ON THE DESIGN OF FLOATING
POINT UNITS FOR INTERVAL
ARITHMETIC

Teza destinata obtinerii
titlului stiintific de doctor inginer
la
Universitatea “Politehnica” din Timisoara
in domeniul STIINTA CALCULATOARELOR
de catre

Ing. Alexandru Amaricai

[—l:'ﬂ‘a CPOEITEINICAY

™

LS LIRS S
Conducator stiintific: prof.uhiv-dring. VISdutiu Mircea
Referenti stiintifici: prof.univ.dr.ing. Petrescu Mircea

prof.univ.dr.ing. Svasta Paul
prof.univ.dr.ing. Robu Nicolae

Ziua sustinerii tezei: 19.12.2008

FI

BUPT

Seriile Teze de doctorat ale UPT sunt:

1. Automatica 7. Inginerie Electronica si Telecomunicatii
2. Chimie 8. Inginerie Industriald

3. Energetica 9. Inginerie Mecanica

4. Ingineria Chimica 10. Stiinta Calculatoarelor

5. Inginerie Civila 11. Stiinta si Ingineria Materialelor

6. Inginerie Electrica

Universitatea ,Politehnica” din Timisoara a initiat seriile de mai sus in scopul
diseminarii expertizei, cunostintelor si rezultatelor cercetdrilor intreprinse in cadrul
scolii doctorale a universitatii. Seriile contin, potrivit H.B.Ex.S Nr. 14 / 14.07.2006,
tezele de doctorat sustinute in universitate incepand cu 1 octombrie 2006.

Copyright © Editura Politehnica - Timisoara, 2008

Aceasta publicatie este supusa prevederilor legii dreptului de autor. Multiplicarea
acestei publicatii, in mod integral sau in parte, traducerea, tiparirea, reutilizarea
ilustratiilor, expunerea, radiodifuzarea, reproducerea pe microfilme sau in orice alta
formd este permisa numai cu respectarea prevederilor Legii romane a dreptului de
autor in vigoare si permisiunea pentru utilizare obtinutd in scris din partea
Universitatii ,Politehnica” din Timisoara. Toate incalcadrile acestor drepturi vor fi
penalizate potrivit Legii romane a drepturilor de autor.

Romania, 300159 Timisoara, Bd. Republicii 9,
tel. 0256 403823, fax. 0256 403221
e-mail: editura@edipol.upt.ro

BUPT

mailto:editura@edipol.upt.ro

Cuvant inainte

Teza de doctorat a fost elaboratda pe parcursul activitatii mele in cadrul
Departamentului de Calculatoare al Universitatii ,Politehnica” din Timisoara. Doresc
sd multumesc colegilor din cadrul departamentului si al Facultatii de Automatica si
Calculatoare pentru sprijinul acordat in acesti ani.

Multumiri deosebite se cuvin conducatorului de doctorat prof.dr.ing. Mircea
Viadutiu , cel care mi-a indrumat activitatea pe intreaga durata a doctoratului si fara
de care aceasta teza nu ar fi fost posibila. Totodata, profesorul Viadutiu este cel ce
m-a introdus in domeniul proiectarii hardware si al arhitecturilor de calculatoare.

De asemenea, sincere multumiri pentru cei doi mari profesori de la
Universitatea Politehnica din Bucuresti, pentru cd m-au onorat cu participarea
dumnealor in comisia de doctorat: prof. dr. ing. Mircea Petrescu si prof. dr. ing. Paul
Svasta. Doresc sa ii multumesc in mod special rectorului Universitatii Politehnica
din Timigoara, prof. dr. ing. Nicolae Robu, pentru sprijinul atat moral cat si material
acordat pe tot parcursul doctoratului.

Activitatea mea de cercetare s-a bucurat de sprijinul a numerosi specialisti,
printre care doresc sa ii amintesc pe prof. Mark Arnold de la Lehigh University, USA,
pe Michael Higgins de la Universitatea din Limerick, respectiv pe Valentin Muresan
de la Movidia. Nu in ultimul rand, doresc sa ii adresez sincere multumiri prof.
Emanuel Popovici de la University City of Cork, pentru sfaturile care mi-au netezit
drumul in ultimele etape ale doctoratului.

Cercetarea mea s-a desfasurat in cadrul colectivului de cercetare ACSA,
caruia doresc sa le multumesc tuturor in mod deosebit pentru sprijinul acordat. De
asemenea doresc sa le multumesc tinerilor colaboratori, si in special lui Virgil Petcu,
cu care am avut conlucrat la diverse proiecte.

Nu in ultimul rdnd adresez multumiri familiei mele, parintilor mei, si in
special sotiei mele care m-a sprijinit continuu pe tot parcursul doctoratului.

Timisoara, Decembrie, 2008 Alexandru Amaricai

BUPT

Amadricai, Alexandru

On the Design of Floating Point Units for Interval
Arithmetic

Proiectarea Unitatilor de Virguld Flotantd pentru
Aritmetica Intervalelor

Teze de doctorat ale UPT, Seria 10, Nr. 12, Editura Politehnica,
2008, 178 pagini, 75 figuri, 37 tabele.

ISSN: 1842-7707
ISBN: 978-973-625-795-7

Cuvinte cheie: aritmetica digitald, aritmetica intervalelor, virgula
flotanta

Rezumat,

Teza abordeaza domeniul proiectdrii unitatilor de virgula flotanta
pentru aritmetica intervalelor. Sunt abordate pentru
implementare trei operatii: adunarea, inmultirea si operatia
combinata de divide-add fused. In ceea ce priveste adunarea,
este propus un sumator ce exploateaza paralelismul arhitecturilor
pe doud cdi pentru sumatoarele de virguld flotanta. Pentru
inmultirea intervalelor, un algoritm nou este conceput si este
propusa o arhitectura bazata pe un inmultitor modificat de virgula
flotanta. Unitatea de divide-add fused are scopul de a creste
performanta metodei lui Newton cu intervale.

BUPT

ABSTRACT

This thesis addresses the emerging problem of designing and
implementing floating point arithmetic units for interval arithmetic. The
present research is important in the present context of the development of
the future IEEE 1788 standard for interval arithmetic. This future standard
have its basis in the IEEE 754/1985 standard for floating point arithmetic
and its extension draft, 754r. Therefore, all the major design decisions,
such as interval representation, have been taken into accordance to these
two standard proposals.

In this thesis, three important issues are tackled. The first two
issues regard the design and implementation of hardware units for the most
frequent operations, and thus the most important for the performance of
any arithmetic system: addition and multiplication. The third issue was the
design of a floating point unit which is dedicated for a specific interval
arithmetic algorithm: the interval Newton’s method. This dedicated
arithmetic circuit is the floating point divide-add fused unit, which, to the
best of my knowledge, has never been designed before.

Regarding the interval addition unit, a novel design has been
implemented. This design is based on the architecture of the floating point
double path adder. The proposed interval adder exploits the parallel
structure of the double path adders. Based on the synthesis results, the
best performance-cost tradeoff for interval addition is obtained.
Furthermore, the proposed unit can be used also for increasing the
performance of the conventional floating point arithmetic, due to its
increase throughput and its parallel structure.

Interval multiplication is the most difficult interval basic operation,
due to its high number of floating point operations required. The proposed
interval multiplier implements a developed algorithm, which is based on two
interval multiplication methods. The core of this unit is represented by the
dual result multiplier (multiplication unit with two differently rounded
results). In order to implement such a multiplier, three floating point
multiplication rounding schemes have been adapted. Furthermore, a novel
rounding scheme for interval arithmetic has been designed, which has the
lowest latency and cost. Using the proposed multiplication unit, an increase
in worst case performance is obtained. Furthermore, the proposed unit can
be wused also for set operations and conventional floating point
multiplication.

The third floating point units is represented by the floating point
divide-add fused. This unit has a similar algorithm and architecture with the
floating point multiply-add fused. The main difference is the usage of a
divider module, instead of multiplication circuits, such as the encoder
module or the partial product reduction tree. The purpose of such combined

BUPT

floating point unit is to increase the performance of the interval Newton’s
algorithm, which has as its core operation a division followed by a
subtraction. The main problems regarding the design and implementation of
such unit are the number of required quotient bits and the rounding
problem. An in-depth analysis of these two problems is performed. Several
implementations for such a unit are proposed in this thesis, depending on
the desired precision or performance.

BUPT

Published Papers and Impact

This thesis is supported by the following papers:

Prior to

Amaricai, M. Vladutiu, L. Prodan, M. Udrescu, O. Boncalo - Design of
Addition and Multiplication Units for High Performance Interval
Arithmetic Processor, Proceedings 10" IEEE Workshop on Design and
Diagnostics of Electronic Circuits and Systems (DDECS), Krakow, Poland,
April 11-13, 2007, pp. 223-226 (ISI Proceedings, IEEEXplore)

A. Amaricai, M. Vladutiu, L. Prodan, M. Udrescu, O. Boncalo - Hardware
Support for Combined Interval and Floating Point Multiplication,
Proceedings 14™ Mixed Design of Integrated Circuits and Systems
(MIXDES), Ciechocinek, Poland, June 21-23, 2007, pp. 278-282 (ISI
Proceedings, IEEEXplore

A. Amaricai, M. Vladutiu, L. Prodan, M. Udrescu, O. Boncalo - Exploiting
Parallelism in Double Path Adders’ Structure for Increased
Throughput of Floating Point Addition Proceedings 10" Euromicro
Symposium on Digital System Design (DSD), Lubeck, Germany, August 29-
31, 2007, pp. 132-137 (1SI Proceedings, IEEEXplore)

V. Petcu, A. Amaricai, M. Vladutiu - A Dual-Threaded Architecture for
Interval Arithmetic Coprocessor with Shared Floating Point Units
Proceedings 11" IEEE Workshop on Design and Diagnostics of Electronic
Circuits and Systems (DDECS), Bratislava, Slovakia, April 16-18, 2008, pp.
146-150 (ISI Proceedings, IEEEXplore)

A. Amaricai, M. Vladutiu, M. Udrescu, L. Prodan, O. Boncalo - Floating
Point Multiplication Schemes for Interval Arithmetic - Proceedings
19" IEEE Conference on Application-Specific Systems, Architectures and
Processors (ASAP), Leuven, Belgium, July 2-4, 2008, pp 19-25 (ISI
Proceedings, IEEEXplore)

A. Amaricai, M. Vladutiu, L. Prodan, M. Udrescu O. Boncalo - Floating
Point Divide-Add Fused Unit for Interval Newton's Method
Proceedings Euromicro Work-in Progress Session, Parma, Italy, September
3-5, 2008

the thesis, two PhD. Reports had prepared this work:

On the Design of Floating Point Units for Interval Addition and
Multiplication

On the Design of Floating Point Divide-Add Fused Units

BUPT

BUPT

TABLE OF CONTENTS

1.

The Need for Reliable Arithmetic

1.2.1 Number Representation
1.2.2 Interval Operation and Function Evaluation

INTRODUCTION

1.1

1.2 Interval Arithmetic
1.2.3 Applications
1.2.4 Software Support

1.3 Motivation

1.4 Thesis Objectives

15 Evaluation

1.6 Dissertation Outline

Hardware Interval Addition Units
Interval Addition

Floating Point Addition

2.2.1 Basic Algorithm

2.2.2 Single Path Adders

2.1
2.2

2.3

2.4

2.5

2.2.2.1
2.2.2.2

Leading Zero Prediction. . . .
Compound Adder . . .

2.2.3 Double Path Adders

2.2.3.1
2.2.3.2
2.2.3.3
2.2.3.4
2.2.3.5
2.2.3.6

Adelaide Adder

SUN 1998 Adder

AMD 2000 Adder

Seidel-Even Adder

Variable Latency Adder.

Comparisons between Double Path Adders

Proposed Adder v AT
2.3.1 Interval Addition Unit

2.3.2 Increasing Throughput of Conventional Floating Point

Addition.
Evaluation.
2.4.1 Cost Evaluation
2.4.2 Performance Evaluation
2.4.3 Synthesis Results.. .. .

Summary

19
19
20
20
21
23
27
29
31
32
33
34
35
36
37
37

42
42
42
43
49

BUPT

Hardware Interval Multiplier
3.1 Interval Multiplication. A

3.2 Floating Point Multiplication.
3.21 Algorithm and Architecture.
3.2.2 Mantissa Multiplication Unit
3.2.3 Partial Product Generation Scheme
3.2.4 Partial Product Reduction Tree. RN
3.2.5 Final Addition and Rounding

3.3 Proposed Multiplier
3.3.1 Algorithm ...
3.3.2 Overall Architecture
3.3.3 Final Addition and Rounding..................................... .
3.3.4 Interval Set Operations.. TR

3.4 Evaluation
3.4.1 Cost Evaluation.. ... L
3.4.2 Latency Evaluation . . .
3.4.3 Synthesis Results.

3.5 Summary

Floating Point Divide-Add Fused for Interval
Newton’s Method P
4.1 Considerations on the Floating Point Divide-Add
Fused @
4.2 Interval Newton’s Method .
4,2.1 Standard Interval Newton’s Method ..
4.2.2 Interval Division by a Zero Containing Interval .
4.2.3 Extended Newton’s Method
4.2.4 Discussion .
4.3 Floating Point Multiply-Add Fused =
4.3.1 Consideration on the Floating Point Multiply-Add Fused
4.3.2 Basic Algorithm .
4.3.3 Enhancements of the Basic Algorithm
4.3.4 High Performance Implementations
4.4 Floating Point Division
441 Basic Algorithm.
4.4.2 Mantissa Division
4.4.2.1 Digit Recurrence Division .
4.4.2.1.1 Design Choices.

4.4.2.1.2 Redundant Remainder
Representation
4.4.2.1.3 Overlapped Architectures

51
51
55
55
56
57
62
67
74
74
74
75
80
80
81
82
83
85

87

87

87
87
88
91
92
93
93
94
94
96
99
99
100
101
102

104
105

BUPT

4.4.2.1.4 Quotient Conversion
4.4.2.2 Multiplicative Methods

4.4,2.3 Comparison between Digit Recurrence and
Multiplicative Methods

4.5 Floating Point Divide-Add Fused
451 Basic Algorithm and Architecture
4.5.2 Number of Quotients Bits Required
453 Implementations
4,5.3.1 Pro-Accuracy Architecture
4.5.3.2 Pro-Performance Architetcure
455 Variable Latency
4.5.6 Interval Divide-Add Fused
4.6 Evaluation
4.6.1 Accuracy
4.6.2 Synthesis Results ...
4.7 Summary .
5. Conclusions
5.1 Context and Relevance
5.2 Summary
5.3 Contributions
5.4 Future Work
A VHDL Source Code and Technology Schematics for

ISCAS’85 Benchmark Circuits
B VHDL Descriptions for Basic Modules Used in the
IEEE Half Precision FP Synthesizable Designs

REFERENCES

106
107

109

110
110
111
114
114
115
116
117
118
118
121
125

127
127
127

129
130

133

145

157

BUPT

BUPT

List of Figures

1.1

1.2
1.3
2.1
2.2
2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15

2.16
2.17
2.18
2.19
2.20
2.21

Example of Erroneous Results Produced During Floating Point
Computations

Variable Precision Number Format

Number Representation in IEEE 754r Standard
Interval Adder Comprised of Two Floating Point Adders
Block Architecture of a Single Path Adder

Placement of Leading Zero Detector (LZD) and Leading Zero
Predictor (LZP)

Encoding Cell in LZP (Logic [16] and Virtex-4 FPGA Technology
Schematic)

Leading Zero Detection - a) For Four Bits Group b) Tree Detector
for 16 Bits

Correction Strategies for LZP [16] a) Correction Shift b) Carry
Selection c¢) Concurrent Position Correction d) Technology
Schematic of a LZP Presented in a) Obtained with XST

Addition, Complementation and Rounding Module (a) Preparing
Operands for Sum, Sum+1, Sum+2 Using Half Adders (b) [17]
Technology Schematic of 12-Bit Compound Adder Obtained with
XST ()

Block Architecture of Mantissa Data Path of the Double Path Adder
Structure of the Adelaide Adder

Structure of the SUN1998 Adder

Block Structure of AMD Adder

Block Structure of the Seidel-Even Adder

Variable Latency Adder Structure (Stanford)

Block Structure of Proposed Interval Adder

Technology Schematic Obtained with XST for FAR path (a) and
CLOSE path (b)

Detailed Structure of Mantissa Data Path in Proposed Adder
Cost of Interval Addition Hardware Units

Performance Comparison of the Three Interval Adders
Relative Speed-up of Interval Adder Implementations
Cost*Latency for Three Interval Adders

Total Latency for n Consecutive FP Additions on AMD and Proposed

a\

19
22

23

24

25

26

28

29
31
32
33
34
35
37

38

40
44
45
46
47
48

BUPT

2.22
3.1

3.2

3.3
3.4
3.5

3.6
3.7
3.8

3.9
3.10
3.11

3.12
3.13

3.14
3.15
3.16
3.17

3.18

3.19

3.20
3.21

3.22

3.23

Adder
Cost*Latency for AMD and Proposed Double Path Adder

Interval Multiplication Pipelined Algorithm {53] a) Using One
Multiplier b) Using Two Multipliers

Interval Multiplication RPI Algorithm [107] (a). RNI from RPI
[107](b)

Interval Multiplication Unit [96]
Floating Point Multiplication Unit

Tree Multiplier for Mantissa Multiplication for Floating Point
Numbers

Encoder Module with AND Gate Array for 4-Bits Multiplicands
Partial Product Generation Line for 4 Bit Multiplicands Using Booth

Partial Product Generation Line for 4 Bit Multiplicand Using Booth 2
[13] (a) Technology Schematic of Booth 2 Encoder Module
(obtained with XST) (b)

The Dot Diagram of Booth 2 Algorithm for 8 Bit Multiplicands
The Dot Diagram of Redundant Booth 3

The (3:2) Counter A) The Block Structure for 4 Bit Vectors B)
Internal Structure of a FAC

The Wallace Tree for 18 Partial Products (¢ - Partial Product)

The Overturned Staircase Tree for 18 Partial Products (The ¢
Represents the Partial Product)

The Balanced Delay Tree for 18 Partial Products
4:2 Compressors a) [106] Compressor b) [72] Compressor
The Binary Tree for 16 Partial Products

The Even-Seidel Rounding Scheme [30] (a) Technology Schematic
Obtained with XST (b)

The Quach Rounding Scheme [79] (a) Technology Schematic of
Quach Rounding Scheme Obtained with XST(b)

The Yu-Zyner Rounding Scheme [30] (a) Technology Schematic
Obtained with XST(b)

Proposed Interval Multiplication Algorithm

Proposed Interval Multiplier Architecture [4] (a) RTL Schematic
Obtained with XST (b)

Rounding Scheme for Dual Result Multiplier Based on Quach
Algorithm

Rounding Scheme for Dual Result Multiplier Based on Yu-Zyner

Fl

48

51

52

54
55

56

58

59

59

60

62

63

63

64

65
66
66

68

70

72

74

76

77

78

BUPT

3.24

3.25
3.26

3.27

4.1

4.2

4.3

4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11

4.12

4.13

4.14

4.15

4.16
4.17

4.18
Al

Algorithm[6] Technology Schematic Obtained with XST(b)

Proposed Rounding Scheme for Dual Result Multipliers{6] (a)
Technology Schematic Obtained with XST(b)

Algorithm for Interval Intersection (a) and Interval Hull (b) [1]

Cost Comparison between Interval and Conventional Floating Point
Multipliers

Latency*Cost Comparison of the Four Interval Rounding Schemes

Graphic Representation of Newton’s Interval Method. [al,b1]
represent the initial interval, m1 is the midpoint, and [a2,b2]
represent the result interval after the iteration (in this case b1=b2)

Graphic Representation of the Interval Newton’s Method when the
Function Has a Local Minimum

General Architecture of the Mantissa Data Path in a Multiply-Add
Fused

The Floating Point Multiply-Add Fused as Proposed in [55]
The Double-Path Multiply-Add Fused Architecture

Overall Architecture of a Floating Point Divider

Basic Block of a Digit Recurrence Divider

Quotient Selection Scheme Based on Comparisons

SRT Stage with Remainder in Carry-Save Form and a Short Carry
Propagate Adder for the Quotient Selection

Overlapped Quotient Selection

Overall Architecture of the Mantissa Data Path of a Floating Point
Divide-Add Fused

The Four Cases for Divide-Add Fused a) d2m+3 b) 1<d<m+3 c)
1<d<-2d) d<-2(in this trivial example m=5)

The Pro-Accuracy Architecture a)Divider Unfolded b)Sequential
Generation of Quotient Bits (m=53 - IEEE double precision format)

The Pro-Performance Architecture a)Divider unfolded b)Sequential
Generation of Quotient Bits (m=53 - 1EEE double precision format)

Technology Schematic of the Used SRT Radix-2 Stage Obtained
with XST

Comparative Cost of the Three Implemented Designs

Technology Schematic of Mantissa Datapath for Pro-Performance
Divide-Add Fused Obtained with XST

Comparative Latency of the Three Implemented Designs
Technology Schematic for C17 Obtained with XST

79

80

84

84

88

92

95

97
98
100
102
103

105

105

111

113

114

116

122

122

123

124
133

BUPT

A2

A3

A4

A5

Technology Schematic of C432 Benchmark Circuit Obtained with
XsT

Technology Schematic of C499 Benchmark Circuit Obtained with
XST

Technology Schematic of C6288 Benchmark Circuit Obtained with
XST

Technology Schematic of 74181 Benchmark Circuits Obtained with
XST

137

140

144

146

BUPT

List of Tables

1.1
2.1
2.2
2.3

2.4

2.5
2.6
2.7
2.8
2.9
2.10
2.11
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

Synthesis results obtained for benchmark circuits
The Effective Operation in Floating Point Addition
Four Bits Truth Table for LZD [73]

Obtaining Sum, Sum+1, Sum+2 Using Half Adders and Compound
Adder [17]

Examples of Floating Operations Performed on FAR and CLOSE
Paths

Double Path Adders Comparison

Examples of Favorable Cases of Interval Addition

Examples of Unfavorable Cases of Interval Addition

Gate Count for Floating Point Adders

Latency Estimates for Floating Point Adders

Synthesis Results Obtained for Double Path Adders
Required Latency for Performing n Additions (ns)

Interval Multiplication with Sign Examining

The Subdivisions of the Ninth Case of Interval Multiplication
Comparisons between the Interval Multiplication Algorithms
Booth’s Algorithm

Booth 2 Algorithm

Booth 3 Encoding

Redundant Booth 3 Encoding

Comparison between Simple, Booth 2 and Redundant Booth 3
Algorithms for 53 Bits operands

Comparison of Partial Product Reduction Trees for 27 Partial
Products

Comparison between the Three Rounding Algorithms

Gate Count for Proposed Architecture

Gate Count for Conventional Floating Point Multiplier

Gate Counts for Final Addition and Rounding Units

Latency Estimates for Proposed Architecture

Latency Estimates for Conventional Floating Point MuItiQIication
Latencies and Cost for the Interval and Floating Point Multipliers

Latencies and Cost for the Interval Rounding Schemes

15
20
24

36
a1
a1
42
42
43
45
53
53
54
58
60
61
61

61

66

73
81
81
81
82
82
83
84

BUPT

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Interval Division

Interval Division by an Interval Containing Zero

Comparison between Two Main Classes of Division Algorithm
The Divide-Add Fused of Three Intervals x +tY/Z , for 0¢ Z

Maximum round-off errors for divide-add fused
Cost of Proposed Divide-Add Fused Architectures (in LUT-4)
Latency of Proposed Divide-Add Fused Architectures (in ns)

89
91
109
118
121
122
124

BUPT

1. INTRODUCTION

1.1. The Need for Reliable Arithmetic

Due to advances in the computing technology, at any level (architectural,
gate, transistor, etc), the computational power has increased in an almost
exponential way in the last decades [41][53][86]. Therefore, the most powerful
computing systems can perform billions of arithmetic operations per second.

