= , and the values of the consequent step sizes were set in 
terms of 
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1i  ,Ni  ,
i

γγ
0

i ≥∈= α ,                     (4.1.2.46) 

with 51.0=α , such that to satisfy the conditions (4.1.2.28), and 3
i IR =  was used. 

The SPSA implemented here is characterized by the same N, and the same 
number of iterations. The parameters in the SPSA were set to the values 

100 10a −= , 005.0c0 = , 1.0A = , 4.0=α  and 05.0γ = . 
In both cases the starting point in the parameter space, as designed via 

LQR, was 

]0348.0K5163.0K9229.1K[)ρ(K I21
T0

a −===== .     (4.1.2.47) 

A step reference input of rad 20r =  was chosen for the position. The final 
set of parameters obtained by the IFT algorithm is 

]0778.0K5174.0K9249.1K[)ρ()K( I21
T**

a −===== .     (4.1.2.48) 

The final set of parameters obtained by the SPS algorithm is 

]0645.0K4155.0K8212.1K[)ρ()K( I21
T**

a −===== .     (4.1.2.49) 

The evolution of the OF versus the iteration number is presented in Fig. 
4.1.2.3. The evolutions of the state feedback controller parameters are presented in 
Fig. 4.1.2.4. The difference in the initial value of the OF is due to the stochastic 
noise. For the same reason, a certain value of the OF varies because of the random 
factor at each evaluation. The decrease is obvious. The evolutions versus time of 
four variables of the state feedback CS are shown in Fig. 4.1.2.5 in three situations 
corresponding to the initial set of parameters, the final set of parameters after 
tuning with IFT and the final set of parameters after tuning with SPSA. 

 
Fig. 4.1.2.3.  The evolution of the OF over 30 iterations. 
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Fig. 4.1.2.4.  The evolution of the state feedback controller parameters versus the iteration 

number. 
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Fig. 4.1.2.5.  The responses of the state feedback control system recorded from simulated 

results: estimated position, estimated angular speed, integrator state and control signal versus 
time. 
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Fig. 4.1.2.6.  The responses of the state feedback control system recorded from experimental 
results on the real process: estimated position, estimated angular speed, integrator state and 

control signal versus time. 
 

The evolutions versus time of the same variables of the state feedback CS in 
the same three situations are presented in Fig. 4.1.2.6, but they correspond to the 
experiments conducted with the state feedback CS. The differences between the 
time responses in Fig. 4.1.2.5 and Fig. 4.1.2.6 are due to the difference between 
the linear process model used in the design and tuning and the real-world process 
model, and also to the different noise properties that act on the simulated process 
and the real-world process. The former difference influences the optimal controller 
gains and the latter influences the Kalman filter design and correspondingly the 
dynamics of the process plus estimator. 

A discussion on the new results is conducted as follows. The LQR problem is 
merely an idealization as it is a model-based optimization problem that is subjected 
to modeling errors and linearity assumptions. Moreover it is defined in a 
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deterministic framework. This makes the practical evaluation of the optimality of the 
solution very difficult and irrelevant. 

The LQG problem suffers the same drawbacks. The minimum values for the 
OFs can only be evaluated analytically [153]. Less problematic is the finite time 
horizon that can be used in practice to evaluate the OFs because for sufficiently long 
runs it has the enough length to capture the transients in the time response. 
Although the separation principle allows for independent design of the optimal 
estimator gain and the optimal state feedback control gain, the results can not be 
tested independently because the use of state estimators invalidates the possibility 
of evaluating the LQR OF The controller uses only the estimated state variables. 

The use of the matrices L and M in the discrete time Kalman filter equations 
(4.1.2.11) comes in two flavors, time-varying or steady-state. The following points 
on the LQG are emphasized: 

- Due to the certainty equivalence principle, the state feedback regulator and 
the estimator can be designed independently and the estimated state 
variables feed the gain matrix K. 

- The dynamics of the process is extended with the dynamics of the estimator. 
The robustness of the initial LQR structure is not necessarily preserved. 

- The system preserves the stability as it includes the dynamics of the 
regulated process and the stable estimator. 

- The robustness properties of closed-loop state feedback control system can be 
recovered via Loop Transfer Recovery (LTR). 

Both IFT and SPSA are data-based stochastic optimization techniques, 
therefore they represent more than gradient-based search algorithm using 
sensitivity functions of the quantities in the control structure with respect to some 
design parameters. Second, they make no use of the process model in the tuning: 
IFT uses a successive-experiment approach to obtain the gradients of the loop 
variables, and then the estimate of the gradient of the OF, whereas SPSA starts with 
the finite difference approximation to find directly the gradient of the c. f. The 
derivation of the gradient experiment equations in the case of IFT can be very 
laborious. This is not the case with SPSA. Only two evaluations of the OF are needed 
with SPSA when we have a p-dimensional parameter vector but with IFT the number 
of experiments in this setting is p+2, one gradient experiment for each parameter 
and two normal experiments in order to obtain an unbiased estimate of the gradient 
of the OF which is critical for the performance of the algorithm. 

With SPSA, the gradient estimate is biased but the convergence is preserved 

under the proper choice of the sequences Ni
i }a{ ∈  and Ni

i }c{ ∈ . For one-degree-of-
freedom controllers the number of experiments with IFT can be shown to be 
constant, i.e. three, but the cost is still higher in comparison with SPSA. 

The IFT technique assumes linear process but SPSA is not constrained by 
this and it could be employed also on nonlinear processes as long as the OF is 
smooth as function of the parameters allowing higher order derivatives. In the same 
view, the OF for IFT can only be used in LQG-like form but with SPSA, performance 
indices of different nature could be aggregated together. 

The initial starting point in the search space needs to be provided for both 
algorithms. In general this is not possible without using a process model, but 
techniques such as Ziegler-Nichols tuning or VRFT could be used for this purpose. 
Also, there is no automated way of finding the initial parameters of the algorithms 
so they are chosen by trial and error. Moreover, throughout the iterations, although 
the convergence of the algorithm is ensured by the choice of the corresponding 

BUPT



    4.2. – Overview of the Simultaneous Perturbation Stochastic Approximationa 

 

121

sequences, the stability of the control structure is not guaranteed. Mechanism 
devoted to this purpose can be used in the case where a process model is available 
(e.g., the ν -gap metric) as it is the case in our approaches. Otherwise, new 
mechanism should be developed. Since we deal with numerical algorithms, it is 
possible that the global minimum is never obtained, so the algorithms could get 
stuck in local extremum points. Different starting points in the search space may not 
always be available. 

SPSA can be employed in the minimization of various OFs in relation with 
nonlinear systems, and it is not constrained just to LQG-type OFs. Therefore these 
two advantages over IFT make it a very useful tool. It can only be used for the 
further improvement and tuning of an initial designed control system. This means 
that we have to start with a fixed stabilizing CS structure. The same problems that 
are related to the convergence speed of the algorithm and the stability of the CS 
during iterations need to be addressed. Although it is model-free in the tuning step, 
asserting the robust stability and performance still needs a process model. For 
example, using the ν -gap distance according to [29], the stability can be checked 
at each step. A combination of SPSA and IFT is also suggested in [51]. 
 
 

4.3 Chapter conclusions 
 

Chapter 4 has given two additional techniques that can be used in CS 
tuning, namely IRT and SPSA. Since their development, IRT and SPSA were seen as 
more “computational approach” tools rather than suitable for experiment-based 
tuning. The major contribution of this chapter is that it indicates different 
possibilities of adapting these schemes to efficient practical real-time application. 
The substantial advantages of the iterative schemes presented in this thesis are 
pinpointed again in this context since they represent more than sensitivity-based 
tuning schemes. They also hold a stochastic convergence results which is a crucial 
development that is necessary whenever we talk about real-time processes 
inherently affected by measurement noise. Concluding, these techniques are 
situated on the increasingly blurred border between the metaheuristic approach in 
optimization and the data-based approach. 

IRT was translated to a real-process implementation for a servo system 
position control and was shown to be efficient. In the same setting as for the IFT 
and the LQG-based tuning for the process plus Kalman filter, the SPSA was also 
employed with results comparable in terms of efficiency with IFT. The tuning setup 
is novel since it is designed entirely in the state-space formulation for the ensemble 
formed by the process dynamics and the Kalman filter dynamics. The results allow 
for a thorough comparison between these two techniques. 

The new contributions of this chapter are: 
1) The experimental validation of the IRT and SPSA techniques on a DC servo 

system laboratory equipment. 
2) The state-space formulation of the IFT tuning scheme and of the SPSA 

tuning scheme for processes with state observers (Kalman filter). 
3) Solving the LQG type problems on an experimental basis using IFT and 

SPSA, which is different to the usual model-free approach. 
4) The Successful implementation and validation of the IRT technique on a 

laboratory equipment. 
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and Tar, J. K. (2010): Implementation and Signal Processing Aspects of Iterative 
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Electronics ISIE 2010, Bari, Italy, pp. 1657-1662, indexed in SCOPUS, INSPEC. 
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5. Iterative Feedback Tuning for Fuzzy Control 
Systems Design 

 
 

5.1. Introduction 
 

The stability analysis of fuzzy control systems (FCSs) has been investigated 
extensively in the context of nonlinear autonomous / nonautonomous systems in 
close connection with their stabilization. The current approaches reported in the 
literature concerning the stable design of FCSs with Takagi-Sugeno fuzzy controllers 
are based mainly on linear matrix inequalities (LMIs) [62], [157]-[162] making use 
of quadratic, piecewise quadratic, non-quadratic, parameter-dependent or 
polynomial Lyapunov functions [163]-[169]. Although the LMIs are computationally 
solvable even in relaxed versions they require numerical algorithms embedded in 
well acknowledged software tools. 

The design of optimal control systems is of permanent interest because it 
ensures very good control system (CS) performance indices by the minimization of 
objective functions (OFs) expressed as integral quadratic performance indices 
[170]-[174]. The Iterative Feedback Tuning (IFT) performs the gradient-based 
minimization of the OFs making use of the input-output data from the closed-loop 
system in several experiments done per iteration [14],[16]. 

A good overview on IFT is given in [27] while ensuring the unbiased 
estimates of the gradient of the OF with respect to the controller parameters. 
Various extensions of IFT to Multi Input-Multi Output (MIMO) systems are 
investigated in [20]. The extension of IFT according to [38] provides additional ways 
to disturbance rejection and improves the convergence required by all iterative 
techniques in control design [175], [176]. Recent IFT applications to industrial 
control problems in servo drives and chemical processes are discussed in [39], 
[176]. 

The combination of IFT and fuzzy control aims the FCS performance 
enhancement. In our recent papers [75], [177], [201], [205] we discussed the 
parameter mapping of IFT-based PI controllers onto the parameters of Takagi-
Sugeno PI-fuzzy controllers (PI-FCs) in terms of the equivalence under certain 
conditions between FCSs and linear / linearized CSs. A combination of IFT and fuzzy 
control is analyzed in [46], [177], and the FCS enables the run-time adaptation 
based on IFT and knowledge acquired from past experience. A fuzzy-based 
supervisor that modifies the parameters of an iteratively tuned PID controller is 
suggested in [179]. Several structures that combine the iterative and soft 
computing techniques are proposed in [180]. 

This chapter presents three new contributions in addition to the previous 
aspects discussed in [177]-[180]. First, original stability results for the FCS that 
employ a convenient formulation of Lyapunov’s direct method for discrete-time 
systems [181]. Our stability analysis results are dedicated to processes that are 
modeled by discrete-time input affine SISO systems as a representative class of 
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nonlinear systems where thorough stability analysis approaches are offered in the 
literature [182]-[185]. The discrete-time input affine SISO systems considered as 
controlled processes enable the application of IFT-based tuning. The stability 
analysis is necessary for IFT-based FCSs because: 
- The PI controllers are obtained initially in terms of IFT and next the parameters 

are mapped onto the parameters of the PI-FCs in terms of the modal 
equivalence principle resulting in nonlinearities specific to the FCSs. 

- The stability analysis enables the systematic design of the PI-FCs to ensure the 
FCS performance enhancement. 

Second, a transparent and attractive IFT algorithm is suggested. The 
convergence of the new IFT algorithm is guaranteed by the fulfillment of an 
inequality-type convergence condition. The convergence condition is derived from 
Popov’s hyperstability analysis results [44], [73] applied here to the parameter 
update law as part of the IFT algorithm. With this regard the update law is 
reformulated as a nonlinear dynamical feedback system considered in the 
parameters space and iteration domain. 

Third, a thorough discussion of a set of real-time experimental results for a 
different case study is conducted in this contribution. 

The new contributions are important and advantageous with respect to the 
state-of-the-art because: 
- The stability analysis is applied to the FCSs with Takagi-Sugeno PI-FCs by the 

transfer of the dynamics of the PI-FCs to the process dynamics. Therefore an 
extended nonlinear process is obtained. There is no need for the separation of 
the process model to consist of two parts as in the usual stability analysis of 
nonlinear dynamical systems, i.e., a linear part with dynamics and a static 
nonlinearity. 

- The application of Popov’s hyperstability analysis to the convergence of the IFT 
algorithm does not require knowledge on the global minimum as in the 
application of Lyapunov’s results. 

This chapter addresses the following topics. The new stability analysis 
results are presented in the next subchapter in a general formulation dedicated to a 
discrete-time input affine SISO systems. Subchapter 5.3 is next focused on the 
main aspects concerning the new IFT algorithm with guaranteed convergence. An 
original design approach of Takagi-Sugeno PI-FCs ensuring IFT and stable FCSs is 
suggested in Subchapter 5.4. Subchapter 5.5 is dedicated to the case study that 
applies the theoretical approaches to the angular position control of a DC servo 
system laboratory equipment and presents real-time experimental results. The 
conclusions are pointed out in Subchapter 5.6. 
 
 

5.2. Stability analysis approach 
 

The process in the FCS is modeled by the following discrete-time input affine 
SISO system described by state-space mathematical model [181]: 

)),t(x(g)t(y

,Xx)0(x ,Nt  ),t(u))t(x(b))t(x(f)1t(x 0
=

∈=∈+=+
                       (5.1) 

where y is the controlled output, nT
221 RX])t(x...)t(x)t(x[)t(x ⊂∈=  is 

the state vector, 1n  ,Nn ≥∈ , X is the universe of discourse, T stands for matrix 
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transposition, the time variable t (with the initial time moment 0t0 = ) will be 

omitted as follows for simplicity, 0x  is the initial state vector, the continuous 

functions 

,]))t(x(b...))t(x(b))t(x(b[))t(x(b

,]))t(x(f...))t(x(f))t(x(f[))t(x(f

,RNR:b,f

T
n21

T
n21

nn

=

=

→×

                        (5.2) 

and RNR:g n →×  describe the dynamics of the process, and u is the control 
signal produced by the fuzzy controller. 

The Takagi-Sugeno fuzzy controllers that control the process modeled by 
(5.1) and (5.2) are generally nonlinear state feedback controllers. They employ the 
MAX and MIN operators in the inference engine and the weighted sum method for 
defuzzification. The use of these operators does not restrict the generality of our 
approach because it does not require the differentiability of the input-output map of 
the fuzzy controller. Therefore other t-norms and s-norms can be used because 
instead of the MAX and MIN operators, respectively. 

The i-th fuzzy control rule in the rule base of the fuzzy controller, referred to 
as 2n ,n...1i ,R RBRB

i ≥= , is expressed as 

RBi
l
nn

l
22

l
11

i n...1i  ),x(uu  THEN  X IS  x  AND  ...  AND  X IS  x  AND  X IS  x   IF:R == ,   

(5.3) 

where n...1l ,X i
l =  are the fuzzy sets expressed as linguistic terms (LTs) afferent 

to the state variables xl, )x(ui  is the control signal produced by the rule Ri with the 

firing strength 10  ),x( iii ≤α≤α=α , RBn...1i = , subject to 

0  that such  n...1i   Xx  )),x(μ ),...,x(μ),x(μmin()x( i
RBnX2X1X

i
l
n

l
2

l
1

≠α=∃∈∀=α ,  (5.4) 

n...1l ,μ i
lX

= , are the membership functions of the LTs n...1l ,X i
l = , and RBn  is 

the number of rules. 