A very important place in most computational system is represented by the
floating point systems. Floating point numbers are used for real number
representation. Unlike the fixed point numbers (used for integer computations), the
floating point operations do result in errors [41]. These errors are due to the
following reasons: on one hand there is a wide range of real numbers which cannot

be represented exactly using floating point representation (for example\/i, %,

7 etc) - in this case an approximation of the real number which can be represented
in the floating point number system is used; on the other hand, the result from a
floating point operation cannot be represented using the floating point
representation - in this case rounding or truncation operations are performed. Thus,
floating point computations are prone to errors, as shown by the simple example
presented in Fig. 1.1.

10~20+10.0+137.0-10~20-17.0= -17.0
10~20-10720+10.0-17.0+137.0= 130.0
10~20+137.0-17.0+10.0-10~20= 0.0
10.0+10720-10720-17.0+137.0= 120.0
137.0-17.0-10~20+10720+10.0= 10.0

Figure 1.1 - Example of Erroneous Results Produced During
Floating Point Computations [53]

The large amounts of floating point computations also increases the
probability of erroneous results, as error may accumulate. Therefore, methods for
controlling these rounding and truncation errors must be provided for floating point
systems where the reliability represents an important issue.

1.2. Interval Arithmetic

One method for controlling errors which can occur in floating point
computations is represented by interval arithmetic. Interval arithmetic is the
arithmetic of intervals [40]. It does not work with a single floating point number, as
in the conventional floating point arithmetic, but uses two floating point numbers
which define an interval. The two floating point numbers in majority of applications
represent the lower (inferior) bound of the interval and the upper (superior) bound

BUPT

8 Introduction - 1

of the interval. Another less used form of representing an interval consists of using
a floating point number which may represent one bound (lower or upper) or the
midpoint and another floating point number which represents the width or the
radius of the interval [54].

Interval arithmetic does not increase the accuracy or the precision of the
computation. However, the interval represents a measure of the error accumulation
during the intensive computations, and therefore, measures can be taken during in
order to increase the reliability of the operations (like repeating computations with
greater precision) [471[53][54]1[58]. More important, a wide range of specific
interval methods have been developed, which provide guaranteed and very reliable
results [25].

1.2.1 Number Representation

A very important issue regarding interval arithmetic is represented by
number representation. Two formats have been proposed for representing floating
point numbers used in interval arithmetic.

One format, proposed by Schulte [86][87], is based on variable precision
floating point numbers. A number represented in variable precision format is
composed from two parts: a header word and a variable size mantissa part
(consisting of more words) - Fig 1.2. The header word contains the exponent bits,
the sign bit, a type field (which indicates if the number is either a conventional
variable precision number, or denotes a special value - zero, infinity, not-a-
number), and a field which indicates the number of mantissa words. The mantissa is
composed from a variable amount of words, depending on the required precision for

the represented number. A normalized mantissa has its value in the [%,1) range.

The value of the floating point number is given by the following formula:

N=(—1)s *25 * M (11)
S EXP TYPE F Header Word
Mantissa Word 1
Mantissa Word 2 Mantissa Words
Mantissa Word n

Figure 1.2 - Variable Precision Number Format [86][87]

The main advantage of this representation is the increased accuracy. If the
required precision must be increased, mantissa words may be added. Furthermore,
rounding and truncation errors are less frequent and have smaller values, because,
in case of an operation which needs rounding (the resuit needs more bits for
precision) the number of mantissa words for the result is increased.

BUPT

1.2 - Interval Arithmetic 9

The disadvantages of this type of representation are related to the cost and
performance of hardware units which implement operations. The reason for this is
that the variable precision representation requires operations executed for each
word of mantissa.

Another format used for representing intervals is the representation used in
1IEEE 754 floating point standard [36]. This is the standard used for representing
floating point numbers. A number represented in IEEE floating point numbers has
three fields: sign, exponent and mantissa. The number of bits used for each of the
three fields varies from the specified precision. The IEEE 754 standard defines two
types of precision (simple precision on 32 bits and double precision on 64 bits),
while IEEE 754r extension draft specifies four types of precision (half precision on
16 bits, simple precision on 32 bits, double precision on 64 bits and quad precision
on 128 bits) - Fig 1.4. The four formats are depicted in Fig 1.3. Also, two extended
precision formats are specified (simple extended on 44 bits and double extended on
80 bits) [36].

S _Exp M
0L s 15 | HALF
S ExP M |
ol 8o 31] SINGLE
S EXp M
00 1112 63 DOUBLE
s EXP M
01 15]16 127 QUAD

Figure 1.3 - Number Representation in IEEE 754r Standard [36]

The value of a number represented in IEEE 754 representation is given by
the following equation:

N = (-1)° x2E-bias x 1 (1.2)

The exponent’s representation is in a biased form. The bias is equal to 15 for half
precision, 127 for simple precision, 1023 for double precision and 16383 for quad
precision. Another important feature of this standard is represented y the hidden 1
for the mantissa. Using this hidden 1, a bit of precision is thus gained. Also, this
hidden one establishes the range for the mantissa value between[1,2) [26][36].

Thus, normalization steps must be performed in every operation, so the mantissa
remains in the considered range [26][51][74].

Another important feature of this standard is represented by the special
values which are defined. These special values are specified by a specific
combination of the three fields of the IEEE 754 floating point numbers. These
special values are [36]:

e Zero: this special value is determined by zero in the exponent field and zero
in the mantissa field. However, the sign bit can be 0 or 1, and thus, we have
a signed zero (positive and negative zero).

BUPT

10 Introduction - 1

« Infinity: this special value is determined by an all 1 exponent field and a
zero mantissa field. As in the case of zero, the infinity special value is signed
(positive and negative infinity).

¢ Not a Number (NaN): this special value is determined by an all 1
exponent field and a non-zero mantissa. This value resuits when operations
with special fields take place (square root from a negative number,

%’%,O*w, (+e0) + (—o) , etc).

« Denormalized Numbers: this special value is determined by zero in the
exponent field and a non-zero mantissa field. This value results when the
normalization cannot be performed (the operation has an underflow resuit).
This special value is important, because it can be avoided, by the gradual
underflow mechanism, the total cancellation of the result.

The IEEE 754 also defines five types of exceptions (overflow, underflow,
divide by zero, invalid and inexact), allowing thus the implementation of specialized
trap handlers for each of the five exceptions [36]. Also, the standard recommends a
minimum set of operations to be implemented as instructions: addition/subtraction,
multiplication, division, remainder, square root and conversion between floating
point and integer. For these operations the standard requires that all the operation
to be performed so the result is computed exactly and then rounded according to
the desired rounding mode. Furthermore, IEEE 754 standard defines four rounding
modes: rounding towards nearest even, rounding towards zero (truncation),
rounding towards positive infinity and rounding towards negative infinity [53].

Compared to the variable latency format, the IEEE 754 standard does not
have the same accuracy in computations. However, the hardware units which
implement the arithmetic operations for IEEE 754 standard have a greater
performance.

The IEEE 754 and the extension draft IEEE 754r standard have become the
basis for the first interval arithmetic dedicated standard, which is the goal of the
IEEE Working Group P1788 approved by the IEEE-SA Standards Board [116].
Therefore, all the designed hardware units in this thesis are designed for IEEE
representation of floating point numbers.

1.2.2 Interval Operations and Function Evaluation

Given two intervals [Xjo; Xp;]and[Yy,;Ypi], where X5, Xpi,Yio, Ypi @re
floating point numbers, the four basic arithmetic operations are defined as follows
[49][S3][47][86][94]:

s Addition:
L X10i Xhi 1+ Y10 Yhi] = [Xio + Yio: Xni + Yhi] (1.3)

e Subtraction:
[Xi0i Xpi 1= [Mi0: Yni 1 = [Xio = Yhii Xni = Yio] (1.4)

BUPT

1.2 - Interval Arithmetic 11

e Multiplication:
[X/O;X,,,-]*[Y,O;Yh,-]=[min(HXY);max(HXY)] (1.5)
TIXY & Xio *Yioi Xio * Ynii Xpi * Yioi Xpi * Yhi

¢ Division:

[X/o;xhy T X e
(Yioi Yhi] [Xioi Xni] %YIOZYhi] (1.6)

Undefined for 0 e [Y}o; Y]

The rounding modes used in interval arithmetic are rounding towards
negative infinity for the lower bound of the result and rounding towards positive
infinity for the upper bound of the result [41][47].

As it depicted by the equations (1.5) and (1.6), multiplication and division
are not as straightforward as the interval addition and subtraction. The reason for
this is that an interval operation is defined as follows [41][47]:

[Xi0: Xhi)° [Yios Yni] = [min(x o y),max(x o y)],

(1.7)
VX € [X/O;Xh,-],\/y € [Y/o;Yhi]

These four basic interval operations are commutative and associative, while
regarding the distributivity property in the case of interval arithmetic it does not
hold. However, the subdistributivity property holds [47][49][53][107]:

[X10: Xni) *([(Yio: Yni) + [Zi0: Zhi]) €

(1.8)
[X10s Xpi 1 *[Yio: Yai]+ [Xios Xni) * [Zio: Zhi]

A function evaluation for an interval is defined in the same way as an
operation [41]{47][531[107]:

f([X10: Xni]) = [min(f(x)),max(f(x))],Vx € [Xi0i Xpi] (1.9)
Therefore, using (1.8) sin((0,2+x]) =[-1,1] and
notsin([0,2 = z) =[sin(0),sin(2 * z)]=[0,0], while f((-2.2) =[0,4]#[4,4]

forf(x) = x? [41][53}.

Very important for interval arithmetic are also the set operations. These
operations are used in a wide range of interval methods. Among these operations
are included [1][91]:

e Hull
[min (X1, Yio), max (Xpi, Yhi)]
h i 2 2 i >
[X103 Xni] [Yigi Ypi] =1 WheM Xni Yo = Xio 0F Yhi 2 X0 2¥io (1.10)

[Xi0: Xni]©[YioiYni] .otherwise

a

BUPT

12 Introduction - 1

+ Intersection
([max (Xjo, Yio), Min(Xpis Yhi)].

| when Xni =Y, = Xjo OF Yhi 2 Xjp 2 Y]
[X/O;Xhi]U[Y/O;Yhijz hi = Tlo = Mo hi lo lo (111)

| @ ,otherwise

Also used in many interval applications are operations on the interval, off
which two are more frequently used [41][47][53][107]:

o Width
Width ([Xj0: Xni 1) = [Xio = Xhil (1.12)
e Midpoint
. Xio + Xp
m ([Xioi Xpi) = oS0t (1.12)

The first of these two operations is used for determine the accuracy and the error
accumulation of the interval computations, while the second is used for
approximating an interval with a single floating point number.

1.2.3 Applications

Interval methods have been devised for a wide range of applications which
require reliable and guaranteed results [25][41]{53][54][58][61][107]. Basically,
interval arithmetic methods produce numerical proofs. Furthermore, some interval
algorithms present even a better performance compared to their conventional
counterparts.

Historically, the first time interval methods have been used by Archimedes
to determine the value of numberz [41][53]. However, modern day interval
arithmetic has been refined and developed since the works of Ramon E. Moore in
the 1960s [61]. Since then, a wide range of specific methods have been developed
which can be used in many fields of applications.

One of the most important fields of application is represented by the
nonlinear equations and systems of equations. Two types of methods can be used
for this type of application: bisection methods and interval Newton’s method
{471[(48][53]. The interval Newton’s method has the property of providing a very
narrow interval which will surely contain the solution of the equations or providing a
certain indication of the no solution situation. This method can be used for all types
of nonlinear equations and systems of nonlinear equations, many of which couldn’t
be solved with numerical methods. Furthermore, interval methods have been
developed for solving linear systems of equations, integral equations, initial value
problems, etc.

Therefore, these types of methods, and especially interval Newton’s
method, have a wide range of applications. One field of applications is related to
computer graphics, where equations solving represent one of the most common
operations. Based on interval methods, algorithms for ray tracing, ray-surface
intersection, rendering, collision detection have been developed, many of which
presenting a better performance compared to their conventional counterparts
[47)[84]. s

BUPT

1.3 - Motivation 13

Interval methods have also been devised for control theory and robotics.
One of the main research program related to this field of application is the COPRIN
project developed at INRIA institute [117].

Interval methods have also been used to provide computer assisted proofs
for mathematical physics, like the Feigenbaum conjecture, the double bubble
conjecture or Keppler conjecture [47][81]. Also, interval arithmetic has been used
for determining physical constants, like the Newton’s gravity constant. Other
applications for interval arithmetic have been developed in chemical engineering,
electrical engineering, computer-aided design, fluid mechanics, dynamical systems,
air traffic control, etc.

1.2.4. Software Support

In order to enable support for these applications, software extensions of the
common programming languages which include interval arithmetic have been
provided [53}[94].

SUN Microsystems have developed, during the Interval Computation project,
a C++ extension (Forte Developer 7, Sun Studio 11) and FORTRAN extension for
interval arithmetic [97]. The GNU C compiler also has been modified for super-
scalar architecture to support interval arithmetic [94]. Furthermore, the INTLAB is
an extension of the MATLAB which have been developed at the TU-Hamburg [115].

Support is also provided in specific libraries, which contain interval methods
and algorithms (ALIAS [112], CGAL [113], MPFI [114], BOOST Interval [111] etc).
Some of these libraries present also optimization techniques particular for interval
arithmetic.

Furthermore, scientific extensions of the common programming languages
contain support for interval arithmetic. Some of these extensions include the Pascal-
XSC (a Pascal extension), C-XSC or ARITH-XSC [41][49][53][94].

1.3. Motivation

Although a wide range of applications have been developed based on
interval arithmetic, these methods are quite slow and inefficient on modern
computers, even if some kind of software support exists for interval arithmetic. The
main reason is represented by the lack of hardware support for interval arithmetic
[49][53].

Even though the IEEE 754 standard specifies four rounding modes, of which
the rounding towards negative infinity and rounding towards positive infinity (the
rounding modes used in interval arithmetic), only rounding towards nearest even is
implemented within the arithmetic operations. For using other rounding modes, a
dedicated instruction must be executed before the operation. Therefore, for interval
addition for example, instead of two instructions (one for each floating point
operation), four instructions must be used, of which two instruction for changing the
rounding mode (instruction for rounding towards negative infinity, addition,
instruction for rounding towards positive infinity, addition) [49][53]. Thus, the
performance of an interval addition is low compared to that-of two conventional
floating point additions (rounded towards nearest even). Although interval hardware
units have been proposed in literature [1][49][53]1{86][87]1[91]1[94][95][96][107],

N

BUPT

14 Introduction - 1

there is no commercial processor which offers appropriate support for interval
arithmetic.

The reasons for this lack of support for interval arithmetic, as explained by
William Walster from SUN Microsystems, are twofold: on one hand, the uncertainty
in demand, thus preventing microprocessor companies to implement interval
hardware units and interval arithmetic instructions; on the other hand, there is no
standard for interval arithmetic [41]. Lack of standard may be the most important
reason, as it was in the case of conventional floating point arithmetic: hardware
implementations and support for floating point knew a development (almost a
boom) only after the emergence of IEEE 754 standard [41].

In order to encourage the development of hardware support for interval
arithmetic, in the last year the IEEE Standard Association has appointed the
Working Group 1788 to develop a standard for interval arithmetic [54][116]. This
standard has its starting point the IEEE 754 standard for floating point and its
extension draft 1IEEE 754r (especially related to number format), while specific
issues of the interval arithmetic (like division by an interval which contains zero)
must be specified by this standard.

Thus, there is an increasing need for hardware support for interval
arithmetic. The arithmetic units must comply to the IEEE 754 number formats, as
the interval arithmetic standard will be implemented with this type of number
format. Furthermore, it is desirable that conventional floating point operations could
be executed on the hardware interval arithmetic units.

1.4. Thesis Objectives

This thesis has three major objectives: the design of an
interval/conventional floating point addition unit, the design of an
interval/conventional floating point multiplication unit and the design of a floating
point divide-add fused unit.

Regarding the adder, in conventional floating point arithmetic the operations
which are executed on this unit count (additions, subtractions and comparisons)
count about 55% from all floating point operations [69][70]. Therefore, the floating
point adder is critical to the performance of any floating point system. In interval
arithmetic it is also expected that the addition/subtraction to represent as vital
operation as in the conventional floating point arithmetic. Therefore, the design of a
high performance interval adder represents a priority for any interval arithmetic
hardware processor. Furthermore, this interval hardware should be also used for
conventional floating point addition. One reason for the combined functionality is
that two important functions used in interval arithmetic require
additions/subtractions: width of the interval and midpoint of the interval.

Regarding the multiplication, in conventional floating point arithmetic this
operation counts about 40% from all floating point operations [69][70]. Therefore,
the floating point multiplier is also a very important unit for any floating point
system, its performance being critical for the overall performance. In interval
arithmetic, it is aiso expected that the multiplications to be as important as in
conventional floating point arithmetic. As in the case of the interval addition unit,
the multiplication unit should be able to also perform conventional floating point
multiplications.

The floating point divide-add fused will be a dedicated arithmetic unit for
increasing the performance of the interval Newton’s method [48][49][53]. In this

BUPT

1.5 - Evaluation 15

case, the use of a dedicated combined unit may represent an advantage, as is the
case of the floating point multiply-add fused for many applications (digital signal
processing, computer graphics, etc). This dedicated combined unit can also be used
for addition or division (both conventional and interval), but with lower performance
compared to an adder or a divider. Because interval Newton’s method represents
one of the most important interval algorithms, a dedicated unit for this operation
will be beneficial for an interval arithmetic system.

Previous interval designs, such as the ones in
[11[49]1[53][861[87]1[91]1[94]1[95][96][107], used conventional floating point units,
without making changes in their architectures. The approach used for designing
interval hardware units is based on optimizations in the internal structure of
conventional floating point units. Therefore, cost and performance improvements
can be obtained by using this approach.

1.5. Evaluation

The proposed designs were implemented using VHDL. The role of these
VHDL models is both verification and performance and cost evaluation [45].

In order to determine the performance of the proposed designs, IEEE 754
double precision models were built. These models using the double precision were
simulated using as a latency measure the logic level (LL) as in the works of Seidel-
Even [30][89][90]. The proposed designs were compared to other floating point
designs, whose results are reported in literature. This type of comparison is
technology independent, but can be inconclusive due to several reasons:

o It does not take into account the wire delays

e It does not take into account delays produced by signal buffers

o Different gates have different delays for different technologies (for example
the XOR gate has a larger delay compared to an AND gate, while
multiplexers built with pass transistors may be faster than most logic gates

[14]).

Therefore a technology dependent analysis had to be performed. For this
type of analysis, designs based on IEEE half precision number formats were built.
These designs were synthesize using Xilinx Synthesis Tool (XST) from the Xilinx ISE
Webpack 10.1 [108]. The synthesis was done for the Xilinx Virtex-4 FPGA family.
Models and synthesis results were performed for both the proposed designs and for
other designs present in literature.

Table 1.1 - Synthesis results obtained for benchmark circuits

Benchmark | Maximum Combinational Delay (ns) Cost
Circuits Logic Route Total (LUT-4)
C17 0.147 0.266 0.413 2
C432 2.058 6.588 8.646 67
C499 1.176 3.510 4.686 110
C6288 4.410 15.899 20.309 _ 493
74181 0.753 2.234 2.987 22

BUPT

16 Introduction - 1

Furthermore, to increase the confidence in the performed evaluation five
benchmark circuits from the ISCAS'85 benchmark circuits family were modeled in
VHDL and synthesized using the same tool for the same technology [39]{118]. The
VHDL code of this five benchmark circuits is given in Appendix A. The five
benchmark circuits considered are:

C17

C432 27-bit channel interrupt controller
C499 32-bit single error correcting circuit
C6288 16-bit*16-bit array multiplier
74181 4-bit arithmetic logic unit

The obtained results are presented in Table 1. The latencies are given in
nanoseconds, representing the maximum delay on the longest path of the
synthesized circuit. As it can be observed, the maximum delay is composed from a
logic delay and a route delay. The area is given in 4-input look-up tables (LUT-4),
which represents the basic element of the FPGA family [108]. This way, a
technology dependent analysis of the proposed designs could be obtained.

1.6. Thesis Outline

This dissertation is organized in three main chapters. These chapters are
dedicated each for one interval hardware unit. The second chapter presents the
interval addition hardware unit, the third chapter presents the interval multiplication
unit, while the fourth chapter is dedicated to the floating point divide-add fused
unit.

The second chapter is dedicated to the interval addition unit. This chapter is
organized in three main sections. The first section is dedicated to the interval
addition. Algorithms are presented and hardware implementations are discussed.
The second section is dedicated to the conventional floating point addition. The
basic algorithm and its hardware implementation are presented. The main issues
regarding the single path adders are than discussed. The final subsection of this
section dedicated to the conventional floating point addition represents a critical
birds’ eye view of the double path adders. This is a very important issue for this
thesis, as the proposed adder has as the inspiration point the double path adder.
The last section of this chapter dedicated to the interval addition unit is dedicated to
the proposed solution. The algorithm and the architecture of the proposed adder are
presented. Last, but not least, cost and performance evaluations are made.

Regarding the third chapter, dedicated to the interval multiplication, the
outline is similar to the one of the second chapter. Three main sections compose
this chapter. In the first section, algorithm and hardware implementations for
interval multiplication are discussed and compared. In this chapter, this section is
far more elaborated than its counterpart of the addition chapter, due to the fact that
interval multiplication is much more complicated compared to interval addition. The
second section presents the main issues regarding the conventional floating point
muitiplication. The integer unsigned multiplication is presented. The focus on this
section will be the tree multipliers, every main component of them being analyzed:
enceding module and its implemented multiplication algorithm, the partial product
reduction tree topologies and the final addition and rounding scheme. The third
section of this chapter is dedicated to the proposed solution. A proposed algorithm

BUPT

1.6 - Thesis Outline 17

and its according architecture are presented. Last, but not least, cost and
performance evaluations are made.