An active region of the rule iR  is defined as the set 

RB
iA

i n...1i  },0)x(|Xx{=X =≠α∈ .                (5.5) 

Since the regions different to (5.5) do not affect the inference engine, the 
expression of the control signal produced by the fuzzy controller is 

])x(/[])x(u)x([)x(u
RBRB n

1i

i
n

1i

ii ∑∑
==

αα= .                (5.6) 

Let the process be characterized by the state-space model defined in (5.1) 

and let the radially unbounded function RR:V n →  such that 0)x(V > , 0x ≠∀ , 

0)0(V = . The first difference of the function ))t(x(V  along the trajectory of (5.1), 
denoted by ))t(x(VΔ , is supposed to fulfill the condition 

.0))t(x(V))1t(x(V))t(x(V <−+=Δ                 (5.7) 
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Using the notation ))t(x(Vk  for the Lyapunov function candidate ))t(x(V  

which is considered along the trajectory of the system (5.1) for ))t(x(u)t(u k= , the 

first difference of ))t(x(Vk  is ))t(x(VkΔ : 

RB
A
kkkk n...1k ,Xx  )),t(x(V))1t(x(V))t(x(V =∈∀−+=Δ .             (5.8) 

The following original stability analysis theorem is derived on the basis of 
Lyapunov’s theorem for discrete-time systems starting with the formulation given in 
[186]. 

Theorem 5.1: Let the FCS be described by the discrete-time input affine 
SISO system modeled in (5.1), the Takagi-Sugeno fuzzy controller characterized by 
(5.3)–( 5.6), and 0x =  an equilibrium point of (5.1). Let 

)t(x P )t(x))t(x(V  ,RX:V T=→ ,                (5.9) 
where P is an nn×  positive definite matrix such that 

RB
A
kk n...1k ,Xx  ,0))t(x(V =∈∀<Δ .               (5.10) 

Then all state vectors )t(x  will converge globally asymptotically to the origin 

0)t(x =  as ∞→t . 

The proof of Theorem 5.1 is presented in Appendix B. This theorem offers 
the sufficient inequality-type conditions (5.10) for the globally asymptotically 
stability of the equilibrium point at the origin. Theorem 5.1 proves that if each 
subsystem is stable in the sense of Lyapunov under a common Lyapunov function, 
the (overall) closed-loop system is also stable in the sense of Lyapunov. Since no 
fuzzy model of the process is involved, the number of subsystems generated is 
relatively small, and the common Lyapunov function can be found easily. This 
approach decomposes the stability analysis to the analysis of each rule, so it is not 
complex. Theorem 5.1 is applied in this chapter to set the values of the parameters 
of the Takagi-Sugeno PI-FCs in order to offer stable FCSs. 

 
 

5.3. Iterative Feedback Tuning algorithm 
 

The structure of the linear CS with IFT algorithm is presented in Fig. 5.1, 
where: r – the reference input, d – the disturbance input (noise), e – the control 
error, u – the control signal, ρ – the parameter vector containing the controller 
parameters, C(ρ) – the transfer function of the linear (PI) controller to be replaced 
by the Takagi-Sugeno PI-FC to ensure the CS performance enhancement, F – the 
transfer function of the reference model prescribing the desired behavior to be 
exhibited by the CS, P – the transfer function of the process, y – the controlled 
output, yd – the desired output (of the reference model), dyyyδ −=  – the output 
error, and IFTA – the Iterative Feedback Tuning algorithm, and the vector i contains 
the performance specifications imposed to the CS, i.e., the desired / imposed values 
of performance indices including overshoot, settling time, rise time, etc. 
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Fig. 5.1. Structure of linear control system with IFT algorithm. 

 
One simple expression of the objective function J(ρ) to be minimized by IFT 

is 

∑
=

=
N

1t

2)]ρ,t(yδ[)N/5.0()ρ(J ,                         (5.11) 

where N is the number of samples setting the length of each experiment. A typical 

objective related to J(ρ) is to find a parameter vector *ρ  to minimize J(ρ) and make 

the error δy tend to zero as ∞→t . That objective is expressed analytically in terms 
of the optimization problem 

)ρ(Jρ
SDρ        

*

∈
= minarg ,                (5.12) 

where several constraints can be imposed. The most important constraint concerns 
the stability of the CS and SD stands for stability domain in (5.12). The reference 
model is usually chosen as a second order transfer function in normalized form 
where the natural frequency and the damping factor can easily be transferred to 
performance indices. This model also embodies the behavior of the typical CS 
structures which act as low-pass filters. It is of course a subject of compromise on 
how the performances are requested through the reference model because with a 
certain parameterization of the controller it may be possible that the reference 
model response is never matched by the CS. The a priori information on the process 
can be incorporated in the controller design before choosing the reference model. 

The IFTAs solve the problem (5.12) by numerical stochastic approximation 
algorithms making use of the control signal and controlled output during the CS 
operation. The Robbins-Munro stochastic approximation algorithm iteratively 
approaches a zero of a function affected by stochastic noise without knowledge on 
its fully expression. The IFTA thus holds both an input-output sensitivity function-
based tuning scheme, and a stochastic convergence result which is necessary in an 
experiment-based environment where the random factors appear every time. IFT is 
not only dedicated to Model Reference Adaptive Control (MRAC) schemes but also to 
the more generally formulated Linear-Quadratic Gaussian (LQG) criteria where 
flexible OFs can be formulated such that to weight the state variables, the control 
errors, the control signals and the controlled outputs as well. Therefore the MRAC is 
a particular case. Important results that back-up the application of IFT to control of 
nonlinear processes are presented in [15], [59]. The key requirement is its 
applicability to processes with smooth nonlinearities. 
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The update law to calculate the next parameter vector 1iρ +  is 

0Rdet ,0R  )],ρ(
ρ
J[est)R(γρρ iii1iii1i ≠>

∂
∂−= −+ ,            (5.13) 

where: Ni  ,i ∈  – the index of the current iteration, )]ρ(
ρ
J[est i

∂
∂  – the estimate of 

the gradient vector, iγ  – the step size, and 0ρ  – the initial guess of the controller 

parameters. The usual choice for the sequence Ni
i }γ{ ∈  should ensure the 

convergence of the algorithm in the stochastic sense by reducing the effect of the 
noise around the local minimum which would otherwise lead to the lack of 
convergence. A common choice with this regard is [27] 

10.5  ,1i  ,Ni  ,
i

γγ
0

i ≤α<≥∈= α ,              (5.14) 

where the initial step size 0γ , 0γ0 > , is set to ensure a compromise to the 
numerical stability and to the convergence speed. 

The matrix Ri can be an estimate of the Hessian, a Gauss-Newton 
approximation of the Hessian or the identity matrix to simplify the signal processing 
and reduce the complexity of IFTAs. Different other choices for the Hessian 
approximation are possible such as the Levenberg-Marquardt algorithm (LMA) as 
suggested in [38] and the Broyden-Fletcher-Goldfarb-Shanno algorithm according to 
[1]. These algorithms are expected to give very good results when the signal to 
noise ratio is high. However, since the LMA interpolates between the steepest 
descent algorithm when far from the minimum and the Gauss-Newton algorithm 
when close to the minimum, the Gauss-Newton approximation makes use of the 
first-order derivatives of the objective function which are affected by noise. In the 
stochastic approximation algorithm (5.13) this choice of the Hessian approximation 
can worsen the algorithm if the signal to noise ratio is low. As the noise that enters 
the closed loop has a lower intensity, it is expected that the conditions approach the 
deterministic case where the LMA is a better approach. On the other hand, the 
estimate of the Hessian is also more expensive to compute since it requires extra 
experiments. A good compromise is the steepest descent with the step scaling 
sequence chosen as to respect the convergence of the algorithm in the stochastic 
sense, i.e., the step sequence should tend to zero at infinity but not too fast. In the 
case study presented here, the noise intensity is low so the LMA can be employed. 