The fourth chapter is dedicated to the floating point divide-add fused unit.
The first section presents some considerations of the floating point divide-add fused.
The second section of this fourth chapter presents the interval Newton’s method,
which is the algorithm for which the floating point divide-add fused is designed.
Thus, motivation for the implementation of such unit will be provided. The third
section of this chapter is dedicated to the floating point multiply-add fused. The
floating point multiply-add fused unit is very important in this context because it is
the only combined operation implemented floating point unit. In the fourth section
an insight in the floating point division is given. The main algorithms and design
choices are discussed. The fifth section of this chapter presents the proposed
solution. The main issues, algorithm and the hardware implementation of this unit
are presented. Like the other two previous chapters, this one ends with cost and
performance evaluations.

The last chapter of this thesis is dedicated to the concluding remarks. This
chapter is organized in three sections. The first section presents the summary of
this thesis. The second section is dedicated to the contributions of this thesis. In the
last section, open problems and future work are discussed.

56758

e
Wy, 0T ITRIINICA?
‘ [EEE A

i

[) '
{
.-.g:mALA §

BUPT

BUPT

2. Hardware Interval Addition Unit

2.1 Interval Addition

Interval addition and subtraction are defined in equations (2.1) and (2.2)
[49][53][86][87]1[107]:

[Xi0; Xni]+[Yio: Yhi] = [RNI(Xjo +Yio) ; RPI(Xpj + Yp;)] (2.1)
[X107 Xni]=[Yios Yhi] = [RNI(Xjo = Vi) ; RPI(Xpi = Yo)] (2.2)

As it can be seen from above, the interval addition/subtraction require two
floating point operations, one rounded RNI, while the other rounded RPI.

As described in the listed references, two ways for performing an interval
addition/subtraction operation are given. One way is to use a single floating point
adder (which incorporates both RNI and RPI) [53]. This way, the performance of the
interval operations is equal to the performance of two conventional floating point
additions/subtractions, while the area required is almost the same as a conventional
floating point adder (is a little bit greater because of a pair of multiplexers) {94].

The second way for performing interval addition is by using two floating
point adders (one with RNI and one with RPI) - fig. 2.1. This adder requires two
pairs of multiplexers to be adder. The performance in this case is equal with respect
to the conventional floating point addition, while the area required is more than
double [49].

MUX [MUX

FP ADDER FP ADDER
RNI RPI
Zlo Zhi

Figure 2.1 - Interval Adder Comprised of Two Floating Point Adders [49]

BUPT

20 Hardware Interval Addition Unit - 2

These two ways for performing interval additions/subtraction do not require
major changes in the structure of the floating point adders used (mainly because all
IEEE compliant floating point adders include, beside RNE and RZ, RNI and RPI [36]).

2.2 Floating Point Addition
2.2.1 Basic Algorithm

Floating point addition is one of the most difficult floating point operations.
The addition of two IEEE floating point numbers (FI1= (—1)51 *x pE1-bias x 1 m1

andF2 =(-1)52’*2’52’b"as * 1.M2, with F1>F2) is given by the following formula
[64]:

s3% 263-bi8S x 1 M3 - F13 F2 = (-1)%1 2E1-bias (1.M1 + 251‘521.M2) (2.3)

The actual operation to be performed (addition or subtraction - the effective
operation) is determined by the instruction and the sign of the operands (Table
2.1). The two mantissas are in the [1; 2) range, so, after an addition/subtraction,

the mantissa of the result is in the [0;4)range. Thus, normalization steps are
required [69].

Table 2.1 - The Effective Operation in Floating Point Addition

Operation | Sign 1 | Sign 2 | Effective Operation
Addition + + Addition
Addition + - Subtraction
Addition - + Subtraction
Addition - - Addition
Subtraction + + Subtraction
Subtraction + - Addition
Subtraction - + Addition
Subtraction - - Subtraction

The basic floating point addition, as described in [64][78], consists of the
following steps:

1. Exponent subtraction. This step is important because of two reasons: the
greater exponent will be used for the computation of the result exponent and the
difference represents the amount of alignments shift.

2. Mantissa alignment. The mantissa of the number with the smaller exponent
will be right shifted with the amount given by the difference of the exponents.

3. Mantissa addition/subtraction. The two mantissas will be added or
subtracted, based on the effective operation.

BUPT

2.2 - Floating Point Addition 21

4. Result conversion. In case of a negative result, a two’s complement have to be
performed.

5. Leading zero detection. In case of an effective subtraction, a massive
cancellation of the result is possible. In this case, normalization is needed (using left
shifting). The amount of left shifts results from this step.

6. Normalization. The result of the mantissa is normalized (left shifting in case of
leading zeros or 1 position right shift if the mantissa is in the [2;4) range). This

step is followed by an exponent update (subtracting from the greater exponent the
amount of left shifting in case of cancellation or adding 1 to the greater exponent in
case of right shift normalization).

7. Rounding. The rounding decision is computed and the 1 ulp addition is
performed, if required.

8. Post-normalization. A 1 position right shift might be required if the exponent is
equal to 2.

This basic algorithm has an unacceptable high latency, as described in [64].
This is due steps 2 and 6 (the massive shifts), steps 3, 4 and 7 (which require large
carry propagate adder - step 4 and 7 requiring these adders only to add 1 ulp), and
step 5. Significant improvements have to be made in order to obtain the high
performance needed for the most frequent floating point operation.

2.2.2 Single Path Adders

In order to increase the performance of the floating point addition, several
improvements can be made. They rely on removing some high latency steps of the
basic algorithm from the critical path, either by reducing them to much lower
latency operation, or by performing them in parallel with other steps.

A first improvement can be made by swapping the mantissas, based on the
exponents’ difference [12][64][78]. This way, the smaller number will be subtracted
from the greater number, thus avoiding the two’s complement of the result. The
only case when this is not possible is the case of equal exponents. Therefore, step 4
of the basic algorithm is not completely removed.

A second improvement can be made by using a leading zero predictor
instead of a leading zero detector [12][16][37](63][641[651[731[85][89]1[90]. This
circuit predicts the number of leading zeros based on the two aligned mantissas.
Therefore, the leading zero predictor can run in parallel with the mantissa
addition/subtraction. Thus, the high latency operation of detecting leading zeros is
removed from the critical path of the floating point adder.

A third improvement can be achieved by using a compound adder
{12]f17][37]1[63]1[64][65][66]1[88][89]. The compound adder is a type of adder
which has two results: the sum of two numbers (A+B) and the incremented sum
(A+B+1) [98]. Using such adders, the steps which need the addition of 1lulp (the
result conversion step and the rounding step) are reduced t6 a simple selection
(using a single row of multiplexers). In this way the latency is reduced significantly.
This module will be detailed in Section 2.2.2.2.

BUPT

22 Hardware Interval Addition Unit - 2

Thus, it is obtained the single path adder. The critical path for the mantissa
of this type of adder is build from the exponents’ subtractor, the swapping circuit,
the alignment shifter, the bit inversion circuit, the compound adder, the rounding
and bit inversion multiplexer, the normalization left shifter and the one position
right shifter. The overall structure of this type of floating point adder is presented in
Fig. 2.2.

M1 M2 El E2 El E2
v v L v

r SWAP E1-E2 E2-E1

Alighment *
Right Shifter u

—

A
[BITINVERT |

Compound
Adder RND LZp
LOGIC

v

A
| BIT INVERT |

: }
C Mtllx e

Normalization
Left Shifter

1-pg§fmn
Right Shifter

!

M3
Figure 2.2 - Block Architecture of a Single Path Adder [12]

A

' A typical single path adder is presented in [12], which is similar with the
one in Fig.2.2. The design presents all of the improvements presented above. This
adder has a performance of three clock cycle (three pipeline stages). In the first
clock cycle the exponent subtraction and the alignment shifting are performed. The
second pipeline stage is dedicated to the mantissa addition and the leading zero
Qetector. The normalization shift is performed in the last stage. Thus, a significant
improvement of the performance of the floating point addition compared to the
basic algorithm is obtained,

BUPT

2.2 - Floating Point Addition 23

2.2.2.1 Leading Zero Prediction

The leading zero predictor (LZP) (also called leading zero anticipator (LZA))
is a circuit which predicts the number of leading zeros based on the two operands of
the subtraction (which will be called in this section A and B) [16]{43][85].
Therefore, the leading zero predictor can run in parallel with the adder which
performs the subtraction. Therefore, this dedicated circuit improves the
performance, unlike the leading zero detector (LZD) [73], which detects the
numbers of leading zeros based on the result of the operation (A-8). The difference
between the two circuits can be seen in Fig. 2.3. Leading zeros do appear when the
result of the operation is positive and leading ones do appear when the result of the
subtraction is negative [85]. The leading zero prediction is actually the
determination of the most significant one bit. Due to this, in some papers (for
example [16]), leading zero prediction is called leading one predictor (prediction of
the most significant one digit).

A LZP is composed of three modules:

¢ encoding logic
¢ leading zero detection
e correction module.

A B A B
l l ‘ v Y y
Adder Adder
LZpP
Lzb
Normalization N Normalization
Left Shifter Left Shifter

v v

Figure 2.3 - Placement of Leading Zero Detector (LZD) and Leading Zero Predictor (LZP) [80]

Leading zero predictor detects the position of the first leading one by
examining the pattern of the two operand bits. The bits of the same weight in the
two operands are compared and encoded. One method of encoding is presented in
[16]. This type of encoding determines the relative position if the two bits of the

same weight (three bits are used, the equal bits (e; = a; ® b;), the greater bits
(g; =a,-5,-) and the smaller bits (s; =3,~b,—)). Leading zeros do appear in case of

ekgsj (a string of k equal bits, followed by a greater bit and j smaller bits) pattern

BUPT

24 Hardware Interval Addition Unit - 2

for the most significant position. Leading ones (in case subtraction has a negative

results) do appear in case of eksgj pattern [85]. Based on these encoding bits, a

string of bits is generated which indicates if a one may appear on the position (the f
string)[16]{43][85]. The encoding cell for one position is presented in Fig. 2.4.

The second stage of a LZP is the LZD, which is a circuit which detects the
position of the most significant one. A typical LZD is described in [73]. In order to
decrease the latency of this circuit, the detection of the first significant one is done
in a binary tree based structure. At the first level, a group of four bits is analyzed, at
the second level the detection is realized for eight bits. For each group of analyzed
bits (four for first level, eight for second level, sixteen for third level, etc) a valid bit
which indicates if a one is contained and the position of the most significant one are
generated. The generation of valid and position bits for a group of four bits are
presented in table 2.2. The structure of the four bit detection is presented in Fig 2.5.

A| Bl —— .-mo-o- LT e

i

=] Si
Si+1

T]
Gi+ e s

[
YL e

hi

Er1 4

v Fi

Figure 2.4 - Encoding Cell in LZP (Logic [16] and Virtex-4 FPGA Technology Schematic)

Also in 2.5 is presented a leading zero detector tree for sixteen bits.
The entire structure requires [/log, N]-1 levels (where N is the number of bits).

The delay of the first level is 2 LL, while the delay of one tree node is 1 LL.

Table 2.2 - Four Bits Truth Table for LZD [73]

Pattern Po;;tlson Valid
1xxx 00 1
01xx 01 1
001x 10 1
0001 11 1
0000 XX 0

The encoding provided by the encoding module does not take account of the
carry-in bits for each position which may appear at the subtraction of the two

BUPT

2.2 - Floating Point Addition 25

operands. This may lead to an inaccurate prediction (the inaccuracy being of
maximum one position). Thus, in order to obtain an aligned mantissa a correction is
needed. There are, however, leading zero predictors which predict exactly the
amount of leading zeros, like the one presented in [35]. However, the latency and
the area overhead of these types of LZP are great compared to a LZP with
inaccurate results [85].

B3 B2 B1 Bo .
YVYY \AAA
] ILZD-4 | [LZD-4 | (LZD-4 | (LZD-4 |
VY VYW YWY VWY
[1Zzp8 | [LzD-8
v ey v vev
| LZD-16
P1 Po Y vy
a) b)

Figure 2.5 - Leading Zero Detection - a) For Four Bits Group b) Tree Detector for 16 Bits[73]

Three ways for performing correction do exist [16][63]. In the first method,
the normalization shifting is performed using the determined amount of leading
zeros. After the normalization, in case of a leading zero (maximum one) another left
shift is performed (Fig. 2.6 - a). This method has the advantage of a low cost,
requiring only a single one position left shifter, besides the encoding and the
detection tree. The main drawback is that introduces another one position left
shifter in the critical path of the floating point adder.

The second method is based on the selection of the appropriate carry from
the entire carry chain based on the result of the LZD [43][80]. Based on the
selected carry, the correction is made (Fig 2.6 ~ b). This solution has a higher cost
compared to the correction shifting, because of the carry selection. Regarding the
added latency to the overall operation, this type of LZP has to wait for the carry
chain from the adder. Thus, it cannot provide the correct result at the end of the
addition/subtraction. However, the solution for this is to use the most significant
bits of the predicted result for course shifting during the correction, while the fine
shifting (which require the least significant bits of the predicted result and which
may be affected by correction) to be performed at the end of the operation. This
way, the latency added to the floating point addition is smaller compared to the
correction shifter.

The third method is presented in [16] and is based a parallel detection tree.
This detection tree detects whether a correction should be made based on the set of
patterns which can be generated in the encoding module (Fig 2.6 — ¢). The use of
another detection tree which runs in parallel is to reduce both latency and cost
(otherwise, an exact LZP would be preferred), because analyzing small sets of
patterns in parallel require simpler logic. Furthermore, this detection tree is
separated into a detection tree for the positive result case and one for the negative
result case. This solution is also used in [65]. The main drawback is represented by
a doubling in cost. However, the introduced delay in the floating point addition of
this module is negligible.

BUPT

26 Hardware Interval Addition Unit - 2

el =l
.. Bcoone_| Li“'iﬂf_J I | Seoome]

ADDER ADDER
TREE Lzo

— NORMALIZE NORMALIZE
! CORRECTION CORECTION LEFT s"ml LEFT SHIFT

a) b)

d)
Figure 2.6 ~ Correction Strategies for LZP [16] a) Correction Shift b) Carry Selection
¢) Concurrent Position Correction d) Technology Schematic of a LZP Presented in a) Obtained
with XST

The choice of the correction strategy influences the area and the
performance of the overall floating point addition. Thus, a post correction shift
introduces the lowest area overhead. As explained in [16], the delay introduced by
this solution seems to be the greatest. However, different floating point adder’s

designs use this approach, considering that the introduced delay is acceptable for
the overall performance of the floating point addition.

BUPT

2.2 - Floating Point Addition 27

2.2.2.2 Compound Adder

As presented in Section 2.2.1, three steps in the basic require mantissa
length adders: the mantissa addition, the result conversion (two’s complementation)
and the rounding step. The result conversion and the rounding step require only 1
ulp addition. By swapping the elements based on the exponents’ difference the
result conversion can be made only in the case of equal exponents. In this case,
there is no need for rounding. Thus, the two steps are mutually exclusive.
Furthermore, the two steps can be reduced to a selection (a multiplexer) if the
result of the mantissa addition (A+B) and the incremented result (A+8+1) can be
obtained in parallel [78]. This can be achieved using either two integer adder which
run in parallel or a compound adder [17][98].

The compound adder is an adder which computes the sum of two numbers
(A+B) and the increment sum (A+B+1). This adder is very advantageous to
implement using the parallel prefix tree type integer adders, like the Brent-Kung
adder [15], or the ones described in [50]. These adders are based on the
computation of the carry chain based on the g;=a;b; (generation bits) and

p; = 8; ® b; (propagation bits). Generation and propagation bits for a group of
operand bits (G,j andP,-j) are generated in tree based structures. The carry

according to the /-th position is determined according to the following
equation: ¢; = Gp¢j_1) + Pp¢j-1)Co Where cg represents the carry-in of the whole

adder. The depth of the tree structures used to compute the carry chain has a
logarithmical depth [15][50]. In [98] it was shown that if cpis O then ¢; = Gg(j_y)

and if cp is equal to 1 thenc; = Gp(j_1) + Pg(j-1)- Thus it can be computed with only

a small increase in hardware A+B (the casecywhen is 0) and A+B+1 (the
case cp when is 1). The difference in latency between the two results is only of 1 LL.

Table 2.3 - Obtaining Sum, Sum+1, Sum+2 Using Half Adders and Compound

Adder [17]
LSB Compound Adder Incremented CAR Sum Sum+1 Sum+2
Result (CAR) (ICAR) Selection Selection | Selection
0 A+B+1 A+B+2 CAR,0 CAR,1 ICAR,0
1 A+B A+B+1 CAR,1 ICAR,0O ICAR,1

Therefore, using a compound adder, rounding and complementation can be
reduced to only a simple selection, as follows [17]{79]:

e In case of effective subtraction for operands with equal exponents, the
result may be negative of positive. In case of a negative result, the sum is
selected (which will be later bit-inverted), while in the case of a positive
result, the incremented sum is selected.

» In case of rounding to nearest even, the sum and the incremented sum are
needed for both effective addition (with both the cases when the result
overflows and does not overflows) and effective subtraction (with both cases
when the result is denormalized and normalized).

BUPT

28 Hardware Interval Addition Unit - 2

e In case of rounding towards infinity, the sum and incremented sum are
needed for the case when the result does not overflow. When the result
overflows, the A+B+2 is needed. In order to solve this problem two
solutions have been developed: using two parallel compound adders (with a
major increase in cost) or using a line of half adders before the compound
addition. This line of half adders allows computing either A+B and A+B+1,
either A+8+1 and A+B+2 (see Table 2.3), adding 1 LL in the critical path of

the adder.
A B
{ : :]
HA Line Round
v v L Made 0O ...000
.) jﬁ o0 ...000
ompoun vy -
Adder RND L HA Line E’
DEC L
S o009 ...001
l_,(——l l 2C o000 ...000
XOR Line |
v b
l MUX f———
v
a) b)
g—— -
%< H
T
i !
|
; =5 ;
o T
ol L | L
h:qﬁ: g (i R I I |
RRENN Lu_u_} bbb 1

1

Figyre 2.7 - Addition, Complementation and Rounding Module (a)
Preparing Operands for Sum, Sum+1, Sum+2 Using Half Adders (b) {17]
Technology Schematic of 12-Bit Compound Adder Obtained with XST (c)

The mpdule obtained for is presented in Fig. 2.7. Thus, using a compound
adder, a major reduction in cost (because a single compound adder with

BUPT

2.2 - Floating Point Addition 29

multiplexers are used instead of three large carry propagate adders) and latency is
obtained.

2.2.3 Double Path Adder

Further improvements of the floating point addition performance can be
made taking account the following assumptions [31] [65][66]:

e When the exponents’ difference is greater than 1, a massive (more than 1
position) right shift mantissa alignment step is needed. However, in case of
an effective subtraction, there can be a maximum one position
normalization shift.

e When the exponents’ difference is o or 1, only aone right shift is needed for
normalization. However, in case of an effective subtraction, cancellation of
the result possible so a massive normalization left shift is needed.

As it can be seen above, a massive alignment shift and a massive
normalization shift are mutually exclusive. Thus, the two cases presented above can
be separated in two different computational paths. This way, a double path adder is
obtained. This design for floating point addition was first proposed by Farmwald
([31]) and became the design with the highest performance, many versions of this
type of adder being developed [12][37][44][63][65]1[66][90](89].

The path which computes the mantissa result when the exponents’
difference is greater than 1 is called the FAR path [31]. This computational path is
characterized by the right barrel shift, which is used to align the mantissa before
addition, and the more complex rounding logic. The major latency modules of this
computation path are the right barrel shifter and the compound adder.

The path which computes the mantissa result when the exponents’
difference is 0 or 1 is called the CLOSE path [31]. This path is characterized by the
leading zero predictor and the left barrel shifter, which is used to normalize the
result. The major latency modules of this computation path are the compound adder
(which runs in parallel with the leading zero predictor) and the left barrel shifter.

[) S
_ swap . swap |
y v ; h 4 v

!
i ADDITION,
RIAGLF}?::‘:FNITER) COMPLEMENTATION
L2p ROUNDING
!
v v ,
3 S v v
| |
ADDITION |
S| -
I
| l i
1
H (.
h 4 v
L MUX

Figure 2.8 ~ Block Architecture of Mantissa Data Path of the Double Path Adder [26]

BUPT

30 Hardware Interval Addition Unit - 2

As it can be observed from above, each computational path has only two
major latency modules, which are placed on the critical path of the adder (Fig. 2.8).
The single path adder (presented in section 2.2.2) contains the three large latency
modules on the critical path. Therefore, an evident increase in the performance of
the floating point addition is achieved. The cost of the double path adder is greater
compared to a single path adder, mainly because it has two compound adders
compared with one used in single path adders [44][66][90].

The computational flow in the double path adder is the following: the two
mantissas are served as inputs in each computational path, two results being
computed; in parallel the path selection condition is also computed; in the last stage
the correct result is selected.

Tabie 2.4 - Examples of Floating Operations Performed on FAR and CLOSE Paths

Condition Example IEEE Representation Path
Exponents 0.62540.375 | (-1)0*271*127 % 254 (<10 *272+127 %1 5 | CLOSE
Difference 2.12520.375 | (-1)° *2%127 * 1 0625 £ (-1)° * 27212 x| 5 FAR
Exponents 0.625-0.375 | (-1)°*27#127 %y 35 ()0 *272+127 %5 | CLOSE
Difference+ 04 .- _
CLOSE Only for 0.625+0.375 | (-1)" *271*127 x| 354 ()0 % 272+127 x| 5 FAR
Subtractions 2.12520.375 | (-1)° * 217 * 10625 £ (-1)° * 2217 %1 5 FAR
0.875-0.375 | (-1)0* 27127 %35 ()° *x2 24127 %5 | FAR
Exponents Difference | 0.625-0.375 | (~1)0*271+127 x| 35 (_1)0 % 2-2+127 %
With No Rounding)) 5 | CLOSE
InCLOSE Path | o eoc, 0375 | (-1)°* 2727 %1254 ()0 * 2724127 % 5 FAR
2.125+0.375 (—l)o * 20?127 *1.0625+ (_1)0 * 2—2+127 *15

An important feature of the double path adder is represented by the path
selection condition. The first condition used in [31] was the exponents’ difference.
This condition was also used in the variable latency adder [64][66]. Another
condition for path selection is used in [44]{65] and involves exponents’ difference
and the effective operation. The CLOSE path is destined only for effective
subtractions when the exponents’ difference is 0 or 1, while on the FAR path are
performed all the effective additions and the subtractions when the exponents’
difference is greater than 1. This is possible because the effective additions do not
result in a number with leading zeros, thus the normalization left shift is not
required. Because on the CLOSE path are performed only subtractions, there is no
possibility for an overflow in the mantissas addition, thus there is no need for a 1-
position right shift in this case (decreasing thus the latency of this path). To further
increase the performance of the CLOSE path, in [12](37][63]{89][90] another path
selection criterion is used. The CLOSE path will perform only the effective
subtractions with exponents’ difference 0 or effective subtraction with exponents’
difference equal to 1 which will result with leading zeros. This way, the roundipg
step is removed from the CLOSE path. Examples of different additions and
subtractions and their execution path are presented in Table 2.3.

BUPT

2.2 - Floating Point Addition 31

2.2.3.1 Adelaide1999 Adder

This floating point adder has been designed at the University of Adelaide
and is presented in [12]. The CLOSE path will perform all the subtractions when the
exponents’ difference is 0 and the subtractions when the exponents’ difference is 1,
but which will result in denormalized number (it has leading zeros).

E1E2
E1E2 ELE2 M1 M2 M1 M2 'EX; |
ML M2 LA 2 vy v * pReD |
i ! EWAP larged GwapBAlign+— ———
L SR 2 3L U
SWAP ‘ E1-E2 [E2-El s 4L 2L
7L 7LL£ e _ Negate
e S Lsu
! ‘ M v v v v
| RIGHT | l
| SHIFTER 7L i
13l : COMPOUND !
BIT-INVERT — ; ADDER |
J 140 ¥ | | !
I HA Line GRS | | |
ze | 1
T15 l15LL COIMP N |
: L 4 ‘ N S
| .j Sl 13U
! | —_—
; * BIT-INVERT |
COMPOUND ‘ ‘ | _&_xﬁ
ADDER ' | [L Mux
R ' 16LL
. SR
Round :
: i Dec | :
j24LL b1 —— : ; Normal ‘
+ A S — e Mot
MUX -— i
| 26LL 241 | ‘
v : 21LL
_ -y
Post Noinallzamm Post-Normalization
- 28LL 22LL
SN AU I ‘
| MUX B
L9
RESULT

Figure 2.9 - Structure of the Adelaide Adder [12]

This is determined by an examination of the MSBs of the mantissa in the
unpacked form (the mantissa without the hidden 1). Thus, there is no need for
rounding in the CLOSE path. The leading zero correction is done using a post-
normalization shifter.

The FAR path will compute all the operations when the exponents’ difference
greater than 1, all the effective additions and the subtractions which will not result
in leading zeros. Two exponents’ difference subtractor circuits are used (one for F1-
E2 and the other for E2-E1), thus there is no need for complementation of the
exponents’ difference in case it is negative.

BUPT

32 Hardware Interval Addition Unit - 2

2.2.3.2 SUN1998 Adder

This adder represent a SUN Microsystems patent [37] an-d was also
presented in [89]). This adder is similar to the Adelaide adder regarding the path

selection criterion and the CLOSE path.

E1 E2
v v oM M2
M2 M1 EXP | v
M1 M2 :
E1E2 E1E2 ; PRED ;—L‘—’_JNEGATE
M1 M2 vy e v v ;WAN T s
: i . : o arge.. 2LL—>_ SWAP small
oo XL ¥ E1.g2 GRS E2-E1e GRS, oo | 3
M1 M2 . Negate Negate ICOMP, coMP | S » RI-SHIFT
‘ 3w —m M2 - ML _ . - R
. ,i . ! H i H o — A4 ¥ 4L
S SUSERE S - - T v v :
SWAP large S}N?&P.;'&a“; . o8
T A : COMPOUND
riHT M g k ADDER (54)
SHIFTER X i
' — Lzp S
et 131 120
AR S v i
) HAlne T TTMOX | r JYYo+1) vo_
v15LL 15U T] ! { MUX _ 1
i ’l f
N SN S - l 14LL
; COMPOUND RND | R S
| ADDER(55) - §
with ROUNDING i i ——p NORMALIZATION
SELECTION |
e ' L 19LL
— - ___POST-NORMALIZATION
s, 20LL
| POST-NORMALIZATION
by AT
[R S
MUX
JETITY
RESULT

Figure 2.10- Structure of the SUN1998 Adder[37]

The main contributions of this type of adder are implemented in the FAR
path. One contribution is represented by the way of computing the rounding needed
bits (G, R and S). Two series of rounding bits are computed in parallel, for each
mantissa, before any alignment shift. Two exponents’ differences are computed, the
two sets of rounding are obtained based on these resuits [89]. The correct series is
chosen based on the sign of exponents’ difference. Another contribution of this
design is to use a special dedicated carry propagate adder with selection
incorporated. The reason for using such adder is to easily split it for pipeline
architectures, as this type of adder contains three pipeline stages (which are very
fast).

Although it uses a similar path selection criterion like the Adelaide adder, it
is however implemented rather complicated, as it performs a more complicated
analysis of the two mantissas.

BUPT

2.2 - Floating Point Addition 33

2.2.3.3 AMD2000 Adder

This adder was desighed by Stuart Oberman and represents an AMD patent
[65] and is also described in [89]. This adder is quite different from the other two
described in previous sections, mainly due to the path selection criterion. The
CLOSE path is used for all effective subtractions when the exponents’ difference is 0
or 1. Therefore, a rounding unit is needed in the CLOSE path. Thus, an increase in
latency can be observed in the CLOSE path compared to the other two designs.

E1E2Z M2 E1E2 M1
RN T ") E1 E2
> Right ¥ Right _
E1-EZY ohifter - _v_ E2ELY ghifter -/ v v M M2
6b).% "M2 GRS (6D)X "M1 GRS EXP
S == oS- 22 Mt M2 poFp YooY .
8LL i 8LL | . ' ——— NEGATE
X Y) SWAP large ! K
TSWAPsmall Lo larg v Lwar smal
. SWAP small _ 20 > __SWAP small
oLl . h:l F:Z GRS(M1) M1 M2 . ! 3
: ¥y v Lo -
BIT-INVERT | [SWAP large ; ’w_
1oLl et
; 1 ;
- ¥ ‘
___SHIFTZERO__ COMPOUND ; [,
— 1L ADDER (53) .
v v ,_L_.v.L, f
... HAuUne . MUX Lzp ' RNDDEC
a1 -*i | PRECOMP
v v el el L s
131 121 o
_ L 2
- > MX
COMPOUND e+ vo, 15
ADDER (53) . v MUX PR
T .y 140
RND DEC | - . COMPLEMENT
PRECOMP : ! L I5LL
. _ e - § . e R RIEE. JErr
210 200 : i s
v R NORMALIZATION
v Lo MUX |
SN vo, g Y | S
My)zfau. e [POST-NORMALIZATION
. 220
1-POSITION RIGHT SHIFT |
p25l
A 4 v
B MUX
261
RESULT

Figure 2.11 - Block Structure of AMD Adder

The main contributions of this design rely are located on the FAR data path,
especially regarding the alignment shifting. The alignment shift in two steps: the
first step involves shifting if the exponents’ difference is smaller or equal to 63
(because the mantissa is represented on 53 bits - including the hidden one) [89].
This shift is performed for both cases when the exponents’ difference is positive or
negative for both operands. The shifting on each weight is performed after each bit
of the exponents’ difference is available (thus, not waiting for the entire
subtraction). The second step for shifting is performed after the exponents’
difference is available. In case that exponents’ difference is greater than 63, the
smaller mantissa will be arithmetically right shifted. This step is performed by the

BUPT

34 Hardware Interval Addition Unit - 2

SHIFT ZERO block (actually the number is shifted with the sign and not with 0). This
way a decrease in the latency of the FAR data path can be obtained.

2.2.3.4 Seidel-Even Adder

This adder is presented in [89](90] and implies several techniques to
decrease the latency. The path selection criterion is similar to the one used in
[12]{37], and the CLOSE path is thus very similar to the SUN and Adelaide adders.

E1 E2
El E2 M1 M2 v M1 M2

v ‘ v v ML M2 X
. |_BIT-INVERT L PRED, __4—;L_|NEGATE_
' 3L, 3L [SWAPTarge =~ -
i s A - ___¥_= VA h
© | RIBLISHIFT, M1 M2 ‘_‘{—g‘ 21— S\;VAP small

|
S N U B SN, 2
5 Swapsmall ! [SWAPTarge _ o " RLSHIFT
i ' IS ’,6LL 6L v v A 4 ; 410
(T
[H | i
RIGHT |
proal ‘ COMPOUND
N l i ADDER (54)
S
. _MUX
{ram Lzp
. ; T FET 1210
. _HAlne _ ! l |
13LL i !
W 7 l B s Yo
T s S . 1 S
COMPOUND | COMPUTATION | T -
ADDER [: T
LY .
SN NORMALIZATION
e ROUNDING
22 21l =" pecisioN , § 19U l
- . v msl’ RMALIZA H
POSY-SHIFT_. . PQST-SHIFT l NO 7 TION
231 zzu]§ SR au
v y v ;
MUX PR
Y 2411

Figure 2.12 - Block Structure of the Seidel-Even Adder [90]

Regarding the FAR path, several optimization techniques are used. Because
only one adder is used for exponents’ difference (thus needing a two’s compliement)
a speculative one position left shift is performed before exponents’ difference is
available (because exponent’s difference will come in one’'s complement form and
not two’s). Also, the massive right shift is performed (for the case when the
exponents’ difference is greater than 63) in a speculative manner. The shifting for
the case when exponents difference is smaller than 64 is performed in a similar way
to the one performed at the AMD adder (as each bit of the exponents’ difference is
available) [90]. Another optimization is carried out in the rounding and post-
normalization shift. The rounding decision is computed in two paths, for the case of
no overflow and for overflow of the addition result. The post-normalization shift is
performed for each of the two results of the compound adder, before the selection

BUPT

2.2 - Floating Point Addition 35

of the appropriate result. The reason is that there is enough time for a one position
right shift until the rounding decision is available.

The last optimization technique used in this adder is implemented in the
result selection multiplexer. The result in the CLOSE path and one result of the
compound adder (the sum) are available before the other result of the compound
adder. Thus, a selection between the two is performed. The result of the operation
is obtained by selecting between the shifted incremented sum of the compound
adder and the selected result in the previous multiplexer.

2.2.3.4 Variable Latency Adder (Stanford)
The variable latency adder was proposed in [64][66], as part of the SNAP

project developed at Stanford University. This adder exploits the fact that not all
operations are ready at the same time.

ML M2
E1E2 E1E2 i "2 v v El1 E2
M1 M2 v v v BIT-INVERT 4
} i v __ v v v
“SwAP E1-E7 [E2-E1 SWAPTargd Swap&Alignie— -0
7L 7] i 3w, TR
I SN 6LL 6LL] —_— e
_'._L !
CMux_] .
RIGHT *—————‘ A4 v v v
SHIFTER 7L e
130
¥
BIT-INVERT R
L4 l
HA Line | GRS | LzZP
1su s | COMP | D
e 130 20— ;
v v -
‘ : MUX -
| T 1AL 3
COMPOUND - "1-Position Right Shift_ E
ADDER s @aen
| __COMPLEMENT . ——kE
. 7 160 g
i] Round v | &
1241.1. 230 Dec L o
v L
[MUX - 1 - Normalization
26LL 24LL
Y
| Post-Normalization T2 S
. TRI-STATE BUFFER |
l 28LL .
l 221

| TRI-STATE BUFFER |
Jasu

Figure 2.13 - Variable Latency Adder Structure (Stanfz)rd)

BUPT

36 Hardware Interval Addition Unit - 2

The path selection criterion is the exponents’ difference. Thus, the effective
additions when the exponents’ difference is 0 or 1 are performed on the CLOSE
path. In this case, the operations which must be performed are the one position
alignment shift, addition, rounding and the normalization shifting (in case of
overflow), not needing the normalization left shifting. After these operations, the
result is available and the operation is ended. Furthermore, in case of effective
subtraction when exponents’ difference is smaller or equal to 1, the result is
available earlier compared to an operation that is performed on the FAR path

[64][66].

Tri-state buffers are place at each location when an operation might be
over. Thus, the floating point addition may be over earlier or later, depending on the

execution path and on the effective operation.

2.2.3.5 Comparisons between Double Path Adder Designs

In the following table a comparison between the five presented double path
adders design is realized. The adders are compared in terms of latency (expressed
in logic levels), path selection criterion, operations in CLOSE path, rounding in

CLOSE path.
Table 2.5 - Double Path Adders Comparison
Path Selection Rounding in | Operations
Adder Latency Criterion CLOSE in CLOSE
Exponents difference+ .
Adetaide’99 29 Effective operation+ No Etf;ftecté;{e
Leading zeros in CLOSE subtraction
Exponents difference+ Effecti
Sun’98 28 Effective operation+ No bte c':e
Leading zeros in CLOSE subtraction
Exponents difference+ Effective
AMD .)
2000 26 Effective operation ves subtraction
Exponents subtraction+ fecti
Seidel-Even 24 Effective operation+ No E ectl\{e
Leading zeros in CLOSE subtraction
) Effective
Variable Latency 29 Exponents difference Yes subtraction
+ Addition

Performing t_he addition in a speculative manner on two computational
paths, an increase of the performance of the floating addition is obtained. This way,

high performance for the most frequent floating point operation is provided.

However, this increase in performance came at almost a double cost and power
point

consumption

compared

to the single path

floating

adders.

BUPT

2.3 - Proposed Adder 37

2.3 Proposed Adder

2.3.1 Interval Addition

As it can be observed in Section 2.1, an interval addition/subtraction
requires two floating point operations. These two floating point operations can be
executed either in parallel using two floating point adders, or sequentially using one
floating point adder. In both cases, in order to obtain better performance, a double
path floating point adder is recommended in both cases.

The floating point adders presented are designed to increase the
performance of only a single floating point addition. Because of this features, one
path is virtually not used when executing one operation (because it will produce the
wrong result). For example, in case of an addition when the exponents’ difference is
greater than 1, the CLOSE path is of no interest for the result of operation.

The proposed adder tries to exploits the parallel structure of the double
path adder, therefore, performing the two floating point operations needed for an
interval addition/subtraction simultaneous, one on the CLOSE path and the other
one on the FAR path. In order to perform two floating point operations, the modules
which compute the exponents and the sighs must be duplicated [3][5].

Xlo Yio Yhi Xhi

-

— MUX] WUX]

Add/Sub

—_—
f EXP EXP
> qu o] |DIFERENCE IDlFERENCE

l [T TorPam—— > PATHSELECTI

[SWAP X
j

R-SHIFT

{ SWAP]

R1-S

3 |

ADD, ROUND

MODULE LzP
Exponents Exponents l
Operabion 1 Operation 2

Shift . M?_h:?mz NORMALIZE
» 1 pery -
\ J (TSHIFT) L-SHIFT
SIGN SIGN | xP
UPDATE UPDATE RESULT MULTIPLEXER

MODULE

ADD. ROUND I
|
|
1

|

SZlo SZhi EZio EZhi Mzio Mzhi

Figure 2.14 - Block Structure of Proposed Interval Adder [3][5]

BUPT

38 H._.dwar. I terval Addi ion Unit - 2

1 1

(a)

SRR

it
(b)

Figure 2.15 - Technology Schematic Obtained with XST for FAR path (a) and CLOSE path (b)

The overall architecture is presented in Fig 2.14. Several changes do appear
compared to other double path adder designs:

BUPT

2.3 - Proposed Adder 39

1. In the proposed adder, the corresponding path for each operation must be
known before the splitting into two paths. The reason for this is that two
pairs of operands, along with the appropriate effective operation and the
appropriate rounding mode, must be transmitted on the corresponding path.
Therefore, a set of multiplexers have to be placed before each path. The
signals which command the set of multiplexers are generated according to
the path selection criterion.

2. Two (pairs of) exponents’ differences have to be computed, because two
selection criterions must be computed. Another important feature is that the
exponents’ differences are computed before any mantissa computing in
either the FAR path or CLOSE path. This is due to the fact that there is no
speculative operation like in other floating point adder’s designs. Because
exponents’ difference are computed before any processing of mantissa, no
exponent difference prediction is required in the CLOSE path, and no
technique for improving the alignment shift in the FAR path (like the ones in
AMD adder and Seidel-Even adder) can be applied.

3. The logic for the path selection criterion is founded on the critical path of the
floating point adder. Therefore, a simpler path selection criterion means a
smaller latency. However, a more complex path selection criterion increases
the possibility that two floating point operations can be performed
simultaneously.

The path selection criterion used in [3] is the exponents’ difference. Using
this criterion, on the FAR path will be performed the operations which have
exponents’ difference greater than 1, while on the CLOSE path will be performed the
operation which have exponents’ difference smaller or equal to 1. If we use a
criterion based on the exponents’ difference and the effective operation, as
presented in [5], then on the FAR path will be executed all the effective additions
and the subtraction when the exponents’ difference are greater than 1, while on the
CLOSE path will be executed all the additions and subtraction when the exponents’
difference is smaller or equal to 1. In this case, the logic for path selection is more
complex. In both cases the FAR path and the CLOSE path have the same structure.

The CLOSE path’s structure enables the execution of both additions and
subtractions when the exponents’ difference is O or 1. The swap and alignment are
based on the exact exponents’ difference (because it is available) and not on an
prediction based on the least significant bits as it is done in other double path
adder’s design. Because effective additions may be performed on the CLOSE path,
1-position normalization right shifter is needed, because an overflow may occur.
Furthermore, rounding logic is also needed. Thus, the CLOSE path will have an
increased latency compared to Adelaide, SUN or Seidel-Even adders.

On the FAR path can be executed all the operations when the exponents
difference is greater than 1 and the effective additions when the exponents’
difference is 0 or 1. The alignment shift is performed on the exact difference of the
exponents (which is available). This is the single major difference between the
proposed adder’s FAR path and other adder designs, like the AMD, SUN or Seidel-
Even adders. The detailed structure of the mantissa data path s presented in Fig
2.15, while in Fig 2.16 the technology schematic for the FAR and CLOSE path of the
proposed adder is presented.

’

BUPT

40 Hardware Interval Addition Unit - 2

Exlo Eylo Exio Eylo Exhl Eyhl E)l(hl Erhl
RN S S 2 v v
: i : g
: Lo i
| E1-E2 : | E2-E1 | Ei-E2 E2-E1
; ! !
' ' : |
T Effective ! :
6LL -y o 6LL SHective ol Ly ¢— 6LL
e Moo 7T O rah Operath wux |
. FIUA } Zero "MJ_QW . ’ HIGE,J Zero ;ﬁl—l
7LL Detect | gu_' : rg Detect SH]F? (;ui
SHIFT Op1 L . N P
| Path |
i logic |
* * oLL | oL # *
P TTTTIMOX “74———-' Ly MUX
" 10 T0LL |]
['Swaplargel . [SWAP small | SWAP small |
P L 11
i [BIT-INVERT _ " SWAP large Align Shift
; 1214 110 | 1210
, et !
: , ! i | Bit-Invert |
! ! Alignment | T v 130
; | Shift ! !
Y —
: . _ Zero Shift Compound
; LTy l Adder
. v Lzp
e I i
| L1900 GRS
e = COMP | RND
! ! v22LL w2ill DEC
! Compound | L Bit-Tnvert] T
j Adder | y23LL v !
: 24110
e J aND) 1-POSTTION RIGHT SHIFT
28LL 27 DEC { |
v v | i
r— MUX v S—
R ,.,,ﬁ_,; /U . mme NO SHI;.T.HON
{ __POST-NORMALIZATION '
| 31
| 30LL
T (POST-NORMALIZATION SHIFT
. 1 310
N S ' I
: MUX | [MUX |
320 320]

Figure 2.16 - Detailed Structure of Mantissa Data Path in Proposed Adder [5]

BUPT

2.3 - Proposed Adder 41

Table 2.6 Examples of Favorable Cases of Interval Addition
(D stands for exponents’ difference)

Xio Yio Operation Path Xhpi Yhi Operation Path
+0.25 _ +0.375 ~

0.625 | £9.2° D=1 cLosE | 2.125 | *937 D=3 FAR

0.625 | 0.375 | Effective fddition 1 cioge | 075 | o5 | Fffective Addition) pag

0.625 | -0.375 | Effective SUDtraction | ¢, o | .75 | 0.25 | Fffective Addition } gap

Table 2.7 Examples of Unfavorable Cases of Interval Addition
(D stands for exponents’ difference)

Xjo Yio Operation Path Xhi Yhi Operation Path
Effective Effective
0.625 -0.375 Subtraction CLOSE | 0.75 -0.25 Subtraction CLOSE
D=1 D=1
1.75 0.375 D=2 FAR 2.125 0.5 D=2 FAR

Using the proposed adder, the two floating point operations needed for an
interval addition/subtraction can be performed simultaneously, like in the solution
based on two floating point adders, or can be performed sequentially, like in the
solution based on a single floating point adder. Therefore, we have favorable cases
and unfavorable cases. The probability of occurrence of a favorable case depends on
the selection criterion, the one which is based on both exponents’ difference and
effective operation having a greater probability. In tables 2.6 and 2.7 some
examples of favorable and unfavorable cases for the exponents’ difference and
effective operation based path selection criterions are presented. In case an
unfavorable does occur, one operation will have priority (for example the operation
for the lower end of the result interval), while the other one will wait. This
unfavorable case can be signaled to the control unit by a dedicated flag.

2.3.2 Increasing Throughput of Conventional Floating Point Addition

The adder architecture proposed in Fig 2.14 can also be used for increasing
the performance of conventional floating point addition by increase in throughput
realized by this type of adder, as it is presented in [5]. This can be achieved by
implementing rounding towards nearest even. Two floating point
additions/subtractions can be performed simultaneously on the proposed
architecture. The proposed adder is suitable to for superscalar, multi-threaded
(which require two or three functional units) or can be used in dynamic scheduling
schemes (like the Tomasulo’s scheme)[42]. The difference compared to the
structure depicted in Fig 2.14 is lack of multiplexers before the adder itself. Both
path selection criterions (only exponents’ difference and exponents’ difference plus
effective operation) may be used, but the second is more appropriate because it will
increase the probability of performing two floating point operations simultaneously.

BUPT

42 Hardware Interval Addition Unit - 2

2.4 Evaluation

2.4.1 Cost Evaluation

In order to perform a cost evaluation we used an independent technology
metric, the gate count. This may not be the most conclusive metric for VLSI
technology, as it does not take into account the wirings. However, this metric was
also used in [88]. Table 2.9 presents the gate of the five described adders and the

proposed adder.

Table 2.9 Gate Count for Floating Point Adders

(Double Precision Format)

Exponent, Sign | Total

Adder FAR | CLOSE &Path Select
Adelaide 1753 | 2298 349 4500
SUN 1828 | 2302 456 4586
AMD 1985 | 2305 453 4743
Variable Latency | 1806 | 2510 392 4708
Seidel-Even 1912 | 2298 381 4591
Proposed 1753 | 2457 1122 5332

As it can be seen from table 2.6, an increase of about 17% for double
precision of the proposed design compared to other floating point adder’s designs *

can be observed.

Regarding interval addition, the proposed adder has an increase of about
17% with respect to the interval adder based on a single floating point adder.
However, the proposed adder’s gate count is about 57% of the gate count of the

two floating point adder’s solution for interval addition.