Some hyperstability results will be applied as follows to the parameter 
update law (5.13) in order to ensure the convergence of the IFTA. That is the 
reason why (5.13) is expressed as a dynamical feedback system in the parameter 
space and iteration domain. In this context consider the feedforward discrete-time 
linear time-invariant (LTI) block 

,ρ Ιv

,μ Ιρ Ιρ

ii

ii1i

=

+=+
                (5.15) 

which is completely controllable and completely observable because of the identity 
matrix I. Consider the nonlinear (NL) feedback block 

)]v(
v
J[est)R(γw i1iii
∂
∂= − .               (5.16) 
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The blocks LTI and NL are connected according to the block diagram 
presented in Fig. 5.2. The feedback structure illustrated in Fig. 5.2 is used in the 
hyperstability analysis viz. convergence analysis, and it justifies that (5.15) and 
(5.16) are equivalent to (5.13). 
 

 
Fig. 5.2. Block diagram used in convergence analysis. 

 
The block NL satisfies the integral inequality 

0ε  ,constε  ,ii  ,εv)w()i,i(η 0001
2
0

ii

ii

iTi
10

1

0

≠=≥∀−≥= ∑
=

=

.           (5.17) 

The necessary and sufficient condition for the nonlinear dynamical feedback 
system described by (5.15)–(5.17) to be hyperstable [44], [73] is that the discrete 
transfer function matrix 

( ))1z/(1...,),1z/(1),1z/(1diag)IIz(0)z(H 1 −−−=−+= −            (5.18) 
must be a positive real discrete transfer function matrix. The particular expression 
of the matrix )z(H  in (5.18) is positive real according to the definitions given in 
[187]. So the system (5.15)–(5.17) is hyperstable. Hence the convergence of the 
IFTA with the parameter update law (5.13) is guaranteed provided that the 
inequality (5.17) holds. 

The new IFTA consists of the following steps. 

- Step 0. Set the initial controller parameters in the parameter vector 0ρ . 

- Step 1. Conduct the two experiments for the considered CS structure and 
record the input-output data pairs (u1,y1) and (u2,y2). The first experiment is 
called the normal one, and it corresponds to the usual operation of the CS. In 
the second experiment, referred to as the gradient one, the reference input is 
the control error of the first experiment. Calculate the estimate of the gradient 

of output error )]ρ,t(
ρ
yδ[est i

∂
∂  

)ρ,k(y)ρ,q(
ρ
C

)ρ,q(C

1)]ρ,t(
ρ
yδ[est i

2
i1

i1
i ⋅

∂
∂⋅=

∂
∂ −

−
,                      (5.19) 

where the subscript 2 highlights the gradient experiment. 
- Step 2. Generate the output of the reference model yd and calculate the output 

error δy. 

- Step 3. Calculate the estimates of the gradient )ρ(
ρ
J i

∂
∂  and eventually of the 

Hessian )ρ(R ii  of J making use of (5.19) substituted to 
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.)}ρ,t(
ρ
yδ[est)]}{ρ,t(

ρ
yδ[est{)N/1()ρ(R

)]},ρ,t(
ρ
yδ[est)ρ,t(yδ{)N/1()ρ(

ρ
J

Tii
N

1t

ii

i
N

1t

ii

∂
∂

∂
∂=

∂
∂=

∂
∂

∑

∑

=

=            (5.20) 

- Step 4. Set the step size iγ  to fulfill the sufficient convergence condition 

(5.17). If no value can be found for iγ  to satisfy (5.17), the classical choice 
should be made according to (5.14). 

- Step 5. Calculate 1iρ +  by the update law (5.13). 

The step 0 is done only once and the other steps are repeated in all iterations 
till the OF has decreased sufficiently to meet the performance specifications imposed 
to the CS. Additional details regarding the IFT algorithms are presented in [14], 
[16], [38], [75], [177]. 
 
 

5.4. Takagi-Sugeno PI-fuzzy controllers: structure and 
design 
 

The Takagi-Sugeno PI-FC is a discrete-time controller built around the two 
inputs-single output fuzzy controller (TISO-FC) and the structure presented in Fig. 
5.3 (a) where: )1t(e)t(e)t(e −−=Δ  – the increment of control error, 

)1t(u)t(u)t(u −−=Δ  – the increment of control signal, and 1q−  – the backward 
shift operator. The Takagi-Sugeno PI-FCs are characterized by the fuzzification 
according to Fig. 5.3 (b) (the TISO-FC includes the scaling of inputs and output), the 
inference engine and defuzzification in terms of Subchapter 5.2, and the inference 
engine is assisted by the following complete rule base ( 9nRB = ): 
 

 
Fig. 5.3. Structure (a) and input membership functions (b) of PI-FC. 
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           (5.21) 

The parameters KP and α are obtained by the continuous-time design of the 
linear PI controller with the transfer function (t.f.) 

)]sT/(11[ks/)sT1(k)s(C iCic +=+= ,             (5.22) 

where kC , ciC kTk = , is the controller gain and Ti is the integral time constant. 

Tustin’s method is next applied to obtain the incremental discrete-time linear PI 
controller in the consequents of all rules except R1 and R9, with the parameters 

)TT2/(T2 )],T2/(T1[kK sisisCP −=α−= ,             (5.23) 

where Ts is the sampling period. 
Three important aspects are highlighted in relation with the rule base 

(5.21). First, the number of rules in this complete rule base can be reduced further 
to support the low-cost implementation where other measures specific to digital 
control can be applied [188]-[193]. Second, the additional parameter η with typical 
values within 1η0 <<  was introduced in (5.21) to alleviate the overshoot for the 
same signs of )t(e  and )t(eΔ  [76]. Third, in order to apply Theorem 5.1 the 
dynamics of the Takagi-Sugeno PI-FC is moved to the dynamics of the process as 
follows. The state variables 1,Cx  and 2,Cx  are defined for the Takagi-Sugeno PI-

FC: 
)1t(e)t(x  ),1t(u)t(x 2,C1,C −=−=               (5.24) 

as illustrated in Fig. 5.4. 
 

 
Fig. 5.4. Structure of PI-FC that includes the definitions of the state variables. 

 
Equations (5.35) and Fig. 5.4 result in the following discrete-time state-

space model of the Takagi-Sugeno PI-FC: 
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)),t(x)t(e),t(e(f)t(x)t(u

),t(e)1t(x

)),t(x)t(e),t(e(f)t(x)1t(x

2,CFCTISO1,C

2,C

2,CFCTISO1,C1,C

−+=

=+

−+=+

−

−
            (5.25) 

where the nonlinear input-output map of the TISO-FC is 

))t(x)t(e),t(e(f))t(e),t(e(f)t(u  ,RR:f 2,CFCTISOFCTISO
2

FCTISO −==→ −−− ΔΔ  

          (5.26) 
Equations (5.1), (5.25) and (5.26) lead to the following expression of the 

state-space model (5.25): 

).t(u)t(x)t(u

)),t(x(g)t(r)1t(x

),t(u)t(x)1t(x

1,C

2,C

1,C1,C

Δ

Δ

+=

−=+

+=+

                         (5.27) 

The models (5.1) and (5.25) are next merged in the following discrete-time 
state-space model of the extended process, i.e., the process extended with the 
dynamics of the Takagi-Sugeno PI-FC: 

)).t(x(g)t(y

)),t(x(g)t(r)1t(x

),t(u)t(x)1t(x

)],t(u)t(x))[t(x(b))t(x(f)1t(x

2,C

1,C1,C

1,C

=

−=+

+=+

++=+

Δ
Δ

             (5.28) 

Using this model the Takagi-Sugeno PI-FC is replaced by the TISO-FC with 
the two input variables 

)t(x))t(x(g)t(r)t(e  )),t(x(g)t(r)t(e 2,C−−=−= Δ ,           (5.29) 

and the output variable )t(uΔ . Therefore this transformation of the models leads to 
the expression of the rule base (5.21) as a particular case of (5.3). 

The design approach dedicated to the accepted class of Takagi-Sugeno PI-
FCs consists of the steps I to III to obtain the parameters of the PI-FCs Ts, KP and α 
(specific to the linear design), and Be, BΔe and η (specific to the fuzzy design): 
- Step I. Apply a design method to tune the continuous-time linear PI controller, 

set Ts, apply (5.23) to calculate the initial parameter vector T
P

0 ]K[ρ α= , set 

the reference model structure and its parameters according to the performance 
specifications imposed to the CS. 

- Step II. Do the steps 0 to 5 of the IFTA presented in Subchapter 3 to obtain the 
optimal parameter vector T

P
* ]K[ρ α= . 

- Step III. Express the discrete-time state-space model of the extended process, 
set the values of the parameters eB  and η according to the performance 
specifications and to the stability analysis approach such that to fulfill the 
stability conditions (5.10) in Theorem 5.1, and apply the modal equivalence 
principle to map the linear controller parameters onto the Takagi-Sugeno PI-FC 
ones: 

ee B B α=Δ .                 (5.30) 
The steps I and II correspond to the linear design, and the step III 

corresponds to the fuzzy design. The value of the parameter eB  depends on the 
reference input such that to ensure the firing of all rules, and the smaller the value 
of the parameter η is, 1η0 << , the smaller the overshoot will be. This design 

BUPT



         5.4. – Takagi-Sugeno PI-fuzzy controllers: structure and designa 

 

133

approach produces Takagi-Sugeno PI-FCs which exhibit as bumpless interpolators 
between the two discrete-time PI controllers in the consequents of the rule base 
(5.20).
 
 

5.5. Digital simulations results and real-time 
experimental results 
 

The experimental setup is built around the INTECO DC servo system with 
backlash laboratory equipment. It is characterized by rated amplitude equal to 24 V, 
rated current equal to 3.1 A, rated torque equal to 15 N cm, rated speed equal to 
3000 rpm, and inertial load mass equal to 2.030 kg. The position controllers are 
implemented digitally on a PC making use of an FPGA-based A/D-D/A interface 
connected by USB to the PC. 

The nonlinear process used in the angular position control is characterized 
by the nonlinear continuous-time state-space model 
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where t is the independent continuous time argument, 0t,Rt ≥∈ , the control 
signal u is a pulse width modulation duty cycle, m is the output of the saturation 
and dead zone static nonlinearity represented by the first equation in (5.31), the 
state vector )t(x  is 

T
21 ])t(ω)t(x)t()t(x[)t(x =α== ,              (5.32) 

)t()t(x1 α=  is the first state variable that represents the angular position, and 

)t(ω)t(x2 =  is the second state variable that represents the angular speed. The 
disturbance inputs and the initial conditions were omitted in (5.31) for the sake of 
simplicity. The parameters of the linear dynamics represented by the second and 
third equation in (5.31) are the gain 88.139kP =  and the small time constant 

s 9198.0T =Σ . The parameters of the saturation and dead zone static nonlinearity 

in (5.41) are identified by nonlinear least squares as 1k m,u = , 13.0ua =  and 

13.1ub = . 
The process has an input nonlinearity related to the actuator, i.e., a 

saturation and dead zone static nonlinearity. However, this is not included in the 
following simplified model of the process expressed as the transfer function )(sP  

)]sT1(s/[k)s(P P Σ+= ,               (5.33) 
is used in the IFTA. However the case study is dealt with from a linear perspective in 
the initial step when the PI controller is tuned and the CS performance indices are 
obtained with this simple controller. 
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The design approach presented in Subchapter 5.4 is applied as follows. The 
continuous-time linear PI controller has been obtained in the step I by the frequency 
domain design imposing the phase margin of 60o resulting in the controller tuning 
parameters 01036.0kC =  and s 1043.3Ti = . Setting s 01.0Ts =  the initial 
discrete-time linear PI controller parameters calculated in terms of (5.23) are 

T
P

0 ].00320α0.01034K[ρ === .              (5.34) 

The continuous-time transfer function of the reference model is 

)1s6.0s/(1)s(F 2 ++= .               (5.35) 
A filter was introduced on the reference input in order to alleviate the 

overshoot that is motivated by the presence of the integrator components in both 
the process (since it is a servo system for position control) and the controller. The 
filter’s continuous-time transfer function is )1s5.1/(1)s(Fr += . The discrete-time 
forms of reference model and of the reference input filter were used in the 
simulation and in the real-time experiments as well. All the above settings were 
applied in both the simulations and the experiments. 

The simulation results are first presented. The IFTA was applied in the step 

II. The parameters obtained after 35 iterations for 2
i IR =  and 9i 105γ −⋅= , 

35...0i =  (that satisfy (5.17) for 1ε0 =  at all iterations), are 
T

P
0 ].000400α0.02255K[ρ === .              (5.36) 

The step III starts with the derivation of the discrete-time state-space model 
of the extended process. Accepting that the control signal u and the reference input 
r are changing at the discrete sampling intervals the discrete-time state-space 
model of the extended process becomes then (5.28), where 
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             (5.37) 

For comparison reasons, an FCS is designed from the initial PI controller 
before tuning, and another one is designed from the resulting PI controller obtained 
by IFT-based tuning. A good choice of eB  for a constant reference input of 

rad 40r =  is 20Be =  for both Takagi-Sugeno PI-FCs and the other parameter of the 

Takagi-Sugeno PI-FC, namely eBΔ , results from (5.30). The values of the parameter 

η and of the parameter eBΔ  were 65.0η =  and 064.0B e =Δ for the initial fuzzy 

controller, and 99.0η =  and 0080.0B e =Δ  for the final one. The Lyapunov function 
candidate that fulfils the stability conditions (5.10) for this FCS is defined in (5.9), 
where 

T
2,C41,C321 ]xxxxxx[x  ),1,1,1,1(diagP ==== .           (5.38) 

A band-limited white noise of variance 0.01 has been fed to the disturbance 
input d in the real-time experiments. All controllers were also tested on the 

BUPT



5.5. – Digital simulations results and real-time experimental resultsa 

 

135

simplified linear process model (5.33) in order to outline the differences between 
the behavior of the CSs with the simplified model and the behavior of the CSs with 
the nonlinear process model. The digital simulation results are presented in Figs. 5.5 
to 5.8. 
 

 
Fig. 5.5. Simulation results: controlled output (angular position) and control signal versus time 

for the linear CS with the PI controller before IFT. 
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Fig. 5.6. Simulation results: controlled output (angular position) and control signal versus time 

for the FCS with the Takagi-Sugeno PI-FC before IFT. 
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Fig. 5.7. Simulation results: controlled output (angular position) and control signal versus time 

for the linear CS with the PI controller after IFT. 
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Fig. 5.8. Simulation results: controlled output (angular position) and control signal versus time 

for the FCS with the Takagi-Sugeno PI-FC after IFT. 
 

The fuzzy controller developed from the initial PI controller deals better with 
the dead zone that causes the large overshoot in Fig. 5.5. After IFT-based tuning, 
the linear PI controller offers an aperiodic CS response that is closer to the reference 
model response in the sense given by the OF of the optimization problem. Both CSs 
with the IFT-based tuned PI controller and with the subsequent Takagi-Sugeno PI-
FC derived from it offer a faster response than the initial FCS, and the two 
controllers also deal with the process nonlinearity. The values of the OF in the four 
cases that correspond to Figs. 5.5 to 5.8 were evaluated to 16.1623, 11.0007, 
2.7803 and 2.8807, respectively. The intermediate step with IFT tuning proves to be 
useful since the FCS with the final IFT-based tuned fuzzy controller is better than 
the FCS with the initial one due to the alleviation of the OF. 

The same scenario was applied in the real-time experiments with the servo 
system laboratory equipment. The same design approach was used starting with the 
same initial PI controller that was designed using the simplified linear process model 
(5.30). The fuzzy controllers were tuned starting with the initial PI controller and 
with the final PI controller after IFT. The experiments were conducted with the same 
reference model and reference input filter. The results are presented in Figs. 5.9 to 
5.12. 
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Fig. 5.9. Experimental results: controlled output (angular position) and control signal versus 

time for the linear CS with the PI controller before IFT. 
 

BUPT



    Iterative Feedback Tuning for Fuzzy Control Systems Design - 5 

 

140 

 
Fig. 5.10. Experimental results: controlled output (angular position) and control signal versus 

time for the FCS with the Takagi-Sugeno PI-FC before IFT. 
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Fig. 5.11. Experimental results: controlled output (angular position) and control signal versus 

time for the linear CS with the PI controller after IFT. 
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Fig. 5.12. Experimental results: controlled output (angular position) and control signal versus 

time for the FCS with the Takagi-Sugeno PI-FC after IFT. 
 