2.4.2 Latency Evaluation

The latency was estimated using an independent technology metric, the
logic levels. The estimation was realized IEEE double precision numbers. This metric
was also used in [89][90]. In table 2.10 the latency of the proposed adder and the

other five floating point adders.

Table 2.10 Latency Estimates for Floating Point Adders

Adder Latency (LL)
Adelaide 29
SUN 28
AMD 26
Variable Latency 29
Seidel-Even 24
Proposed 32

BUPT

2.4 - Evaluation 43

As it can be observed, the latency of the proposed solution is higher with
respect to other floating point adders. The reason for this increased latency is that
the exponents’ difference is performed before any mantissa processing. In other
floating point adders’ design, on the CLOSE path an exponent prediction is used,
while on the FAR path techniques for parallel alignment shift with exponent
difference are used.

2.4.3 Synthesis Results

Two floating point double path adder designs were modeled and synthesized
using the Xilinx ISE Webpack 10.1 and Xilinx Synthesis Tool for IEEE half precision
formats: the proposed design and the AMD 2000 double path adder. The two adder
designs were verified using Modelsim simulations. The results are presented in Table
2.11. The two designs have in common several features:

e The compound adder used is based on Brent-Kung carry lookahead adder
structure

e The alignment shifter in the FAR path and the normalization shifter in the
CLOSE path is based on the barrel shifters

e The rounding computation decisions in the FAR path in both designs is the
same, while in the CLOSE path is different due to the fact the AMD adder

implements only effective subtractions with exponents’ difference equal to 0

or 1, while the proposed adder implements both effective additions and

subtractions when exponent’s difference is equalto 0O or 1

s The exponent’s subtraction modules were implemented using Brent-Kung
carry lookahead adders
e Both designs implement the same leading zero prediction schemes.

Table 2.11 - Synthesis Results Obtained for Double Path Adders

Maximum Combinational Delay (ns) Cost
[
Double Path Adders Logic Route Total (LUT-4)
AMD 7.821 12.986 15.83 446
Proposed Adder 9.138 15.221 19.779 568

The synthesis results show an increase of about 27% for the proposed adder
compared to the AMD 2000 [65] adder design. The difference between the
estimated results presented in section 2.4.1 and the synthesis results is due to the
fact that for IEEE half precision adders the ratio between the exponent’'s size and
the mantissa’s size is 5/11 (~0,5), while for IEEE double precision format the ration
between exponent’s size and mantissa’s size is 11/53 (~0,2), so the mantissa
computational path has bigger weight in the total cost of the double path adder for
IEEE double precision formats. Both adder’s have a similar mantissa computation in
terms of cost, while the exponents and sign computation modules are duplicated for
the proposed design. The synthesis results show that for the proposed adder the
mantissa computational path counts for about 70% (402 LUT-4) of the all total
number of LUT-4, while for the IEEE double precision estimates the mantissa
computational path counts near to 80% from total cost of the proposed adder.

Regarding the interval addition, the proposed adder has an overall cost 27%
higher compared to the single floating point adder solution, while compared to the

BUPT

44 Hardware Interval Addition Unit - 2

solution based on two floating point adders (892 LUT-4) the proposed adder the
proposed adder has a decrease of about 35% (Fig 2.17).

Interval Addition Unit Cost

1

[mSingleAdder B ProposedAdder O DualAdder|

Figure 2.17 - Cost of Interval Addition Hardware Units

Regarding the latency, the synthesis results obtained with XST, show a 4 ns
increase in the latency for the proposed adder (25% higher). Regarding interval
addition, pipeline versions will be considered (the delay on the pipeline registers for
Virtex-4 FPGA family is equal to 0.555 ns). Three types of interval adders will be
considered:

. Interval adder based on a single floating point AMD double path adder
with 2 pipeline stages of 8.5 ns pipeline stage

. Interval adder based on two floating point AMD double path adders with
2 pipeline stages of 8.5 ns pipeline stage

o Interval adder based on the proposed adder with 3 pipeline stages of
7.5 ns (a worst case scenario).

As it can be observed, the proposed adder can work at slightly higher
frequencies compared to the AMD adder. As presented in [12][90], most double
path adders have a two pipeline stages construction because each pipeline stage
present the carry computation logic of the compound adder (with or without the
generate and propagate bits logic (one line of AND for generate bits and of OR for
propagate bits before the carry computation circuit), and the sum bits computation
logic (one line of XOR after the carry computation circuit) and plus some additional
logic (the compound adder in the CLOSE path is found in the first pipeline stage,
while the compound adder in the FAR path is found in the second pipeline stage).
Regarding the CLOSE path, the first pipeline stage incorporates also from the
exponent prediction logic, complementation logic, swapping and shifting
multiplexers (which are found before the compound adder). Regarding the proposed
adder, the two compound adders are also each in one pipeline stage. Before these
two pipeline stages another pipeline stage is built based on the exponents’
subtraction modules, path selection and path multiplexers. Also in this pipeline
stage, logic for the exponent prediction, swapping and right shifting can be placed.
Therefore, the stage delay in the pipeline stage containing the compound adder

BUPT

2.4 - Evaluation 45

from the CLOSE path of the proposed adder is thus reduced. Furthermore, this
stage has the biggest delay from all three pipeline stages (or from all two in the
other double path adders). Therefore, the proposed adder can operate at a lower
clock rate.. One exception is represented by the SUN double path adder, which has
three pipeline stages, because it uses a modified compound adder which integrates
rounding logic [89].

The three considered adders will have a workload of ninterval consecutive
and independent additions (one addition has operands independent of the results
from previous additions). The total duration of the entire workload of additions is
depicted in Table 2.12 and while a comparison between the performances for the
analyzed interval addition units based on the discussed double path adders is
depicted in Fig 2.18.

Table 2.12 Required Latency for Performing n Additions (ns)

Single | Dual Proposed Adder
Adder | Adder | f=0.2 | f=0.4 | f=0.5 | f=0.6 | f=0.8
n=5 121 72 99 90 85,5 81 72
n=10 231 132 180 162 153 144 126
n=20 451 252 342 306 288 270 234
n=50 | 1111 612 828 738 693 648 558
n=75 | 1661 912 1233 | 1098 | 1030,5 963 828
n=100]1 2211 | 1212 | 1638 | 1458 | 1368 | 1278 | 1098

1800

1600

%
s

800

|
\\\

600

B %/

Interval Additions

—+—SingleAdder -®- DualAdder —— Proposed_0.2 -~ Proposed_0.4
—=— Proposed_0.5 —— Proposed_0.6 —— Proposed_0.8

Figure 2.18 - Performance Comparison of the Three Interval Adders

BUPT

46 Hardware Interval Addition Unit - 2

As it is highlighted both in Table 2.12 and in Fig 2.18, the performance of
the proposed adder depends on two important factors:

e The percentage of the favorable cases f: these are the cases when the two
floating point additions needed for an interval operation are performed
simultaneously.

« The number n of consecutive and independent interval additions

As shown in Fig 2.18, the performance of the proposed adder is lower with respect
to the performance of the interval addition unit based on the two double path
adders, but is higher compared to the interval unit based on a single double path
adder. Furthermore, as the percentage of the favorable cases is higher, the
performance of the proposed adder increases. Thus, when 80% of all interval
additions are favorable for the proposed implementation, the performance can be
close to the one of the dual adder solution.

Figure 2.19 presents the speed-ups of the interval adders implemented with
two parallel AMD adders and with the proposed adder (for 20%, 40%, 50%, 60%
and 80% favorable cases) with respect to the interval adder implemented with a
single AMD double path adder. In this figure it is highlighted the increase in
performance for the proposed adder with the increase of the number of consecutive
additions. Thus, the proposed adder is suitable for dealing with series of large
number of consecutive additions (as found in the vector processors), and not for
isolated additions.

S B

L 10 20 50 75 100
Interval Additions

'~—Dual Addder = Proposed_0.2 - - Proposed_0.4 — Proposed_0.5
.—=- Proposed_0.6 — Proposed_0.8

Figure 2.19 - Relative Speed-up of Interval Adder Implementations

In order to determine which of the three interval adder solutions presents
the best performance-cost tradeoff a well known latency*cost metric based on the
synthesis results. The latency was considered as the total duration (in ns) of n
consecutive and independent additions. Figure 2.20 depicts the obtained results.
The analysis for the proposed adder was performed for five percentages of favorable

Kl

BUPT

2.4 - Evaluation 47

cases (20%, 40%, 50%, 60%, 80%). The results show that for a 20% percentage
of favorable cases, the proposed adder has a performance-cost trade-off close to
the interval adders based on single double path adder or based on two double path
adders. When the percentage of the favorable cases is higher than 20%, the
proposed adder presents a better performance-cost tradeoff compared to the other
two interval addition units.

e Py

g
£ =i
= 400000 y
o] //V/
/
200000
100000
[+
5 10 20 50 75 100
Interval Additions
——SingleAdder ~& DualAdder ProposedAdder_0.2|

— ProposedAdder_0.4 —«- ProposedAdder_0.5 ¢ ProposedAdder_0.6
—— ProposedAdder_0.8 |

Figure 2.20 - Cost*Latency for Three Interval Adders

Based on the synthesis results, an analysis of the proposed design for
conventional floating point arithmetic has been also carried out. The compared
floating point adders were the AMD adder with 2 pipeline stages and the proposed
adder with 3 pipeline stages.

Based on synthesis results, the latency for n consecutive and independent
additions was determined (n=5, 10, 20, 50, 75, 100). For the proposed adder the
following SPEC92 FPU benchmark results were considered [69]:

- n 57% of all floating point additions and subtractions the exponents’

difference is greater than 1

- 20% of all floating point addition and subtractions are effective additions

with exponents’ difference equal to O or 1

- 23% of all floating point addition and subtractions are effective subtractions
with exponents’ difference equal to 0 or 1

Considering these results, the percentage of favorable cases is about 62%, while
the percentage of unfavorable cases is 38%.

BUPT

48 Hardware Interval Addition Unit - 2

1000 Tt T IR

N\

8
|
|

§ ¥ & 8 8

o e
e

]

FP Additions

[~ AMD Adder = Proposed Adder)

Figure 2.21 - Total Latency for n Consecutive FP Additions on AMD and Proposed Adder

450000 - e — - |
400000 1
i
1
300000 / - |
|
2 250000 /]
* i
§ 200000 - I
oo |- S |
|
3
100000 {— — / ;
|
50000 4~ ~—mmr // |
/ ‘
o
5 10 » 50 75 100

Additions

[~ AMD adder -=- Proposed adder|

Figure 2.22 - Cost*Latency for AMD and Proposed Double Path Adder

The results of the analysis are presented in Fig 2.21. The performance of
the proposed adder compared to the performance of AMD adder can be as high as
1.6 times higher. Also, as in the case of the interval addition, the proposed adder is
suitable for series of large numbers of consecutive additions. When dealing isolated
additions, the performans:e of the proposed adder is lower. The reason for this is

BUPT

2.5 - Summary 49

that the proposed adder has a higher throughput, due to the fact that in some cases
(over 62%) it can perform two floating point additions simultaneously.

In Fig 2.22, a cost*latency product analysis is performed. This analysis
shows that the proposed double path adder represents the best performance-cost
tradeoff when dealing with series of large numbers of additions.

2.5 Summary

In this chapter an overview of the interval addition/subtraction hardware
. units is realized. For this operation two solutions have been devised: one based on a
single floating point adder and one based on two floating point adders.

The next section is dedicated to the conventional floating point addition. The
basic algorithm is presented. The improvements of this algorithms and the single
path adder are presented. Next, a detailed presentation of the double path adder is
realized. The double path adder presents special interest because the proposed
solution is based on it. Five designs of double path adders are presented: three
designs presented at different editions of Symposium of Computer Arithmetic
(ARITH) - the Adelaide adder, variable latency adder and the Seidel-Even adder -
and two patented designs by SUN and AMD.

The main contribution is presented in section 2.3. The proposed adder for
interval addition is based on a double path adder. Unlike other double path adders,
the proposed design exploits the parallel structure of it, by trying to perform the two
operations required for an interval addition/subtraction. Several differences do
appear compared to other double path adders: two exponents and sign computation
circuits are needed; the exponents’ difference and the path selection criterion have
to be computed before any operation of the mantissas; a row of multiplexers for
path distribution are placed before the two paths. Several path selection criterions
may be used, but the one based on the exponents’ difference and the effective
operation is preferred because it has a relative simple logic and it increases the
probability of occurrence of a favorable case. When performing an interval
addition/subtraction on the proposed adder two cases can occur: a favorable case,
when the two floating point operations can be performed simultaneously, and an
unfavorable case, when the two floating point operations must be performed
sequentially. The proposed adder can also be used for increasing the performance of
the conventional floating point addition, by increasing the throughput of this
operation.

The fourth section is dedicated to cost and performance evaluations, which
were performed using both technology independent metrics and synthesis results
for the Xilinx Virtex-4 FPGA family. Regarding the technology independent metric,
the cost was estimated using gate count. The estimations showed that the proposed
adder has an area overhead of about 20% compared to other floating point adder
for double precision format. However, compared to the two adders based solution,
the proposed adder cost is about 57% of the cost of the interval adder. Synthesis
results performed for IEEE half precision confirmed the technology independent
estimates. Regarding the latency, both technology independent metric and the
synthesis results based evaluations showed that the proposed adder has a higher
latency with respect to the five floating point adders stydied. The overall
performance of the proposed adder depends heavily on the percentage of the
favorable cases. Also, the performance analysis showed that the proposed adder is
suitable for series of large number of additions and not isolated additions. A

BUPT

50 Hardware Interval Addition Unit - 2

performance to cost ratio evaluation has been performed. The evaluation showed
that in case of at least 20% favorable cases the proposed adder has the highest
ratio, thus ensuring the best performance-cost trade-off. Furthermore, performance
evaluations based on SPEC FPU benchmark results for conventional floating point
addition have been performed. The analysis shows that the proposed adder is
suitable when dealing with series of large numbers of additions, not with isolated
additions.

BUPT

3. Hardware Interval Multiplier

3.1 Interval Multiplication Algorithms

Interval multiplication is, by far, the most difficult from all four basic
operations (addition, subtraction, multiplication, division). It is defined in (3.1)
[49][53][86][94][96][107].

[X107 Xpi1* [Yio: Yhi] = [RNImin(Xio * Yo, Xio * Yni; Xni * Yio; Xni * Yhi);

:) . (3.1)
RPI max (Xjo * Yo/ Xio * Yhi: Xni * Yio: Xni * Yhi)]

In order to perform an interval multiplication, four floating point multiplications with
no rounding, four comparisons for minimum and maximum and two rounding
operations have to be conducted. This leads to an unacceptable low performance for
the interval multiplication, mainly due to two reasons:

1. the high number of floating point operations
2. rounding is performed at the end of the operation which means that:
o speed-up algorithms for rounding in floating point multiplication
([30][38][63][79][109]) cannot be applied
e the floating point comparisons must be performed with numbers which
are not rounded, which have a mantissa double in size
¢ a dedicated rounding module (based on a large carry propagate adder)
and a normalization module are needed

1. p=Xip*Yp 1. p=Xio*Yio = Xio™*Yh

2. r=Xjo*Ypj 2. q=Xpj*Yjo t=Xpj*Yp; m=min(p,r)

3. g=Xpj *Yo m=min(p,r) M =max(p,r)
M = max(p,r) 3. m=min(m,q) M =max(M,q)

»

m=min(m,t) M=max(M,t)
. Zjp = RNI{m) Zpi = RPI(M)

4. t = Xp;j *Yyi m=min(m,q)
M =max(M,q)

5. m=min(m,t) M=max(M,t)

6. Zjp = RNI(m) Zp; = RPI(M)

(9]

a) b)

Figure 3.1 - Interval Multiplication Pipelined Algorithm [53]
a) Using One Multiplier b) Using Two Multipliers

A pipelined version of this algorithm is presented in [53]. This version can
be adapted to a hardware implementation consisting of one multiplier, two

BUPT

52 Hardware Interval Multiplier- 3

comparators and two rounding units (fig. 3.1. a) or two multipliers, two
comparators and two rounding units.

In order to reduce the penalty imposed by the rounding at the end of the
operation, the floating point multiplication, the (3.1) is transformed in (3.2) [107]:

(X107 Xpi 1* Yio: Yni] = [min(RNI(Xjo * Yio) ; RNI(Xjo * Ypi) ;
RNI(Xp; *Yio) RNI (Xpi * Yhi)); max (RPI(Xjo * Yjo); RPI (Xjo * Ypj); (3.2)
RPI(Xjo * Yjo); RPI (X0 * Yhi))]

In order to perform the interval multiplication accordingly with (3.2), eight
floating point multiplications are required, three comparisons for minimum and
three comparisons for maximum. In this case the main disadvantage is represented
by the high number of floating point operations - fourteen. An improving can be
achieved by reducing the eight floating point multiplications to four using floating
point multiplier with two differently rounded results for the same muitiplication
[107]. In this case the number of floating point operations is ten (four
multiplications and six comparisons).

A reduction of the number of floating point operations can be obtained by
using an algorithm which performs only floating point multiplication with RPI [107].
This algorithm is presented in fig. 3.2.a. It requires four floating point
multiplications, four comparisons and one RNI operation - nine floating point
operations. The algorithm is based on the fact that the RNI result can be computed
from the RPI (as presented in fig. 3.2.b). The performance of this algorithm is
improved compared to the first two ways of performing the multiplication. However,
it has a major disadvantage, due to the fact that it requires a dedicated RNI
module, which means to a large carry propagate adder.

1. p1=RPI(X)5*Y}o) RNI(X *Y)< X *Y < RPI(X *Y)
2. p2=RPI(X/o*Yh,-) RPI(X*Y)=X*Y = RNI(X*Y)=X*Y =
3. p3 = RPI(Xp; *Y)) = RNI(X *Y)=RPI(X *Y)
4. p4 = RPI(Xp; * Ypi) RPI(X*Y)>X*Y =>
1 mintod. 02 ! = RNI(X *Y) = pred(RPI(X *Y)
5. - (pL, p2) pred(X) - the previous floating point
M1 =max(pl, p2) number of X (X - 1 ulp)
6 mZ =min(p3, p4)

M2 =max(p3,p4)
7. M =max(M1,M2)
8. mi = max(m1, m2)
9. m=RNI(mi)
[Xi0; Xpi 1* Yios Yhi) =[m; M] b)

a)

Figure 3.2 - Interval Multiplication RPI Algorithm [107] (a). RNI from RPI [107](b)

BUPT

3.1 - Interval Multiplication Algorithms 53

Significant improvements can be obtained by examining the sign of the
operands [49][53][94][96]. Nine cases of interval multiplications are obtained
(Table 3.1). In the first eight cases (when at least one of the intervals does not
contain the number zero) the number of the operations is reduced to only two
floating point multiplications, one with RNI, while the other to RPI. In the ninth
case, when both intervals contain zero, the number of floating point operations is
six: two multiplications with RPI, two multiplications with RNI and two comparisons.
Using sign examination, the average performance of the interval multiplication is
significantly increased. The main disadvantage of sign examination is that the
number of steps differ from the first cases to the nine case (in the ninth case there
are three times more floating point operations.

Table 3.1 Interval Multiplication with Sign Examining [107]

Nr. | X =[Xio; Xpi] | ¥ =[Yio/ Yhi] Zjo Zpi

1 Xjo >0 Yio > 0 RNI(Xjo *Yjo) | RPI(Xpj*Yp;)
2 Xjp >0 Yhj <0 RNI(Xpi * Yio) | RPI(Xjo * Yhi)
3 Xjo > 0 Yio <0 <Ypj | RNI(Xpi *Yjo) | RPI(Xpj*Yp;)
4 Xpj <0 Yjo >0 RNI (Xjo * Ypi) | RPI(Xpi* Yjo)
5 Xpi <0 Ypi <0 RNI (Xpi * Ypi) | RPI(X)o *Y)o)
6 Xpi <0 Yio <0 <Ypj | RNI(Xjo*Ypi) | RPI(Xjo*Y5)
7 | Xio <0< Xp; Yio >0 RNI(Xjo *Ypi) | RPI(Xpi * i)
8 | Xio<0<Xp; Yphi <0 RNI(Xpj *Yjo) | RPI(Xjo*Yo)
9 Xio < 0 < Xpi Yio <0 < Yp; m1l m2

m1 - min(RNI (Xjo * Yp;); RNI(Xpj * Y)5))
m2 - max (RPI(Xjo *Yo); RPI(Xpj * Yp;))

Different hardware designs have been presented for this algorithm. The
hardware designs presented in [49][107] rely on two multiplexers, two floating
point multipliers and one floating point comparators. The design in [96] relies on
two multiplexers and one floating point multiplier (Fig 3.3). The ninth case will be
handled in software.

Table 3.2 - The Subdivisions of the Ninth Case of Interval Multiplication [107]

Nr | X =[Xio: Xni] | Y =[Yi0/ Yhi] Zjo Zpi
1| [Xio| < Xni Yiol < Yhi m1 RPI(Xp; * Yhi)
2 | X< Xni Viol > Yhi | RNI(Xhi *Yio) m2
3 |X1o| > Xhi [Yio| < Yhi RNI(Xjo *Ypi) | - m2
a | Xl > Xn V1ol > Yhi m1 RPI (X0 * Yio)

BUPT

54 Hardware Interval Multiplier- 3

X] | Yhi j

X] ; Vg |
i 1
I SR K}
= MUX : MUX
T —
— | - N
L
I 2L . S 2 :
SIGN ‘ ¢/ Mantissa
LOGIC. e ; Multiplier RN
e _,,__,,*,J
I I
1
vy v
L P] | Zhi]

Figure 3.3 - Interval Multiplication Unit [96]

The ninth case can be divided further into four cases (Table 3.2) [107]. In
these four cases, the number of operations is reduced to four: three rounded

multiplications and one

comparison.

However, this further division comes at a cost. As shown in Table 3.2, two
more comparisons have to be performed before the multiplications, so the number

of floating point operations is increased by two. Another major disadvantage is that*

the comparisons are performed both before and after the multiplications.
Table 3.3 presents a comparison between the presented algorithms. In this
table are presented the pros and cons for each algorithm.