For this experimental scenario the IFT-based tuning started with the same 
initial parameters given in (5.34). The parameters obtained after nine iterations for 

2
i IR =  and 90 105γ −⋅= , i/γγ 0i = , 9...1i =  (that also satisfy (5.17) for 

1ε0 =  at all iterations), are 
T

P
9 ].00280α.011990K[ρ === .              (5.39) 

The values of the parameters of the Takagi-Sugeno PI-FCs were set to 
20Be =  for both fuzzy controllers, and the parameter eBΔ  of the Takagi-Sugeno PI-

FCs was obtained using (5.30). The values of the parameter η and of the parameter 
eBΔ  were 9.0η =  and 064.0B e =Δ  for the initial fuzzy controller, and 8.0η =  and 

057.0B e =Δ  for the final one. The Lyapunov function candidate that fulfils the 
stability conditions (5.10) for this FCS is defined in (5.9) and (5.38). 

The FCS with the fuzzy controller that exhibits the experimental results 
presented in Fig. 5.10 can cope with the process nonlinearity better than the other 
CSs, but it still has nonzero steady-state control error. Both CSs with the IFT-based 
tuned PI controller and with the resulting Takagi-Sugeno PI-FC offer a slightly faster 
response, and the latter also ensures the zero steady-state control error. The values 
of the OF in the four cases that correspond to Figs. 5.9 to 5.12 were evaluated to 
6.6451, 5.1081, 3.2231 and 2.4960, respectively. Therefore it is shown that the FCS 
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with the final IFT-based tuned fuzzy controller is better than the FCS with the initial 
because the OF is reduced. 

The evolutions of the OF throughout the iterations of the simulation case 
study and of the experimental case study are illustrated in Fig. 5.13 and 5.14, 
respectively. The nonlinearity of the process is reflected in the OF decrease in the 
simulation case study where it is apparent that the OF decreasing after ten 
iterations, but further decreases after 20 iterations. The injected noise does not 
influence too much in this case the evaluation of the OF In the experimental study, 
the random factors that affect the evaluation of the OF are visible, they are of 
different nature than the injected noise, namely due to the asymmetric friction in 
the motor axis. However the OF decreases after several iterations. Since the 
evaluation of the OF on the real process has a strong variance, the more cautious 
steepest descent is considered in the IFTA, with small steps in order to ensure the 
convergence in the framework of the step 4 in the new IFTA. 
 

 
Fig. 5.13. Objective function versus iteration index in the simulations. 

 

 
Fig. 5.14. Objective function versus iteration index in the experiments. 

 

5.6. Chapter conclusions 
 

Chapter 5 was devoted to studying the possible improvements that can arise 
from the mixing of fuzzy control with IFT. The main contribution of this chapter is a 
three-step stable design approach for fuzzy control systems (FCSs) with Takagi-
Sugeno PI fuzzy controllers (TS-PI-FCs). The new approach is based on the 
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combination of IFT and fuzzy control, and it aims discrete-time input affine SISO 
processes. Starting with a poor process model and using a linear controller, the CS 
performance can be improved in two additional steps. The first step concerns the 
IFT, and the second step is related to the use of fuzzy control. 

This chapter has suggested a three-step stable design approach for FCSs 
with Takagi-Sugeno PI-FCs. The new approach is based on the combination of IFT 
and fuzzy control, and it aims discrete-time input affine SISO processes. Starting 
with a poor process model and using a linear controller, the CS performance can be 
improved in two steps. The first step concerns the IFT, and the second step is 
related to the use of fuzzy control. 

The stability analysis results presented here can be extended without 
difficulties to the design of Mamdani fuzzy controllers with singleton consequents. 
The application of the stability analysis is relatively simple for practitioners because 
it makes use of quadratic terms (5.9) in the definition of the Lyapunov function 
candidate. 

The case study included in our contribution shows very good results in the 
control of a nonlinear process using the application of IFT to a simplified linear 
model of the process. The minimum of the OF cannot be guaranteed, but our 
experiment- and data-based tuning proves the improvement of the control system 
performance indices including the OF values. The control system performance can 
be improved further in terms of the fuzzy logic-based compensation of the 
nonlinearity of the process, but this would lead to discontinuous input-output maps 
of the fuzzy controllers that do not allow the systematic tuning by means of stability 
and convergence analysis. 

The new contributions of this chapter are: 
1) A mixed IFT-FCS technique to design and tune TS-PI-FCs. 
2) A stability analysis approach of the resulted FCS. 
3) A novel IFT algorithm with guaranteed convergence of the IFT search 

algorithm ensured by the use of Popov’s hyperstability theory. 
4) The validation of the new mixed IFT-FCS technique on a DC servo 

system laboratory equipment. 

The results obtained in this chapter were published in: 

Precup, R.-E., Rădac, M.-B., Preitl, St., Tomescu, M.-L., Petriu, E. M. and Paul, A. 
S. (2009): IFT-based PI-fuzzy Controllers: Signal Processing and Implementation. 
Proceedings of 6th International Conference on Informatics in Control, Automation 
and Robotics ICINCO 2009, Milan, Italy, vol. 1 Intelligent Control Systems and 
Optimization, pp. 207-212, indexed in ISI Proceedings. 

Precup, R.-E., Rădac, M.-B., Preitl, St., Petriu, E. M. and Dragoş, C.-A. (2009): 
Iterative Feedback Tuning in Linear and Fuzzy Control Systems. In: Towards 
Intelligent Engineering and Information Technology, Eds. Rudas, I. J., Fodor, J. and 
Kacprzyk, J. (Springer-Verlag), pp. 179-192, indexed in SCOPUS. 

The application of the hyperstability theory produces an elegant way to solve 
the problem of convergence analysis which is not a simple task. Therefore a 
relatively simple, general and easily algorithmic convergent IFTA is proposed. 
However the two indices like speed of convergence and magnitude of oscillations in 
the dynamics of the controller parameters are not analyzed resulting in the first 
limitation of the approaches given in this chapter. Measures to assess and / or 
impose analytically those two indices are necessary. 

BUPT



                                                             5.6. – Chapter conclusionsa 

 

145

The second limitation is that it produces sufficient inequality-type stability 
and convergence conditions. Although they are more transparent than the LMIs a 
natural objective is to make them stronger. 

Future research will be focused on extending the theoretical approaches to 
MIMO systems in several applications [72], [194]-[196] and controller structures 
[197]-[200]. The discrete-time formulation of the stability analysis will be 
investigated. 
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6. New Contributions, Future Research 
Directions and Dissemination of Results 

 
 

6.1. New contributions 
 
 This thesis has been focused on new tuning techniques that have a great 
potential for being used in practice because of the following reasons: 

• They are useful whenever retuning is needed, either because of the 
controlled process aging or by performance requirements changing. 

• They can compensate for the lack of experience in the modeling and 
identification areas of the control engineer. Even if these steps would be 
performed, there is always a certain difference between the model and 
reality and therefore tight specifications can not be ensured otherwise. 

• They can be used for widely spread industrial controllers of reduced 
complexity (such as PI, PID, PD) that predominate in the industry. The 
reason is their simplicity and the fact that they can be easily interpreted. 

• The computations are mainly done off-line thus not affecting the 
computational resources that are available. This also facilitates the analysis 
since we are not dealing with an adaptive control context. 

• To a large extend and even although the theory is developed based on the 
linearity assumption (for some of the techniques), they have proved to work 
exceptionally well in practice, for smooth nonlinear systems. 

A list of general new contributions of this thesis is presented as follows: 

• The aggregation under this thesis of different iterative and of other 
complementary techniques that are in recent development, and that are a 
current research topic in an increasing number of control engineering 
communities. The documentation of these techniques is very attractive since 
each one provides very original views on control problem formulation and 
solutions. 

• A new IFT setup for state-feedback CSs that is used for obtaining gradients 
directly in the state-space formulation. This is different than other solutions 
found in the literature that work with transfer function representation. 
Different solutions for dealing with actuator saturation or for special 
experimentation regimes are provided. 

• New iterative techniques used for optimally designed CSs such as LQR and 
LQG. The validity of the optimal design is questioned in the model-based 
design paradigm because of the discrepancies between model and reality. 
The tuning is attempted using experiment-based techniques. With this 
regard, IFT and SPSA are used and a comparison of the two techniques is 
also accomplished. 
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• An automatic selection of the step size in the search algorithm that is 
specific to data-based techniques. This is accomplished mainly in two 
settings: 

o one that is concerned with ensuring the convergence of the search 
algorithm to the minimum of the objective function. The 
development is based on the Popov’s hyperstability theory. The 
theory is attractive because, opposed to the current developments, 
it makes no use of the minimum of the objective function, which 
prevents the use of estimated process models, thus keeping the 
“model-free” label intact throughout the tuning process. 

o Another setting that is concerned with the preservation of the 
closed-loop stability throughout the iterations. The formulation is 
made in a robust stability analysis framework where the controller 
modifications are seen as uncertainties. The stability is asserted by 
using a variant of the small-gain theorem for discrete-time systems. 
The result is that a new selection approach for the scaling coefficient 
of the step size is provided. 

• The combination of VRFT and IFT techniques into a powerful tool in which 
the two techniques are complementary. The suboptimal nature of VRFT due 
to a sensible selection of the L-filter is alleviated by the use of IFT which can 
be used for reaching the minimum of the objective function. On the other 
hand, for widely spread industrial controllers such as PI or PID, for which a 
linear parameterization is possible, the advantage is used in a cheap 
estimation approach for the Hessian of the objective function which in turn 
translates in a faster convergence of the search algorithm. VRFT can provide 
at any time an initial controller as a starting point for the IFT technique. 

• The combination of the iterative techniques with other conventional 
structures that are different from the ones in the literature has proved to be 
favorable in terms of the achieved improvements. In the current thesis, the 
combination with state-feedback controlled structures either in pole-
placement or in optimal design or the combination with fuzzy CSs was 
successful and the premises are in favor of pursuing this direction. 

• The study on how techniques such as IRT and SPSA that are of a more 
meta-heuristic nature are amenable to experimental-based controller 
tuning. 

The aggregation of the specific new contributions suggested in Chapters 2, 
3, 4 and 5 and presented in the chapter conclusions sections, leads to the following 
list of punctual new contributions of this thesis: 

1) The experimental validation of IFT on different laboratory equipment. 

2) A novel IFT tuning scheme for state feedback controlled systems. 

3) The implementation of IFT on MIMO systems with saturation on the 
actuator. 

4) A novel approach to ensuring the search algorithm convergence by using 
Popov’s hyperstability theory, which does not need in the formulation the 
knowledge of the minimum of the objective function. 

5) A stable IFT technique that guarantees the closed-loop stability throughout 
IFT tuning by using a robust stability framework with the small gain theorem 
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applied to a linear fractional transformation of the closed-loop when the 
modifications of controller’s parameters are treated as uncertainties. 

6) Solving the LQR design problem on experimental basis in terms of using the 
IFT technique, which is different to the model-based approach. 

7) A new tuning technique that combines the VRFT and IFT techniques to form 
a powerful tool to be used in controller tuning mainly for linear systems. 

8) An exploitation of the linear parameterization of some very used controllers 
(PI, PID) used in the mixed VRFT-IFT technique, that allows for an easy 
computation of the Hessian estimate. This allows in turn the acceleration of 
the convergence of tuning and thus the reduction of the number of gradient 
experiments that is typical to IFT. 

9) The experimental validation of the IRT and SPSA techniques on a DC servo 
system laboratory equipment. 

10) The state-space formulation of the IFT tuning scheme and of the SPSA 
tuning scheme for processes with state observers (Kalman filter). 

11) Solving the LQG type problems on an experimental basis using IFT and 
SPSA, which is different to the usual model-free approach. 

12) A mixed IFT-fuzzy control system technique to design and tune Takagi-
Sugeno PI-fuzzy controllers. 

13) A stability analysis approach of the resulted fuzzy control system. 

14) A novel IFT algorithm with guaranteed convergence of the IFT search 
algorithm ensured by the use of Popov’s hyperstability theory. 

15) The validation of the new mixed IFT-fuzzy control system technique on a DC 
servo system laboratory equipment. 

 

 

6.2. Future research directions 
 
 The author suggests the following future research directions to continue 
the research carried out in this thesis: 

• The experimenting regimes that must not affect the normal regimes. This is 
of permanent concern, and it can be solved only particularly for each CS, by 
incorporating aprioric knowledge on the process, on the controller, on the 
actuators, on the excitation signals, etc. The silent run in the background of 
the tuning techniques would be a major step forward in their global 
acceptance in the industry. 

• The hardware implementation using a microprocessor or a DSP-based 
platform that is aimed at developing prototypes for industrial application. 
Research in this direction is currently under work worldwide. 

• The combination of the iterative techniques with other conventional CSs. 

• The improvements of all aspects concerning the iterative techniques such as 
convergence of the search algorithm, the robust stability and robust 
performance assessment. 

BUPT



                                                                   6.1. – New contributionsa 

 

149

• The implementation on different industrial processes. 

 
 

6.3. Dissemination of results 
 

 The new contributions of this thesis belong to the results published in 15 
papers. The author of this thesis is the first author of 10 of these papers. All papers 
are classified as follows as function of their indexing and visibility: 

• one paper published in an ISI journal with impact factor (IEEE Transactions 
on Education), 

• six papers published in the volumes of academic conferences indexed in ISI 
Proceedings, 

• five papers published in the volumes of academic conferences indexed in the 
international databases SCOPUS and/or INSPEC, 

• two book chapters published in Springer-Verlag and indexed in SCOPUS as 
well. 

All papers are visible, and this is proved by the organizing societies, IEEE 
(for ten papers), IFAC (for two papers) and EUCA (for one paper, published at 
European Control Conference ECC’09), and by Springer-Verlag (for the two book 
chapters). It is also highlighted that 14 out of the 15 papers are published abroad. 

A list of the papers that provide new contributions of the current 
thesis is presented as follows: 

1. Rădac, M.-B., Precup, R.-E., Preitl, St., Tar, J. K., Fodor, J. and Petriu, E. M. 
(2008): Gain-Scheduling and Iterative Feedback Tuning of PI Controllers for 
Longitudinal Slip Control. Proceedings of 6th IEEE International Conference on 
Computational Cybernetics ICCC 2008, Stara Lesna, Slovakia, pp. 183-188, indexed 
in SCOPUS, INSPEC. 

2. Rădac, M.-B., Precup, R.-E., Preitl, St., Petriu, E. M., Dragoş, C.-A., Paul, A. S. 
and Kilyeni, St. (2009): Signal Processing Aspects in State Feedback Control Based 
on Iterative Feedback Tuning. Proceedings of 2nd International Conference on 
Human System Interaction HSI’09, Catania, Italy, pp. 40-45, indexed in ISI 
Proceedings. 

3. Precup, R.-E., Rădac, M.-B., Preitl, St., Tomescu, M.-L., Petriu, E. M. and Paul, 
A. S. (2009): IFT-based PI-fuzzy Controllers: Signal Processing and Implementation. 
Proceedings of 6th International Conference on Informatics in Control, Automation 
and Robotics ICINCO 2009, Milan, Italy, vol. 1 Intelligent Control Systems and 
Optimization, pp. 207-212, indexed in ISI Proceedings. 

4. Rădac, M.-B., Precup, R.-E., Petriu, E. M., Preitl, St. and Dragoş, C.-A. (2009): 
Iterative Feedback Tuning Approach to a Class of State Feedback-Controlled Servo 
Systems. Proceedings of 6th International Conference on Informatics in Control, 
Automation and Robotics ICINCO 2009, Milan, Italy, vol. 1 Intelligent Control 
Systems and Optimization, pp. 41-48, indexed in ISI Proceedings. 