Table 3.3 - Comparisons between the Interval Multiplication Algorithms

Algorithm

Pros

Cons

Basic Algonthm

10 floating point operations
Rounding in last stage
No pipelining_

Pipelined Algorithm
[53]

Easy Pipelining

10 floating point operations
Rounding in last stage

Eight Products

Rounding within
multiplication

14 floating point operations
No pipelining

RPI Only [107]

9 floating point
operations

Needs a dedicated RNI
hardware module

Sign Examining

2 floating point
operations in eight cases,
6 in the ninth case

Different number of steps
from case to case - difficuit
to pipeline

Stine Sign
Examining [94][96]

2 floating point
operations

Ninth case done in software

Sign Examining
with Ninth Case
Division [107]

2 floating point
operations in eight cases,
4 in ninth case

Comparisons done before Y

and after the multiplication

in ninth case - difficult to
pipeline

BUPT

3.2 - Floating Point Multiplication 55

3.2 Floating Point Multiplication
3.2.1 Algorithm and Architecture

Floating point mulitiplication is maybe the most simple floating point
operations. The multiplication of two IEEE floating point numbers

(F1=(-1)51%2F1-bias x 1 M1 andF2 = (-1)°2 * 2E2-bias x 1 M2) is given by the
following formula {26]:

s3% 2F3-bias x 3 M3 - F1% F2 = (-1)°1952 x pE1+E2-bias x (1 M1 % 1. M2) (3.3)

As it can be observed in the (3.3) the sign of the result is an exclusive-or
between the two sign, the exponent is obtained by adding the two exponents and
subtracting the bias, while the mantissa of the result is obtained by multiplying the
two mantissas.

Because the result has also to be represented in IEEE 754 format the
following steps are also requires [26]:

1. Normalization of the mantissa - because the mantissas of the two results are
within [1;2)interval, the result of their multiplication is in the range [1;4); if the

result is in the range [2; 4) a normalization left shift and incrementing the exponent
are required.

2. Rounding - the mantissa are represented on n bits, the result of their
multiplication will be on 2*n bits; because the mantissa of the result must be
represented on n bits, rounding is thus required.

S1 §2 El E2 1.|Ml 1.M2
be 4 . !
XOR! Exponent

i Addition Mantissa
Multiplication

A 4 l
Exponent :
Update ﬂrma}llzationj

Rounding

, v
EXponent " [Normalization|
v l l

S3 E3 1.M3
Figure 3.4 - Floating Point Multiplication Unit [74]

BUPT

56 Hardware Interval Multiplier- 3

The basic architecture of a floating point multiplier is depicted in Fig 3.4.
The largest delay module in this architecture is the mantissa multiplier. The
mantissa multiplier has to be a fast parallel unsigned integer multiplier.
Furthermore, the rounding unit significantly contributes to an increase in the delay
of the unit, because it requires a large carry propagate adder.

In the next section, a detailed presentation of the mantissa multiplication
unit will be performed. This presentation will include the general architecture, the
design choices and the changes of an unsigned integer multiplication unit for
floating point.

3.2.2 Mantissa Multiplication Unit

The mantissa multiplication unit is the largest delay module of the whole
floating point multiplication unit. A right design for this module is essential for the
performance of the floating point multiplication. The design choices for the mantissa
multiplication unit are the tree multipliers (like Dadda trees, Wallace trees, binary
trees, etc) due to the following reasons:

» greater performance than other type due to the fact that the partial
products are reduced in parallel

e high performance rounding schemes (like EvenSeidel, YuZyner, Quach) for
floating point multiplication can be included, eliminating the need of an
extra large carry propagate adder.

1.M1 1.M2

; |
v v

Encoder Module

;5“ 1
P !|y
: YYY %y

Partial Products
Reduction Tree

. I
! Carry Net Sticky

! Normalize Module

K
1.M3

Figure 3.5 - Tree Multiplier for Mantissa Multiplication for Floating Point Numbers [26]

2

BUPT

3.2 - Floating Point Multiplication 57

In Fig. 3.5 the architecture of a tree multiplier is depicted. The overall
structure of such multiplier contains three major blocks [2][13]:

e partial products generation scheme (encoder module) - this module has as
inputs the two multiplicands and, depending on the implemented
multiplication algorithm, generates several partial products

e the partial product reduction tree - it reduces in a parallel manner the
partial products generated by the previous module into two final partial
products

o the final carry propagate adder - in an integer multiplier, this adder is a fast
2*n bit carry propagate adder (carry lookahead, conditional sum, prefix-
adders); however; in the floating point multipliers, this adder is replaced
with a more complicated scheme (that includes a compound adder, a carry-
net circuit, the sticky bits computation circuit, the rounding logic) which has
also the role to perform the rounding step almost simultaneously with the
addition [26].

In the next three sections, each of the three major modules will be
presented in detail. Different solutions, algorithms and implementations are
discussed and compared for each of these modules.

3.2.3 Partial Product Generation Scheme

The partial product generation scheme (encoder module) has the role to
encode the multiplicand (Y) based on the value of the multiplier (X) and on the
multiplication algorithm in order to produce a vector of several partial products [13].
The most important design choice for this circuit is the implemented multiplication
algorithm. The multiplication algorithm influences two parameters which affect the
performance and the area of the entire multiplication unit:

e the number of partial products -~ it affects the size (both area and
performance) of the partial product reduction tree

o the complexity of encoding logic - it affects the area and performance of
the partial product reduction scheme

Thus, the evaluation of the encoder module will be performed in terms of
the number of partial products and in terms of complexity of encoding logic.

The simplest scheme is obtained by applying a paper-and-pencil algorithm
[2][14]. This algorithm is based on the fact that if a bit of the multiplier (X) is zero
than a partial product equal to zero is generated, otherwise a partial product equal
to the multiplicand (Y) is generated. The resulting circuit is an array of AND gates of
size n*n. The module is depicted in Fig 3.6. The number of partial products in this
case is n. As it can be observed in Fig. 3.6 the bits of the multiplier are entries for
the rows, while the bits of the multiplicand are entries for the column. The main
advantage of this scheme is its low complexity of the encoding logic (the multiplier
is not encoded at all, while the multiplicand is encoded using only one AND gate)
which means a low latency (only 1 LL) and a low area (n*n AND gates). The main
disadvantage is its high number of partial products (n partial products).

A more complicated scheme is the one based on the Booth multiplication
algorithm. This algorithm relies on the comparison of two consecutive bits [51][75]

BUPT

58 Hardware Interval Multiplier- 3

[100]. If there is a string of zero’s or a string of one’s than the ggneratgd .par'tial
product is equal to zero. Table 3.3 presents the Booth encoding_. This myltlpllcatton
is suited for signed numbers, because it does not require correction additions.

Y3 Y2 Y1 YO
{ i
i !
X0 . 'Q“" e "i"""“' T
e N \\f N
v v v
Partial Product 0
Y3 Y2 Y1 YO0
X1 - -y v
+y ¥ ¥ LB A y
‘\»7 /’/ ‘\\\ / \\‘/ \\‘; //
v v ¥
Partial Product 1
Y3 Y? Y1 YIO
X2 \ — v— |
Yy vt vy vy v ¥
B - ! \\ / N /,
S 5 g
v v v
Partial Product 2
Y3 Y2 Y1 Yo
X3-—v- \d -
LS U B N A A A 5

~J

’

v’// ™~

v v

\ v
Partial Product 3
Figure 3.6 - Encoder Module with AND Gate Array for 4-Bits Muitiplicands [13]

However, for floating point multiplication (where unsigned multiplication is
used), this algorithm is worst compared to the simpler paper-and-pencil algorithm
due to the foliowing reasons [14]:

o it requires an encoding of the multiplier, which leads to a more complex
encoder module (as seen in Fig 3.7)

s it involves subtractions, which require obtaining two’s compiement
numbers, which means an increase of the partial products by 1 (the extra
1 comes to ensure that the last operation is addition so the overall result is

positive)
Table 3.4 - Booth's Algorithm [51]
Xi | X1 Comments Operation Partial Product
0 0 String of 0's No operation 0
0 1 Beginning of a string of 1's Addition Y
1 0 End of a string of 1's Subtraction Y +1
1 1 String of 1's No operation 0

BUPT

3.2 - Floating Point Multiplication 59

-3 Y2 Y|1 YO0
11 T 1 11 1 ‘
Xi.1 Y

,, T

S Partial Product
Figure 3.7 - Partial Product Generation Line for 4 Bit Multiplicands Using Booth

A method of generating fewer partial products is by using a higher radix. A
very important algorithm used is Booth radix 4 [51] or Booth 2 [13][14]. Table 3.4
depicts the encoding of Booth 2. In Fig. 3.8 are depicted the encoding logic of the
muitiplier and while in Fig 3.9 is presented the dot diagram (which illustrates the
generation of the partial products) for this algorithm. The number of partial
n+l1

products generated by this algorithm is{ -’, so a reduction by almost a factor of

two is obtained compared to the simple paper-and-pencil algorithm. However, the
encoding logic is more complex, as shown in Fig 3.8, the delay being of 5 LL.

0 YO Y1 Y2 Y3

X1 quj

rv v vy

Partial Product

a)

p
i

! ' } AU A R e il
¢¢1i1 IHI‘IKIJ_LLLIAIIII I:l'll | Tl—i—L 1 Y"”J %E H # — ey
ITHIAINGESER o]), J
b) -

Figure 3.8 - Partial Product Generation Line for 4 Bit Multiplicand Using Booth 2 [13] (a)
Technology Schematic of Booth 2 Encoder Module (obtained with XST) (b)

BUPT

60 Hardware Interval Multiplier- 3

Table 3.5 - Booth 2 Algorithm [13]

Xoiv1 V X2i | X2i_g Operation Partial Product
0 0 0 No operation 0
0 0 1 Addition of Y Y
0 1 0 Addition of Y Y
0 1 1 Addition of 2Y 2Y
1 0 0 Subtraction of 2Y oY +1
1 0 1 Subtraction of Y Y +1
1 1 0 Subtraction of Y Y+1
1 1 1 No operation 0
0
. e
$5s5-00000000° ' @
1500000000« S o
1500000000 s @
SO0000000 S e @
0000000 =’ o
> ,
. @
@
0
-0

Figure 3.9 - The Dot Diagram of Booth 2 Algorithm for 8 Bit Multiplicands [13]

A further decrease in the number of partial products can be obtained by
using high radices, like Booth radix 8 (Booth 3) or Booth radix 16 (Booth 4). With

n+1] [2][13]. The Booth 3 encoding is

Booth 3 the number of partial products is [

presented in Table 3.5. As it can be observed in Table 3.5, this algorithm requires
obtaining the 3Y multiple. This is a major drawback of this algorithm, because
obtaining 3Y multiple (which is called hard muitiple) requires a large carry
propagate adder (unlike 2Y or4Y which can be obtained by shifting). Higher radices
(16, 32, etc) further require 5Y , 7Y multiples, which makes this algorithm not viable
and quit unfeasible. Furthermore, the encoding logic is very complicated compared
to the simple paper-and-pencil and Booth 2.

An improvement of Booth 3 is proposed in [13], by using a redundant
representation of the partial products (redundant Booth). This algorithm makes use
of small adders with no carry propagation between them. The redundant form is
treated as two separate numbers with one of them with large gaps of zero. In order
to avoid that the large gaps of zero will become large gaps of ones for negative
multiplicands (which are obtained by a bit-inversion), a constant is added to each
small adder.

BUPT

3.2 - Floating Point Multiplication 61

Table 3.6 - Booth 3 Encoding [2]

X3iv2 | X3ie1 | X3 | X3i-1 Ppr?);tijaclt X3iv2 | X3ie1 | X3i | X3i-1 Pprzrc;cijaclt
0 0 0 0 0 1 0 0 0 qy + 1
0 0 0 1 Y 1 0 0 1 3y +1
0 0 1 0 Y 1 0 1 0 3Y +1
0 0 1 1 2Y 1 0 1 1 oY +1
0 1 0 0 2y 1 1 0 0 2Y + 1
0 1 0 1 3y 1 1 0 1 Y +1
0 1 1 0 3y 1 1 1 0 Y +1
0 1 1 1 4y 1 1 1 1 0

Compensation constant is added to all partial products in order to obtain a
net result added to the partial products reduction tree equal to zero.
presents the redundant Booth 3 algorithm, while Fig. 3.10 depicts the dot diagram

of this algorithm.

Table 3.7 - Redundant Booth 3 Encoding [13]

Table 3.6

X3iv2 | X3iv1 | X3 | X3i-1 Pprilc—jt:Jaclt X3iv2 | X3ziv1 | X3i | X3i-1 Pii:jt:i:lt
0 0 0 0 | k+0 1 0o o] o |ksavasz
0 0 0 1 k+Y 1 0 0 1 k+3Y+1
0 0 1 0 k+Y 1 0 1 0 k+3Y+1
0 0 1 1 k+2Y 1 0 1 1 k+2Y +1
0 1 o | o [k+2r | 1 1t o] o [k+2rs:
0 1 0 1 | k+3r | 1 1 | o 1 | kevass
0 1 1 0 | k+3v | 1 1 1 0 | kevaz
0 1 1 1 k +4Y 1 1 1 1 k+0

Table 3.8 - Comparison between Simple, Booth 2 and Redundant Booth 3
Algorithms for 53 Bits operands

Algorithm | Latency (LL) | Partial Products | Gate Number
Simple 1LL 53 2809
Booth 2 5LL 27 5832
Booth 3 7 LL 18 6495

BUPT

62 Hardware Interval Muitiplier- 3

COMPENSATION CONSTANT

00000000000000O0O0

0

55 s 000000000 [o

o o s ‘*\.

A X ®
115@.3030;030005‘_1, o
e

ceeceeceee . /<@
o o T @
@

. 0

Figure 3.10 - The Dot Diagram of Redundant Booth 3 [13]

The impact of these implementations on the performance and area of the
whole multiplication depends on the technology choice and on the partial products
reduction tree. A comparison between the simple paper-and-pencii and the Booth 2
algorithm was made in [14] using a reduction tree based on [4:2] compressors
showed that the simple algorithm had a higher performance compared to Booth 2.
In [13][75] the Booth algorithm shows a higher performance than the simple paper-
and-pencil algorithm (although not very significant). The designs in [35][63] used
the Booth encoding instead the simple algorithm, this being a proof that Booth
algorithm shows a higher performance for their technology. Table 3.8 presents a
comparison between the three algorithms for multiplication, in which the logic
levels, the partial products and the gate count are presented.

3.2.4 Partial Product Reduction Tree

The partial product tree reduces the several partial products which are
produced by the encoding module to only two final partial products, which must be
added using a carry propagation adder in order to obtain the product. The reduction
is done after several levels, using a series of (m, n) counters or compressors (where
m>n, and m is number of input vectors, while n is number of output vectors). The
counters on same level work in parallel. The number of levels of such trees is

logarithmic dependent on the number of partial products (O(Iogny p), where p is
n

the number of partial products).

The most simple type of counter is (3,2) counter, presented in Fig. 3.11
which is basically a carry-save adder [26]. It is built of a number of full adder cells
(FAC), with no carry propagation between them. It has three vectors as inputs, and
two vectors as outputs (sum and carry).

The simplest tree that can be built with (3:2) counters is the Wallace tree

[101]. The number of levels in a Wallace tree is equal to {1093/ p] -1. A Wallace tree
2

for 18 partial products is presented in Fig. 3.12. In terms of logic levels measured
latency the Wallace tree has the minimum delay [2].

BUPT

3.2 - Floating Point Multiplication 63

XYz
. it
[; . »
Y v ¥y l LN 2 . 2 14] ,L%__t-] ‘ 174, =
‘ 1 ! | TR T
FAC | i FAC | FAC | FAC "t
% - ; i i J‘J——'LJ
I B B 3ot il]] v
\ i] | ‘\-‘/ N
v v > v > v » v v v
C S
A) B)

Figure 3.11 - The (3:2) Counter
A) The Block Structure for 4 Bit Vectors B) Internal Structure of a FAC

oz;@
'

! |
| : i i

. _v_‘lr_vﬁ
3:2 Coungeﬂ L CoL nter

i,,_L

3 2 Counl:erI 3 2 Counter
: r“"
{

v [2 Cou 12 Counterj [3 2 Counter
i I S R
¥ v v IS v ¥
{3:2 Counter 3:2 COUTteri (3:2 Counter 3:2 Counter
o L — | ; ~

l
|
v,f*.._J L

1J3:2 Counter

Y v
3:2 Counter

Figure 3.12 - The Wallace Tree for 18 Partial Products (¢ - Partial Product) [2]

A version of the Wallace tree is the Dadda tree [23], which presents a lower
number of counters. However, this kind of tree has a major drawback: its topology
is considered highly irregular, because it does not specify a systematic method for
counter connections. Furthermore, a Wallace tree requires a large number of wiring
tracks, which means a large area [2][51]. Furthermore, this irregularity can also
increase the delay, if we were to consider the wiring delays.

Two regular topologies can be obtained using the (3:2) counters. The first
one is the overturned staircase tree [62]. This type is being build from a root (which
is the counter on the last level) and a body of height k (whichris the equal to the
number of counter levels of the body). The number of counter levels is k+1. A body
of height k is built from a body of height k-1, a connector (built of two counters)

FI

BUPT

64 Hardware Interval Multiplier- 3

and a branch (which is built from serially line of k-2 counters). Thus, a recursive
method for building the overturned staircase tree is obtained. The regularity of this
topology can also be seen from the Fig. 3.13, which is a tree for 18 partial products.
This type of tree can have in some cases the same number of counter levels as the
Wallace tree (for 18 partial products both trees have 6 levels). However, the
number of wiring tracks is significantly lower, thus a reduced area is obtained and
wiring delays are also significantly slower. The tree depicted in Fig. 3.13 is an
overturned staircase tree of order 1. By replacing each branch with an overturned
staircase of order 1, an overturned staircase of order 2 can be obtained. This type of
tree has a smaller number of levels compared to the order 1, but it needs a greater
number of wiring tracks [2].

O S L V% <f ?
: : ; ; i i /
LY Y Y. Y __ ¥ l v_ ¥ v_ ¥ ?

3 (3:2 Co

12 Counter} { :

O

13:2 Counter| 3:2 Counter| |3

4
' e N I
e e . <f — ?
Y X ,t,#_y_,_.L. [+ \ 4
[3:21 Counter | (3:2 Counter! |3:2 Counter

T
nter|

4
[3:2 Counterl

h 3 l .H.
I

A
Courlmer] 13:2 Counter]
i

b

i |3:2 Counter

[J3:2 Counter

_ v
Figure 3.13 - The Overturned Staircase Tree for 18 Partial Products
(The ¢ Represents the Partial Product) [2]

Another regular topology based on the (3:2) counter is the balanced delay
tree [110] - Fig. 3.14. A balanced tree of height k+2 is constructed by connecting a
grgn'(:?l((a chain of serially connected counters) of height k with a balanced tree of

eig .

As with the overturned staircase tree, the balanced delay tree constructed in
this way is of order 1. An order 2 balanced tree is built by replacing each branch
with an order 1 balanced delay tree. This type of tree has the highest regularity
from all types of trees and requires the smallest number of wires tracks. In terms of
counter levels, this type has a bigger number compared to Wallace tree or
overturned staircase tree. A very important aspect of the balanced delay tree and of
the overturned staircase tree is that the wiring track is dependent on the order of
the tree and not on the number of partial products [2].

BUPT

3.2 - Floating Point Multiplication 65

Another type of counter used in reduction trees is the (4:2) counter or (4:2)
compressor. First described in [106], the (4:2) compressor is depicted in Fig. 3.15
a. It is built from two (3:2) counters, thus the delay of this type of counter is
doubled compared to the (3:2) counter. Another version of the (4:2) compressor is
presented in Fig. 3.15. b [72]. This version may constitute an improvement if the
delay of the XOR gate is considerable higher than the OR and AND gates; the critical
path contains three XOR gates in this version; while in Fig. 3.14.a the critical path
contains four XOR gates.

(7> o> > O D > < O \~.
B i

3’>
S A & A_L‘ij R Z .
3:2 Counter| 3:2l Courin:er; 3 2 Counter rL Counterl
l ' — > i <>
|
L4l T Pl
e

|
N Y. .Y
r3:2 Counter 3:2 Counter [3 2 Coun t r]
I I ; I
Y ¥y ¥_ i 2
[3: Counter| 3 2 Counter l3 2 Counter]

e e ol e

.
{3:2 ounterl 3:2 Counter
T :

i ! '
— - I

3: 2 Counter

L1

3:2 Counter

[

3: 2 Counéﬂ

Figure 3.14 - The Balanced Delay Tree for 18 Pamal Products
(The ¢ Represents the Partial Product)[2]

A very important design feature of the (4:2) compressors and also of higher
order counters ((n: 2) counters, where n>4) is that the carry out of the counter
(Cint-o in Fig 3.14) is independent from the carry in (Cint-I in Fig 3.14). In this way,
it is avoided the ripple carry affect which propagates the delays across the chain of
counters [2].

With the (4:2) compressor a binary tree can be built [72][106]. Figure 3.16
depicts a binary tree for 16 partial products .This type of tree presents a number of
]’logz p'|—1compressor levels. This means a major reduction compared to Wallace

tree or other (3:2) counter based trees. However, each compressor level presents
an increased delay (1.5 to 2 times higher) compared to the delay of the levels on
(3:2) counters based trees. Therefore, for a smaller number of partial products
(integer multiplication, simple precision floating point multiplication), the (3:2)
counters based trees have a higher performance, while for a large number of partial
products the binary tree has a smaller delay. In terms of topology, the binary tree is
considered a regular topology, however the number of wired tracks is greater

aN

BUPT

66 Hardware Interval Multiplier- 3

compared to overturned staircase tree or balanced delay tree, and lower compared
to the Wallace tree.

X Y 2T X Y b4 T' Cint-I
) ‘: $ R d
) v v v . l | ___’__'t_: | £ T
EE_@L"’E"J i i (W W] :
! i Cint-| ! ¢ L
L — : ; o E—L ! B FC . |
cinto ¢ § v \,/_L_:. _ﬂ ?—Sr—\?
{3:2 Counter| by t &
v 4 {
c S Cint-o) C
A} B8)

Figure 3.15 - 4:2 Compressors
a) {106] Compressor b) [72] Compressor

With higher order counters, like (7:3) counters, (9:2) counters, and the
number of counters levels is further reduced. However, the delay of these counters

is significantly increased.

Y. PN T R T Y _v_ ¥y ¥ vy vy
4:2 Compressor ' 4:2 Compressor 4:2 Compressor ‘ 4:2 Compressor |

4:2 Compressor |

v v
Figure 3.16 - The Binary Tree for 16 Partial Products [2]

Table 3.9 - Comparison of Partial Product Reduction Trees for 27 Partial

Products
Reduction Tree Counter Levels | Delay (LL) | Gate Count | Wired Tracks
Wallace Tree 7 14 10734 12
Overturned Staircase 8 16 12750 6
Balanced Delay 9 18 11316 5
Binary Tree 4 12 11532 10

In table 3.9 a comparison between the four types of partial products
reduction trees is done. The features followed are number of counter levels, delay in
LL, gate count and wired tracks. The comparison is done for trees used to reduce 27
partial products (this number is obtained by a Booth 2 encoding for double precision
numbers). Although the number of wired tracks is an important aspect in VLSI
design, for the rest of our, analysis it will not be considered this aspect, because the

BUPT

3.2 - Floating Point Multiplication 67

choice of the partial products reduction tree does not affect the final addition and
rounding step, where my contribution is proposed; the analysis of the overall
performance and cost of the existing and proposed multipliers will be performed
taking in consideration that both will have the same type of partial product
reduction tree. In my implementations, I used the Wallace tree, thus all the
comparisons are done for multipliers with Wallace trees.