5. Rădac, M.-B., Precup, R.-E., Preitl, St., Tar, J. K. and Burnham, K. J. (2009): 
Tire Slip Fuzzy Control of a Laboratory Anti-lock Braking System. Proceedings of the 
European Control Conference 2009 ECC’09, Budapest, Hungary, pp. 940-945. 
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6. Precup, R.-E., Gavriluţă, C., Rădac, M.-B., Preitl, St., Dragoş, C.-A., Tar, J. K. 
and Petriu, E. M. (2009): Iterative Learning Control Experimental Results for 
Inverted Pendulum Crane Mode Control. Proceedings of 7th International Symposium 
on Intelligent Systems and Informatics SISY 2009, Subotica, Serbia, pp. 323-328, 
indexed in ISI Proceedings. 

7. Rădac, M.-B., Precup, R.-E., Preitl, St. and Dragoş, C.-A. (2009): Iterative 
Feedback Tuning in MIMO Systems. Signal Processing and Application. Proceedings 
of 5th International Symposium on Applied Computational Intelligence and 
Informatics SACI 2009, Timişoara, Romania, pp. 77-82, indexed in ISI 
Proceedings. 

8. Precup, R.-E., Moşincat, I., Rădac, M.-B., Preitl, St., Kilyeni, St., Petriu, E. M. 
and Dragoş, C.-A. (2010): Experiments in Iterative Feedback Tuning for Level 
Control of Three-Tank System. Proceedings of 15th IEEE Mediterranean 
Electromechanical Conference MELECON 2010, Valletta, Malta, pp. 564-569, indexed 
in ISI Proceedings. 

9. Precup, R.-E., Borchescu, C., Rădac, M.-B., Preitl, St., Dragoş, C.-A., Petriu, E. 
M. and Tar, J. K. (2010): Implementation and Signal Processing Aspects of Iterative 
Regression Tuning. Proceedings of 2010 IEEE International Symposium on Industrial 
Electronics ISIE 2010, Bari, Italy, pp. 1657-1662, indexed in SCOPUS, INSPEC. 

10. Precup, R.-E., Rădac, M.-B., Preitl, St., Petriu, E. M. and Dragoş, C.-A. (2009): 
Iterative Feedback Tuning in Linear and Fuzzy Control Systems. In: Towards 
Intelligent Engineering and Information Technology, Eds. Rudas, I. J., Fodor, J. and 
Kacprzyk, J. (Springer-Verlag), pp. 179-192, indexed in SCOPUS. 

11. Precup, R.-E., Preitl, St., Rădac, M.-B., Petriu, E. M., Dragoş, C.-A. and Tar, J. 
K. (online first, Date of Publication: 03 August 2010): Experiment-based teaching in 
advanced control engineering. IEEE Transactions on Education, vol. PP, no. 99, pp. 
1-11, DOI: 10.1109/TE.2010.2058575, ISI Science Citation Index impact factor (in 
2009) = 1.157. 

12. Rădac, M.-B., Precup, R.-E., Petriu, E. M., Preitl, St. and Dragoş, C.-A. (2011): 
Convergent Iterative Feedback Tuning of State Feedback-Controlled Servo Systems. 
In: Informatics in Control Automation and Robotics, Eds. Andrade Cetto, J., Filipe, J. 
and Ferrier, J.-L. (Springer-Verlag), pp. 99-111, indexed in SCOPUS. 

13. Rădac, M.-B., Grad, R.-B., Precup, R.-E., Preitl, St., Dragoş, C.-A., Petriu, E. M. 
and Kilyeni, A. (2011): Mixed Virtual Reference Feedback Tuning - Iterative 
Feedback Tuning Approach to the Position Control of a Laboratory Servo System. 
Proceedings of International Conference on Computer as a Tool EUROCON 2011, 
Lisbon, Portugal, paper index 453, 4 pp., indexed in INSPEC. 

14. Rădac, M.-B., Grad. R.-B., Precup, R.-E., Petriu, E. M., Preitl, St. and Dragoş, 
C.-A. (2011): Mixed Virtual Reference Feedback Tuning − Iterative Feedback 
Tuning: Method and Laboratory Assessment. Proceedings of 20th IEEE International 
Symposium on Industrial Electronics ISIE 2011, Gdansk, Poland, pp. 649-654, 
indexed in INSPEC. 

15. Rădac, M.-B., Precup, R.-E., Petriu, E. M., Preitl, St. and David, R.-C. (2011): 
Stable Iterative Feedback Tuning Method for Servo Systems. Proceedings of 20th 
IEEE International Symposium on Industrial Electronics ISIE 2011, Gdansk, Poland, 
pp. 1943-1948, indexed in INSPEC. 
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Appendix A 
 

This Appendix illustrates the connection between the LQR objective function 
which drives the analytical solutions of the optimization problem, and the IFT 
objective function which is subject to practical evaluations in our data-based 
algorithm. We assume two cases for the objective function, defined in the 
deterministic case and in the stochastic case related to the state feedback CS. The 
dependence on the parameter vector ρ  is omitted for the sake of simplicity. Our 

development follows a similar development to that presented in [48], and the two 
cases, a) and b), are presented as follows. 

a) The deterministic case. We assume that the following operational 
relationships are valid: 
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−  is the nxn process pulse transfer matrix operator from the 

reference input vector r to the state vector x and )q,ρ(P 1
u r

−  is the nx1 process 

pulse transfer matrix operator from r to the control signal u. The dependence on ρ  

is assumed but not explicitly written as follows in order to simplify notation. 
The infinite horizon objective function specific to the formulation of the LQR 

problem corresponding to this case is 
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b) The stochastic case. The following relations hold: 
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          (A.3) 
The reference input vector and the process noise are assumed to be quasi-

stationary and uncorrelated, i.e., 

0)}k(w)k(r{E T = .                            (A.4) 
The expression of the objective function used in IFT in this case is 
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The second, the third and the sixth terms in (A.5) are zero due to the 

uncorrelation between r and w. Therefore the following expression of )ρ(J  is 

obtained: 
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                     (A.6) 
The term )ρ(Jw  is dedicated to the minimization of the energy transfer 

from the process noise to the state variables and to the control signal. Inherently, in 
experiment-based tuning via IFT, this objective is also targeted in addition to the 
objectives to minimize the state control error energy (set-point tracking) and the 
control signal energy. If the reference input vector r and the weight λ  are chosen to 
be zero, the objective function )ρ(J  is dedicated to the minimization of the energy 

transfer from the process noise to the state variables, resulting in a non-robust 
structure. 
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Appendix B 
 

This appendix presents the proof of Theorem 5.1 in Chapter 5 dedicated to 
the globally asymptotically stability of the equilibrium point at the origin of the 
FCSs. The theorem is supported by the following well acknowledged result based on 
Lyapunov’s direct method for discrete-time systems [41]: let the process be 
characterized by the state-space model (5.1). If there exists a continuous radially 

unbounded Lyapunov function candidate RR:V n →  such that 0)x(V > , 0x ≠∀ , 

0)0(V = , and 

))t(x(V))1t(x(V <+ ,                  (B.1) 

then the equilibrium point at the origin nT R]0...00[0)t(x ∈==  of the 
system (5.1) will be globally asymptotically stable. 

The hypothesis (5.10) of Theorem 5.1 leads to 

RB
A
kkkk n...1k,Xx  ,0))t(x(V))1t(x(V))t(x(V =∈∀<−+=Δ .            (B.2) 

The term )1t(x +  is next substituted from (5.1) into (B.2): 
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The multiplication of (B.3) by ))t(x(kα , and the calculation of the sum result in 
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The relation (B.4) is divided by ∑
=

>α
RBn

1k
k 0))t(x(  and the sums are 

manipulated as follows: 
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The inequality (B.5) is expressed as follows accounting for (5.6): 
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Cauchy-Buniakovski-Schwarz’s inequality results next in 
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which is equivalent to 
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The division of (B.8) by ∑
=

>α
RBn

1k
k 0))t(x(  using (5.6) leads to 
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But the expression of ))t(x(VΔ results from (5.1) and (5.9): 
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                   (B.10) 
The following inequality is next obtained from (B.9) and (B.10): 
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                      (B.11) 
Equations (B.6) and (B.11) result finally in 

.0))t(x(V <Δ                  (B.12) 
Therefore the equilibrium point at the origin 0x =  will be globally 

asymptotically stable. The proof is now complete. Concluding, Theorem 5.1 offers 
sufficient stability conditions concerning the class of FCSs defined in Subchapter 5.2. 
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