3.2.6 Final Addition and Rounding

The partial product reduction tree reduces the several partial products into
only two final partial products, in carry and sum format. These final partial products
are represented on a double number of bits compared to the two operands
[26][30]. Thus for the final addition, a double size carry propagate adder must be
used. Furthermore, the final product will be double size compared to the operands.
When multiplying IEEE 754 mantissas, the final result have to be on the same
number of bits as the operands. Thus, a rounding step must be performed.
Furthermore, because IEEE 754 mantissas are in the range[1;2), the result

mantissa will be in the [2;4) range. Thus, a normalization left shift is also required.

Thus, the hardware architecture resulted for multiplication of IEEE 754 floating point
numbers is presented in Fig. 3.4. This structure presents a high latency due to:

¢ the double size final carry propagate adder

 the computation of rounding and sticky bits

e a large carry propagate adder for rounding

In order to increase the performance of the floating point multiplication,
several rounding algorithms for multiplication have been developed, like the ones in
[30], [79], [109]. These algorithms are based on a separation of the two final
partial products (denoted SUM and CARRY) into a lower and an upper part. The
most significant parts are added with a compound adder, while the lower parts are
used to compute (in parallel with the addition) the rounding decision. The rounding
decision is computed for both the case of when the final partial product is in
[1; 2) range and [2; 4)range. This way the final addition, rounding and normalization

are included into a single step. This type of final addition and rounding is much
faster because:
o the size of the carry propagate adder is almost the size of the mantissa
o the rounding decision (including rounding and sticky bits) is computed in
parallel with the addition
o the rounding is reduced to a simple selection, thus there is no need for the
large carry propagate adder specially for rounding

The (Even-Seidel [30]) algorithm is based on the addition of an injection
constant, in order to reduce all the rounding modes to RZ. The injection value is 0

for RZ, 2753 for RNU, and 2753 4 27104 ¢5r RI. RNE can be obtained from RNU, by a
correction of the least significant bit when this is bit is equal to 1 and the unrounded
result is exactly at half distance between the two numbers. RNI and RPI can be
obtained form RI and RZ after a sign examination of the result (RNI is RZ when the
result is positive and RI when the result is negative). The injection is added as
another partial product. This implies that the number of counter levels can increase
by 1.

BUPT

68 Hardware Interval Multiplier- 3

CARRY[53:104]

CARRY[-1:52] .1:52) SUM[53:104]
smj qsz] 7 l
\ 2 S: 6LL
[HA Line (54) R: 8L | Carry, Round
pIv e X-Suml |Ix RI and Sticky
-Carry RN CS2IRS 3
’ T &
Compound v ¥ FixL || Fbd
Mderpo(uss) Inc OVF ||N V
.| Dec / T Iy —
Y1 YO] vor1 Y W,
1ou‘%] F@' 10LL | J10LL
[ShifcRje (Shift INe lmi_l'l!lmz’!l
110§ ¥ L
L MUX____Je 10LL HMUX
1200
Result{0:51] Result{52]
(a)
iR]
Ll
5
g =) (S s J
1 t
p Jlainsu *‘m}
| _
i 3
| r IR ERE!
_ g L= i
, i
|
{ l
11T
s
Tt
(b)

Figure 3.17 - The Even-Seidel Rounding Scheme [30] (a)
Technology Schematic Obtained with XST (b)

BUPT

3.2 - Floating Point Multiplication 69

The Even-Seidel algorithm for IEEE 754 double format, as described in [30],

proceeds as follows:

1.

The SUM and CARRY are divided into a high part consisting of 54 bits and a
low part consisting 52 bits.

With the low part are computed C - carry bit, R - round bit and S - sticky
bit. The C bit is the carry out if the two lower parts would have been added.
The R bit is the most significant bit of the sum if the lower parts would have
been added. The S bit is obtained by an OR of all other bits of the sum if the
lower parts would have been added.

The higher part is input to a line of half adders and produces X-Sum and X-
Carry on 53 bits and the sum bit of the least significant position (Lx).

The X-Sum and X-Carry are inputs of a compound adder. The results are YO
and Y1 (where Y1=Y0+1 ulp).

An increment decision box receives the R bit, the C bit, the Lx bit and the
most significant bit of YO. The increment decision is taken on two paths (one
on the assumption that no overflow will occur, while the other on the
assumption that the overflow will occur). The most significant bit of YO will
make the selection between the two paths. The increment decision signal is
defined by:

L,C if MSB(Y0)=0 or RZ
INC = L, +C if MSB(Y0)=1 or RI
R+ly+C=2 if MSB(Y0)=1 or RNE

The most significant bits of YO and Y1 indicate whether these two results are
in the range[z; 4); if YO or Y1 is in this range, it is shifted with one position

towards right.

The most significant 52 bits of the rounded result are selected between the
possibly shifted YO and Y1. The selection is made based on the increment
decision.

In case the rounding mode is RNE, the least significant bit may be
corrected. The possible correction is computed on two paths, one on the
assumption that there is no overflow, while the other on the assumption
there is overflow. The least significant bit is computed for the two paths and
selected based on the increment decision.

Fig 3.17 presents the hardware structure which implements this algorithm.

The delay of this structure is 12 LL, if the injection doesn’t increase the number of
counter levels of the partial product reduction tree, or 14 LL if the injection does
increase the number of the counter levels by 1.

1.

Another rounding algorithm for floating point multiplication is based on
reducing the rounding modes on RZ, RNU and RI and on the injection of a
prediction bit based on the rounding mode. Thus, this rounding mode is
similar to the Even-Seidel algorithm.

BUPT

70 Hardware Interval Multiplier- 3

CARRYT-1:52]

SUM[-1:52)

f

]

HA (54)
X-!
X-Carry

1L

HA (54)

X-Sum1|
X-Cartyl

3L

Compound-Adder
(53)

l Shift-R Rnd_sig_ovt

int

CARRY[53:104)

Pred Carry,
RI (2
iction Round, Sticky
RI 7L BLL 6LL
as21 { R ’:m
— [J s
I v qr : l l
e LSB-fix
Increment for RNE
Dedislon ol

15l ¢ Result[0:51]

(a)

1]

(b)

Figure 3.18 - The Quach Rounding Scheme [79] (a)
Technology Schematic of Quach Rounding Scheme Obtained with XST(b)

BUPT

3.2 - Floating Point Multiplication 71

This algorithm was developed at Stanford University and was proposed by Quach,
Takagi and Flynn [79] and also optimized by Even and Seidel [30]. This algorithm
proceeds as follows, as described in [30]:

1.

10.

11.

12.

The SUM and CARRY are divided into a high part consisting of 54 bits and a
low part consisting 52 bits.

With the low part are computed C - carry bit, R - round bit and S - sticky
bit. The C bit is the carry out if the two lower parts would have been added.
The R bit is the most significant bit of the sum if the lower parts would have
been added. The S bit is obtained by an OR of all other bits of the sum if the
lower parts would have been added.

A prediction bit (PRED) is computed.

The higher part is input to a line of half adders and produces the X-Sum on
54 bits an X-Carry on 53 bits.

The X-Carry string is completed with the PRED, and with the X-SUM are
inputs for another line of 54 half adders. The results are X’-Sum and X'-
Carry on 53 bits, while the least significant bit of the sum is Lx.

The X’-Sum and X'-Carry are inputs for a compound adder. The results are
Y0 and Y1 (which is equal to YO+1).

An increment decision is computed, based on the rounding mode, the Lx bit,
the C, R, S bits and on the most significant bit of YO. The increment decision
is computed on two paths, one on the assumption that overflow occurs,
while the other on the assumption that no overflow occurs.

The least significant bit is computed for the case that no overflow occurs:

In case of RNE the fixing of the least significant bit of the result might be
needed. The fixing is also computed on two paths and two signals are
generated (FIX-Lovf, FIX-Lnovf).

Based on the INC signal, a selection between Y0 and Y1 is performed. The
result of this selection is Z (on 53 bits)

The normalization of the Z is produced in case that an overflow occurs (the
most significant bit of Z is 1). In this way the most significant 52 bits of the
result are obtained.

The least significant bit is obtained by a selection based on the most
significant bit of Z (which determines whether an overflow occurred). The
least significant bit of the result is either the corrected least significant bit of
Z, either the corrected L.

The performance of this algorithm is 15 LL. Figure 3.18 depicts the

implementation of this rounding algorithm. This algorithm uses the prediction for
the case of RI. This prediction is needed in order to reduce the number of
possibilities of the rounded result. A slight modification of this algorithm is
presented in [38]. The modification relies on reducing the two half adder lines into a
row of 53 half adder, while the prediction is added using a full adder cell.

BUPT

72 Hardware Interval Muttiplier- 3

54:104
CARRY[-1:53] SUM[-1:53] CARRYL é.uu[smoq
C[53) L
S: 6lL
[HAUne(5

Compound
Adder (52)

Y1 YO

Result{0:50] Result{51:52]

(b)
Figure 3.19 - The Yu-Zyner Rounding Scheme [30] (a)
Technology Schematic Obtained with XST(b)

BUPT

3.2 - Floating Point Multiplication 73

Another rounding algorithm for floating point multiplication is the YuZyner

algorithm [109] , which was implemented on Sun ULTRASparc processors and
optimized by Even and Seidel [30].The algorithm proceeds as follows, as described

in [30]:

1,

10.

The SUM and CARRY strings are divided into two parts: the higher part
contains the most significant 55 bits, while the lower part the least
significant 51 bits.

With the low part are computed C - carry bit and S - sticky bit.

The higher part is input to a line of half adders and produces the X-Sum on
55 bits an X-Carry on 54 bits.

The most significant 52 bits of the X-Sum and X-Carry are inputs into 52 bit
compound adder. The results are Y0 and Y1 (which is equal to YO+1). Based
on the most significant bits, a normalization right shift may be done for YO
and Y1.

The last 3 bits of X-Sum and the string formed by the C bit as least
significant bit and the last 2 bits of X-Carry as most significant bits are
inputs to a 3 bit adder. The result is Z0. In this way, a prediction of the bits
needed for RNE (least, guard and sticky) is achieved.

The processing of the Z0 is split into two paths: one on the assumption that
overflow occurs, while the other on the assumption that overflow will not
occur. A rounding decision is taken on both paths, based on the rounding
mode, on the S bit, and on the Z0. In the overflow situation, the rounding
decision is added on the most significant 2 bits of Z0 and Z0-ovf is obtained,
while in no overflow situation the rounding decision is added on the most
significant 3 bits of Z0 and Z0-novf is obtained.

An overflow selection decision is taken based the most significant bits of YO
and Y1 and on the Z0-novf:

An increment decision is taken based on the OVF signal and on the Z0-novf
and Z0-ovf:

The most significant 51 bits of the correct result is selected between the
(possible) shifted YO and Y1 based on the INC signal

The least significant 2 bits of the result is selected based on the OVF signal.

The structure based on this algorithm is depicted in Fig. 3.19.The delay of

the hardware scheme which implements this algorithm is 16 LL. However, this
algorithm does not require an addition of any kind of constant which depends on the
rounding mode, like the injection which is required in the Even-Seidel algorithm or
the prediction bit in the Quach algorithm.

Table 3.10 - Comparison between the Three Rounding Algorithms

Algorithm | Latency { Gate Count
Even-Seidel | 12 LL 2090
Quach 14 LL 1820
Yu-Zyner 16 LL 1806

BUPT

74 Hardware Interval Multiplier- 3

A comparison of the three rounding algorithm is done in Ta‘ble 3.10. The algorithms
are compared for their latency (measured in LL) and for their gate count.

3.3 Proposed Muitiplier

3.3.1 Algorithm

For interval multiplication, a new algorithm which combines the pipelined
algorithm presented in [53] (depicted in Fig. 3.1) with the eight products algorithm
(3.2) is proposed. The resuited algorithm is presented in Fig. 3.20 [3][4].

pP1=RNI(X; * Y5) P2=RPI(X;5 * Y5)

Gl1=RNI(Xjo *Ypi) G2=RPI(X;o * Yp;)

r1=RNI(Xp; * Yo) r2=RPI(Xp; *Y)n) m=min(pl,ql) M=max(p2,q2)

t1=RNI(Xp; *Yp;i) t2=RPI(Xp; * Yp;) m=min(m,rl) M=max(M,r2)
m=min(m,tl) M=max(M,t2)

A W N

Zip=m Zpj=M

Figure 3.20 - Proposed Interval Multiplication Algorithm

As depicted in Fig 3.20, this algorithm requires fourteen floating point,
operations (four multiplication with RNI, four multiplications with RPI and six
comparisons), as in the eight products algorithm. This is the major disadvantage of
this algorithm, because it might imply lower performance. However, using two
multipliers or one multiplier with two differently rounded resuits (dual result
multipliers), and two floating point comparators (one for minimum and one for
maximum) the number of the steps is reduced to only five.

This algorithm presents two major advantages. The first advantage (which
is not present at the eight products algorithm) is that it is suitable for pipeline
structures. Therefore, pipeline multiplier architectures can be easily incorporated in
the overall architecture. The second advantage is the rounding step is performed
within the floating point multiplications and not as a separate step. Thus, the very
efficient rounding algorithms, like the ones presented in Section 3.2.6 can be
applied.

3.3.2 Overall Architecture

In order to apply the algorithm described in Fig. 3.20, two floating point
muitipliers or a dual result multiplier has to be used. Furthermore, two floating point
comparators must be used. In order to save area, the dual result multiplier is
chosen. Therefore, the proposed architecture for the interval multiplier is composed
of a dual result multiplier and two floating point comparators [3]{4].

The dual result multiplier is similar to a tree multiplier. The encoding module
and the partial product reduction tree are identical to the ones used in a
conventional floating point multiplier. The reason is that the two results of the
multiplier are obtained from the same pair of operands (the results differ because

BUPT

3.3 - Proposed Multiplier 75

the rounding modes differ). Thus, the partial products obtained from the encoding
module and the two final partial products obtained form the tree are the same. A
new final addition and rounding unit must be used in order to provide the two
differently results for the same operands. This unit will be presented in detail in
Section 3.3.3.

The overall architecture of the proposed multiplier is depicted in Fig. 3.21.
In this figure, the structure of the dual result multiplier is given. In order to perform
the proposed algorithm, the two comparators are provided with two feedback paths.
The structure of the two comparators is similar as the one presented in [93]. The
comparators for the IEEE floating point numbers rely on sign comparators, an
exponent subtractor and a mantissa subtractor.

3.3.3 Final Addition and Rounding

As it can be observed from Fig. 3.21, the overall architecture of the
proposed interval multiplier relies on a dual result multiplier. The main features of
this type of multiplier is that the encoding module and the partial product reduction
tree are kept in common, while some parts of the final addition and rounding
module must be duplicated. The goal for such a multiplier is to duplicate as few
modules as possible of the rounding scheme, but without affecting the performance.
In this section, four rounding schemes are presented for this type of multiplier,
three of them being adapted from the ones presented in Section 3.2.6, and a new
one is proposed.

In order to apply the Even-Seidel algorithm, two injections have to be

applied (0 for RZ and 2752 _ 7104 g5 RI). Therefore, the injections cannot be
generated as partial products, because in the worst case two trees must be used.
Thus, a CSA level must be used for RI (in order to add the required injection), while
for RZ no such CSA level is required (because the injection is 0). This will result in
two pairs of final partial product (two pairs of SUM and CARRY). The two pairs of
SUM and CARRY will need two different rounding schemes (two compound adders,
two C[52], S and R circuits, two increment decision modules, four right shifters, but
no LSB fixing modules - RNE is not used) [6].

An improvement can be obtained using Quach algorithm, because the two
partial products used are identical for both rounding cases. Thus, the carry, round
and sticky bits generator is common for both rounding modes. However, because of
the prediction, two compound adders must be used (one for RZ when there is no
need of injection and one for RI when the prediction bit occurs). The hardware
scheme is presented in Fig. 3.22. The duplicated components are the compound
adder, the increment decision block (which is much simpler) the right-shifter and
the selection multiplexers [6]. The two rows of half adders do not need the
duplication, because the LSB of the first row sum output is used as Lx for RZ.

The Yu-Zyner scheme avoids the need of a prediction or injection. This is
possible because the most significant carry from the lower part (C[53]) is added
with bits from the higher part. In this way, the compound adder has the same
inputs (and thus the same results) independent of the rounding mode (as in Even-
Seidel or in Quach algorithm). In this way, the same compound adder can be used
for both RI and RZ. The results of the compound adder (YO and Y1) are processed
twice, for each of the two rounding modes. Thus, a major cost saving is achieved,
by using a single compound adder. Furthermore, a single carry and sticky generator
is used. The only duplicated components are rounding decision modules, the

BUPT

76 Hardware Interval Multiplier- 3

selection decision circuit and the multiplexers used for selecting the final result [6].
In Fig.3.23 the hardware scheme is presented.

X1 X2

[Encoding Module]

IVIV _ vvee

Partial Product
Reduction Tree

Dua(Result
Multiplier

Final Addition/

Rounding
_ Module _)
=T I B ey
FP FP
Compare Compare
v v
Zlo Zhi
(a)
- - —3 o -—edp ¥ L]
RN S | r— ~ o
o> == il T
. " s mes - -
GSRITD— ' 1 —
A
=o—
Sl : -
-«L—r—--]“] t v lew—a. ;)
] o
Sontes JHNEE mw S 20) =
s p—]
[> > —= o

(b)

Figure 3.21 - Proposed Interval Multiplier Architecture [4] (a)
RTL Schematic Obtained with XST (b)

BUPT

3.3 - Proposed Multiplier 77

CARRY[-1:52] c:.utmr[s:s:mqi
sunl-nsz] lsw[i :104] Ci53] S[53)
I Gy
L HA (54) J R.S | c[s2) Prediction
1L |x-Camy X-Sum S R |
Y 13
r HA (54)] RI S
X-Sum1] !
v v Lxjcsz] RS Wy XComyl v X i LAAR
Compound-Adder 1 Compound-Adder I
(53) nc (53) ne
! Dec hou Dec
Y4 Ly YO T Yl; JL-Yy 1Yu?. ‘

pETTR T
[mMox e :Lzz[fl [MUX 1ol L sy

|
Z2[0:50 50— 4 Zi[0:51) $550
[Shift-R Rnd_sig_ovfje1es] MUX | | ShIft-R_Rnd_sig_ovt}e-L MUX
V15LL 151y 1500

15
ResuﬁftZ[O:Sl] ResultZ[52] ResultI[0:51] ResultI[52]

Figure 3.22 - Rounding Scheme for Dual Result Multiplier Based on Quach Algorithm[6]

These three schemes were adapted from the ones used for conventional
floating point multiplication, which were presented in Section 3.2.6. A new scheme
for dual result multipliers is proposed which can be used only for interval arithmetic.
This scheme is based on the Yu-Zyner algorithm. However, the proposed algorithm
is simpler, because it does not into account RNE, which is not need in interval
arithmetic. The proposed algorithm proceeds as follows [6]:

1.The SUM and CARRY strings are separated into a high part consisting of 54
bits and a low part of 52 bits.

2.The lower part is used to compute C[52] and the S bit.

3.The high part is input to a line of half adders. The carry string (consisting of
53 bits) and the most significant 53 bits of the sum string are inputs to a
compound adder. The results of the compound adder are YO and Y1 (YO+1).

4.The LSB bit of the sum string (Lx) is added with C[52] for RZ, and with C[52]
and S for RI. The sum bit is the ResultZ‘[52] for RZ and Resultl’[52] for RI.
These two bits will be the LSB of the two results in case no overflow occurred.
The carry bits will be CZ[51] for RZ and CI[51] for RI. The two carry bits will
determine which of the YO and Y1 will be selected for each rounding case.

5.A selection between YO[-1] and Y1[-1] (the overflow bits) is done for each
rounding case, also based on the CZ[51] and CI[51]. The OvfZ signal for RZ
and OvfI signal for RI are generated.

6. The most significant 52 bits of the result are selected in both cases between
the normalized YO and Y1 based on the CZ[51] and CI[51]. The LSB of the
result is selected in both cases based on the OvfZ and OvfI.

BUPT

78 Hardware Interval Multiplier- 3

CARRIT-3:53) gy pyr.1:53)

[HAUne(55) |

 TheRI
Module

Compound
Adder (52)

i Yo vit-1 S i

INC
MUX !
: i) 2L 730 AT TN o]
ResultZ{0:50] Result{51:52] | __Resulti[0:50] Result[51:52] ;
(a)
I
1l
1
1 §il=d
i
il | i
5] 5
=

——t W

LT
LJ!
LJ
Lf
LoJ!
LJ
LT
Y P - -

(b)

Figure 3.23 - Rounding Scheme for Dual Result Muitiplier Based on Yu-Zyner Algorithm[6]
Technology Schematic Obtained with XST(b)

BUPT

3.3 - Proposed Multiplier 79

w12 :104
CARRY-1:52] _ 1:52) CARRY[S4 %un[so:xoq
) cIs2)
S: 6LL i l
Q Carry
I l x and Sticky
i
4 as2)] s
I) ¢
Compound HA FA
Adder (53) |cs1]] [Resuz752) ais1)| | rResurrisz)
8LL
Y1l YO vie1) vi[s1) 1)
bl | T gl
SR [SERI] { | M) o[b0 M)
12t
11 Y1
4 \ 4 4 v i 1

A Y
| MUX Je— [MUX J—=7 | MUX ¢ | MUx

13 w2u] O% *nu. wu] ot
ResultZ[0:51] ResultZ[52} Resultl[0:51] Resultl[52]

(a)

T

| 1
(b)
Fig 3.24 - Proposed Rounding Scheme for Dual Result Multipliers[6] (a)
Technology Schematic Obtained with XST(b)

-

BUPT

80 Hardware Interval Multiplier- 3

The hardware scheme is presented in Fig. 3.24. Furthermore, this algorithm
uses a single compound adder and a single carry and sticky generator, which means
a reduced cost. The drawback of this rounding scheme is that it doesn‘t implements
RNE. Therefore, it cannot be used for conventional floating point multiplication, but
only for interval arithmetic.

3.3.4 Interval Set Operations

The two floating point comparators can also be used for interval set
operations, like interval hull, interval inclusion or interval intersection. These
operations are of great importance for interval arithmetic (for example, the interval
intersection is used in each iteration in the interval Newton’s method). In Fig. 3.24,
algorithms for interval hull and interval intersection are given [1].

Zip = max(xlorYlo) Zjp = min(x/O’YIO)
Zh, = min(X,,,, Yh,) zhi = max(Xhi,Yh,‘)

If Zlu< Zlu then R= [Zln'zlu]
R= [ZID'Z/M]

else R= @&
a) b)

Figure 3.25 - Algorithm for Interval Intersection (a) and Interval Huli (b) [1]

In order to use the architecture proposed in Fig. 3.20 a series of*
multiplexers are introduced before the two floating point comparators. The latency
penalty is minimal (only 1 LL). However, an increase in functionality for the
proposed architecture is obtained [4].

3.4 Evaluation
3.4.1 Cost Analysis

The cost was estimated using gate count as metric. The gate count metric
can provide useful information about the size of the proposed circuits, although this
metric is not the most relevant for VLSI technology (as we have seen in 3.2.6, the
wired tracks are also important for VLSI circuits). However, this metric is technology
independent. Gate count was also used in [88]. As in [88], the basic gates
considered are AND/NAND, OR/NOR, NOT, XOR and the 2-input multiplexer.

In table 3.11 the cost of the proposed architecture for IEEE double precision
numbers is presented. The dual result multiplier has different configurations,
depending on the partial products reduction tree and the final rounding and addition
module. The encoding used was the Booth 2.

Table 3.12 presents the cost of conventional floating point multipliers which
use for encoding Booth 2 algorithm. Different types of trees and rounding and
addition modules are also used.

BUPT

3.4 - Evaluation 81

Table 3.11 - Gate Count for Proposed Architecture

Wallace Tree | Overturned Staircase | Balanced Delay | Binary Tree
Even-Seidel 23286 25032 23868 24084
Quach 22030 24046 22612 22828
Yu-Zyner 21000 23016 21580 21798
Proposed 20938 22954 21518 21736

Table 3.12 - Gate Count for Conventional Floating Point Multiplier

Wallace Tree | Overturned Staircase | Balanced Delay | Binary Tree
Even-Seidel 18800 20815 19238 19597
Quach 18630 20645 19068 19427
Yu-Zyner 18616 20631 19054 19413

As we can see from table 3.11, the multipliers which have as final rounding
and addition modules the modified Yu-Zyner and the proposed solution have a
significantly smaller gate count then the ones based on the Quach algorithm and the
Even-Seidel algorithms. In table 3.13, is a presentation of the gate counts for these
four solutions for final rounding and addition.

Table 3.13 - Gate Counts for Final Addition and Rounding Units

Algorithm | Gate Count
Even-Seidel 4168
Quach 2912
Yu-Zyner 1882
Proposed 1820

Another important aspect is that the proposed interval muiltiplier
architecture requires from 12% up to 27% more gates for double precision numbers
compared to the conventional floating point multipliers. The reasons for this
increase are:

e The two floating point comparators
e The increase cost of the final rounding and addition module.
e A more complex exponent update module.

The comparison with a conventional floating point multiplier is relevant,
because this unit is the backbone of all other implementations for interval
multiplication, like the sign examining algorithms or the eight products
[94][96][107].

3.4.2 Performance Estimates

The latency was estimated using the independent technology metric logic
levels (LL). This metric was also used for latency estimation in [16][30](88][89]. In
table 3.14 are presented the latency estimates for the proposed architecture, which
has uses a Booth 2 encoder module and a Wallace tree as the partial product
reduction tree. Table 3.15 presents the latency of a conventional floating point
multiplier, with the same type of encoder module and partial product reduction tree.

BUPT

82 Hardware Interval Multiplier- 3

The latency was estimated for different schemes used for final addition and
rounding modules.

Table 3.14 Latency Estimates for Proposed Architecture

Module Even-Seidel | Quach | Yu-Zyner | Proposed
Encoder 5 5 5 5
Partial Product Tree 14 14 14 14
Rounding Scheme 14 15 16 13
Comparator 9 9 9 9
Overall 42 43 44 41

Table 3.15 Latency Estimates for Conventional Floating Point Multiplication

Module Even-Seidel | Quach | Yu-Zyner

Encoder 5 5 5
Partial Product Tree 14 14 14
Rounding Scheme 14 15 16

Qverall 33 34 35

As it can be observed in Table 3.14 the proposed solution for rounding
scheme has the best latency. This is due to a much simpler logic of the proposed
scheme, because the proposed solution does not perform rounding to nearest even*
{which is the main drawback of the proposed solution).

The latency of the proposed architecture is higher compared to a
conventional floating point multiplier due to the floating point comparator (which
lies in the critical data path). If the proposed architecture would be used for a
conventional floating point multiplication (using Even-Seidel, Quach or Yu-Zyner
rounding schemes) the latency would be almost the same (for Quach and Yu-Zyner
it would be equal, while using Even-Seidel a 2 LL increase in latency can be
observed).

Based on the obtained latency, a four stage pipeline architecture for the
proposed multiplier can be used, with a clock cycle suitable for 12 LL (without
considering the delays of the pipeline registers or the clock skew). The conventional
floating point multiplier would have a three stage pipeline. In this case, an interval
muitiplication would require 7 clock cycles. A sign-examining interval multiplication
using a conventional floating point multiplier would require 4 clock cycles in the best
case, and 8 clock cycles in the worst case - when both intervals contain zero (6
clock cycles for the 4 muiltiplications and 2 clock cycles for the 2 comparisons).
Therefore, the proposed architecture presents a better worst case performance then
the sign examining algorithm.

3.4.3 Synthesis Results

Seven multiplier designs were implemented in Xilinx Virtex-4 family FPGA
technology using the Xilinx ISE 10.1 Webpack and synthesized with Xilinx Synthesis
Tool (XST). All seven designs use the Booth radix 4 (Booth 2) algorithm in the
encoding module and the Wallace tree as the partial product reduction tree. A 12-bit

BUPT

3.4 - Evaluation 83

compound adder was used for the compound addition of the most significant halves
of the final partial products, while the carry generator was designed for 11 bits.
Therefore, in case of the Yu-Zyner rounding scheme, which uses 1-bit smaller
compound adder and carry generator, the cost of the entire rounding scheme may
be smaller. The following seven multiplier results are:

¢ Interval multiplication unit using the proposed addition and rounding unit

e Interval multiplication unit using the modified Yu-Zyner addition and
rounding scheme

e Interval multiplication unit using the modified Quach addition and rounding
scheme

e Interval multiplication unit using the modified Even-Seidel addition and
rounding scheme

e Floating point multiplication unit using the Yu-Zyner addition and rounding
scheme

e Floating point multiplication unit using the Quach addition and rounding
scheme

o Floating point multiplication unit using the Even-Seidel addition and
rounding scheme

The latency and cost results for both interval designs and conventional
floating point multipliers are presented in Table 3.16. Figure 3.27 presents the
relative cost of the interval multipliers compared to the conventional floating point
multiplication units.

Table 3.16 - Latencies and Cost for the Interval and Floating Point Multipliers

Interval Floating Point
Multipliers Multipliers
Rounding Latency Cost Rounding Latency Cost
Scheme (ns) (LUT-4) Scheme (ns) (LUT-4)
Even-Seidel | 19.529 495 Even-Seidel | 15.365 336
Quach 20.397 452 Quach 15.959 327
Yu-Zyner 20.991 402 Yu-Zyner 15.366 320
Proposed 20.398 373 Proposed - -

The results obtained by synthesis are similar to the estimations presented in
sections 3.4.1. Regarding the cost, an increase is observed due the two floating
point comparators and the additional cost in the modified rounding scheme. The
cost of the interval multipliers for half precision ranges from 25% (in case of Yu-
Zyner rounding scheme) to 45% (in case of Even-Seidel rounding scheme). The
reason for this is that in case of half precision the weight of the encoder scheme
(124 LUT-4) and the partial product reduction tree (118 LUT-4) is smaller than in
case of double precision. Regarding the latency, a four pipeline stage for the
interval multipliers can be designed (as the conventional floating point multipliers
can be designed for three pipeline stages). An interval multiplication can be
executed in seven clock cycles using the proposed algorithm.

BUPT

84 Hardware Interval Muitiplier- 3

Cost Comparisson

400 -

LuT
g

ES Quach

m Intenal
@ Conventional

YZ

Figure 3.26 - Cost Comparison between Interval and Conventional Floating Point Multipliers

The results for the four interval rounding schemes are presented in Table
3.18 depicts the results (both latency and cost) obtained only for the four addition
and rounding schemes used for the interval multipliers designs. Figure 3.28 depict
cost*latency product (measured in ns*LUT-4) for the four interval rounding

schemes.

LatencyCost Comparisson

ns*LUT4 T e e s e

b

|

ZOOOT

1500 1

1000 -

500

ol

ES Quach

m Latency*Cost

YZ Proposed

Figure 3.27 - Latency*Cost Comparison of the Four Interval Rounding Schemes

Table 3.17 - Latencies and Cost for the Interval Rounding Schemes

. Latency (ns) Cost
Rounding Scheme Logic | Route | Total | (LUT-4)
Modified ES 2.192 | 5.218 { 7.410 226
Modified Quach | 2.342 | 6.796 | 9.138 159
Modified YZ 2.349 | 5.675 | 8.024 132

Proposed 1.911 § 5.265 [7.176 120

BUPT

3.5 - Summary 85

As it can be observed from both Table 3.18 and Fig. 3.27, the proposed
rounding scheme has the smallest latency and the smallest cost (as it was shown in
sections 3.4.1 and 3.4.2). Very advantageous from the (latency*cost) perspective is
the modified Yu-Zyner rounding scheme. The Even-Seidel also has a relative low
latency (the second lowest), has a very high cost compared to the other three
rounding schemes (almost double compared to the proposed one).

3.5 Summary

In this chapter, an overview of the most important algorithms and
implementations for interval multiplication is presented in Section 3.1. Two
techniques are of interest: the pipelined basic algorithm and the eight products
algorithm. Emphasize is on these two because the proposed algorithm is a
combination of these two.

In Section 3.2, a detailed description of the floating point multiplication is
realized. We focused on the mantissa multiplication and rounding. Details of each
major module of the mantissa multiplication are given: the encoding module, the
partial product reduction tree and the final addition and rounding module. These
modules constitute the building blocks of the proposed multiplier.

Section 3.3 is dedicated to the proposed solutions for interval multiplication.
The main contributions regarding interval multiplications are presented in this
section and are:

e An algorithm for interval multiplication, based on the basic pipeline
algorithm and on the eight products algorithm

¢ A multiplier architecture for the proposed architecture and based on the dual
result multiplier. Furthermore, the proposed architecture can be used for
interval set operations.

¢ Modifications of the Even-Seidel, Yu-Zyner and Quach rounding schemes for
dual result multipliers. Furthermore, a new rounding scheme for interval
arithmetic is proposed.

Estimates for cost and performance were done and are presented in Section
3.4. The cost estimates show an increase form 12% up to 27% (double precision)
and 25% up to 45% (half precision) of the proposed architecture compared to a
conventional floating point multiplier. The main reasons for this increase are the
two floating point comparators. However, this two floating point comparators can
also be used for interval set operations, thus increasing the functionality of the
proposed design. Performance estimates show an increase in the worst case of the
proposed multiplier compared to an interval multiplier based on a sign examining
algorithm. Furthermore, the proposed multiplier can be used for conventional
floating point multiplication (with Even-Seidel, Quach and Yu-Zyner rounding
schemes) with the same performance of a standard tree based floating point
multiplier. Last, but not least, the proposed rounding scheme for interval arithmetic
has an improved latency with respect to the three other rounding schemes, with a
cost similar to the modified Yu-Zyner scheme (which has the smallest gate count of
the three modified rounding schemes).

BUPT

BUPT

4. Floating Point Divide-Add Fused for Interval
Newton’s Method

4.1 Considerations on the Floating Point Divide-Add Fused

A detailed analysis on the floating point division and its impact on the
overall performance in a floating point system were performed in [70] by Oberman,
using the SPEC FPU benchmarks. The analysis showed that the division has a
frequency of about 3% from all floating point operations (compared to the 55% for
floating point addition and 39% for floating point multiplication). Hence, floating
point division is a scarce operation, and therefore, the hardware designs regarding
division should be oriented to lower cost rather than higher performance. Another
analysis performed in [69][70] showed that the 29% of the results of floating point
division are used as operands in addition. Thus, the percentage in conventional
floating point systems of the divide-add fused (division followed by subtraction)
would be less than 1%. Instead, multiply-add fused counts more than 12% from all
floating point instruction. Thus, an implementation of the multiply-add fused is
convenient even for general purpose processors. This is not the case for the divide-
add fused, which is a very rare operation. Therefore, to the best of my knowledge,
no hardware unit for divide-add fused has been implemented.

Also in [70], the authors conclude that a floating point divide-add fused
would be convenient if the percentage of this operation would be similar to the one
of floating point multiply-add fused. This could be the case in interval arithmetic,
mainly because of the Newton’s interval method. This algorithm is a powerful tool
for nonlinear equation solving [24][34][82][102][104], with applicability in a wide
range of fields such as chemical engineering, computer graphics, robotics and
control theory, computer-aided design [47]. This algorithm is based on a division
followed by subtraction, thus a divide-add fused unit would be convenient for this
method.

4.2 Interval Newton’s Method

4.2.1 Standard Interval Newton’s Method

The standard interval Newton’'s method can be applied to functions which
are continuous and monotonous on the specified interval. Given a function f and a
starting interval X ={ X, Xp;], the algorithm relies on the following iteration

[24][33][34][48][102]{104]:

Xg =X (4.1)

BUPT

88 Floating Point Divide-Add Fused for Interval Arithmetic - 4

(F(m(X;))

Xiq = | m(Xj)- ==t
i+1 (I) f (X,) '
Where m(X;) is one point which belongs to the interval X; (usually is considered

the midpoint of the interval). The termination criteria for this algorithm is
represented either the case of the @ interval (case where there is no solution in the

X =X, Xpi] for the equationf(x)=0), either the obtained interval has the

f\xi

desired accuracy (|X,o_,- - Xh,-_,-| < ¢)[102)[104]. The graphic representation of the
interval Newton’s method is depicted in the Fig. 2.1.

f(x)]

x
v

Figure 4.1 - Graphic Representation of Newton’s Interval Method. [al,b1] represent the initial
interval, m1 is the midpoint, and [a2,b2] represent the result interval after the iteration (in
this case bl=b2)

This algorithm makes use of the interval division. The interval division is
defined as follows [53][95][94]:

X =[XIOIXh% =X Xni
A Ylothi] [lor h’]*}fylolyhi], (2.2)

Undefined for O € (Y, Y]

As a direct consequence of (2.2), the standard interval Newton’'s method
cannot be applied for intervals where the function has a local minimum or maximum
on the initial interval (or the derivative has a zero on the specified interval)
[32]{47]. Thus, this method can be used for functions which have maximum one
root on the specified interval. in order to extend this algorithm to intervals where
the function has a local minimum or maximum (thus, having more than one root),

an analysis of the interval division by an interval containing zero must be
performed.

4.2.2 Interval Division by a Zero Containing Interval

The interval division is defined in (2.2). It resembles the interval
multiplication, thus, it weuld be expected to be as difficult as it, requiring ten

BUPT

4.2 - Interval Newton’s Method 89

floating point operations in order to perform it [49]. As in the case of interval
multiplication, sign examining for interval division can be performed [95]. Unlike the
interval multiplication, due toOe [Y,,Yy;], the interval division consists of only six

cases, each requiring only two floating point divisions, as presented in Table 4.1
Tabie 4.1 - Interval Division [49][95][94]

[Xios Xhi] [Yio: Yhi] Result

X/O>0 Y/O>0

| Xiog
2 Xhi Xio 1
Xio >0 Yhi <0 Yni’ Yo

XIO<0<Xhi Y/0>0

Xio <0< Xpj Yhi <0

5 X0/ Xpi
xp<0 | Vo>o || Xog Kng |

3 X/ Xio/]
Xp; <0 Yy <0 [/Y/o %’m_

In order to extend the interval Newton’s method to intervals where the
function has a local minimum or maximum, the interval division by an interval
containing zero must be considered. One such analysis was performed by Ulrich
Kulisch [53][54] and constitutes a proposal for the future IEEE 1788 standard for
interval arithmetic. This analysis is done according to the positioning of the zero
within the interval.

Case 1.Y =[0,0]=0

This case can be regarded as follows: the result of the division)%, can be

viewed as the solution of the following equation0+* x =a,ae X . Two sub-cases do
appear:
e 0e X, which leads to the solution (—eo;+w)((—eo;+e)for 0+ x =0 and @ for

O*xx=a,a=x0)
e 0Og X, which leads to the solution @

Case 2.Y =[Y),,0]

In this case, the Y =[Y,,0]interval is replaced with the Y'=[Y),,-¢].
Depending on the dividend X = [X,O;Xh,-] we have the following sub-cases:

BUPT

90 Floating Point Divide-Add Fused for Interval Arithmetic - 4

s Xy X
e Xpj <0. The result of the)%,.dlwsnon is [%o' /‘%g]. Therefore, the

o o TX X/ X/)
X hl IO = hl
result of the division A is lim [/Y,o ' —e] [Yio 1t

-0

e X, >0. The result of the)%,.dIVISIOFI |s[’7/ X’O/ } Therefore, the
O

result of the division)%, is lim {X”ZE,X%O] = (—oo, X/O/Y/o:l .

e-0
Case 3.Y =[0,Y]
In this case, the Y =[0,Yp;Jinterval is replaced with the Y'=[eYp;].
Depending on the dividend X =[X)5; Xpj] we have the following sub-cases:

. X ivision i —Xh/ Xhi
e Xpj <0. The result of the A.dwnsnon is e A" Therefore, the

result of the division A Is ngO[€’ %hi] (Y hi

T X
e X5 >0. The result of the)%,.dlwsnon is] Io/h: h4 Therefore, the

e X/ e v | Xlo Xhi X0
result of the division AIS hm[/h/ 4} [%h/)

-0

Case 4.Y = rY/o, Yh,':],Y/o <0< Yhi

In this case, the Y =[Yj,,VY]interval is replaced with
theY' ={Yj,,-¢]uUle,Ypi]- In this case we use the inclusion-isotony property of
interval arithmetic (Ac BAC c D= AopC c BopD)[54]. Depending on the
dividend X =[Xo; Xp;] we have the following sub-cases:

' X ciai ot Xpj X X// Xpi
e Xpj <0. The result of the A.dwnsnonm[/Ylo' %g}u[oe’ thi.

Therefore, the result of the division)%, is
- Xpi X X Xhi Xhi Xhi
lim fy,/o][lo,fy}(wfy][ry)
p—m[Yio /f - 4 Yhi 4 7] e Yo' ™
X Xhi/ Xio Xlo Xni
e Xj, > 0. The result of the A.dlvnsmn |s[/ AD Yoi” /g

Therefore, the result of the division A is

R N A A O AN]

BUPT

4.2 - Interval Newton’'s Method 91

Table 4.2 - Interval Division by an Interval Containing Zero [54]

0 [Xjo, Xp;] * [~
> x [0,0] @
1 Xjo
3 Xjo >0 [Yio: O] L—m' Yio
4 Xjo >0 [Or Yhi] [X%hi ! Mj
X X
5 Xjp >0 OE[YIothi] L_“' IO/Y/O]U[%h/'mj
X .
6 Xpi <0 [YIO’OJ [%o'm]
X .
7| xpi<o0 [0. Yhi] (""' ’%u-]
. Xpi
8 Xpi <0 OE[YIO'YhI'J (_W’X,%h,‘jlu[%OIM)

Table 4.2 presents all the cases for interval division when the divisor
contains zero. This way, an extension of the standard interval Newton’s method can
be obtained for any continuous functions on the selected interval.

4.2.3 Extended Interval Newton’s Method

In order to extend the interval Newton’s method to function whose derivates
have a zero on the selected interval, it must be taken into account the division by
an interval which contains zero. Without losing from generality, we will consider the
case of O e f'(X), which corresponds to the 5™ and 8" rows from the Table 2.3.

Starting from the iteration described in (2.1), after the division and the
subtraction the following set is obtained [53]:

X'is1 = (=2 Xjoojs1 | [Xpizis1s +) (4.3)

After the intersection with the previous intervalX; =[Xy,_;, Xp;_;], four cases
might be obtained [53]:
9,
[Xio-i+ Xjo-i+1]
[Xhi-i+1: Xni-i]
[X1o-i+ X10-i+1][Xhi-i+1: Xni-i]

X','+1ﬁ X] = (44)

The first case corresponds to the no solution situation. The second corresponds to
the case when the solutions are in the interval[X;,_j, Xjo_j,1]. While the third

corresponds to case when the solutions are found in the interval] Xp;_j,1, Xpj_j |-
The fourth case represents the case when the equation has at least two solutions,

BUPT

92 Floating Point Divide-Add Fused for Interval Arithmetic - 4

one in the [Xj_j,Xjp-js1]a@nd the other in (Xhi-i+1: Xpi—i]. The graphic

representation of the fourth case is depicted in Fig. 2.2. Therefore, by psing the
extended interval Newton's method, equations which have multiple solutions on a
specified interval can also be solved.

4
f(x)

| L

a1l ‘™ b1

y

X
A

Figure 4.2 - Graphic Representation of the Interval Newton’s Method when the
Function Has a Local Minimum

Therefore, by employing division by an interval containing zero, the interval
Newton’s method can be used for every continuous function on the selected .
interval. This way, a very powerful numerical algorithm for solving nonlinear
equations is developed.

4.2 .4 Discussion

The interval Newton’s method has been proven to provide accurate and,
more important, guaranteed results [24][82]. This is quite in contrast to the
conventional Newton’'s method, which is known that it fails in some conditions to
converge to the root (having a false convergence). Furthermore, the extended
Newton’s algoritbm can be used for functions with multiple roots, providing clear
indications about the number of them. Another advantage compared to its classical
counterpart is that it indicates from the first iteration the inexistence of any roots.
Thus, computation time is saved from finding roots that do not exist.

Regarding the performance, this method has quadratic convergence [47].
Provided fast operations within the method (function evaluation, fast division, fast
subtraction), the interval Newton’s method becomes a numerical algorithm which
can be used for high performance applications (like rendering in graphical
computations [84]).

Furthermore, this algorithm can be extended for the nonlinear systems of
equations. For this purpose, matrix operations are needed, and the Jacobian matrix
is used in order to find the solution of the nonlinear systems [103][105].

For this algorithm, a dedicated operator - the interval Newton operator -
has been defined for an interval X based on a functionf [33]:

BUPT

4.2 - Interval Newton’s Method 93

N(X,f)= [m(x)-m] (4.5)

This operator comprises of a function evaluation on an interval, on function
evaluation in a point, an interval division and subtraction. The two function
evaluations are dependent on the chosen function. However, the division followed
by the subtraction remains as standard operation, no matter the function.

The interval Newton’s method is the one of the most important, or maybe
the most important, numerical method of the interval arithmetic. Every field of
applications which require solving nonlinear equations or systems of nonlinear
equations can benefit from interval Newton’s method. Applications of this method
have been developed in chemical engineering [47], computer graphics and
visualization (ray tracing, surface intersections)[84], computer-aided design [32],
control theory and robotics[24], etc.

4.3 Floating Point Multiply-Add Fused

4.3.1 Consideration on the Floating Point Muitiply-Add Fused

The multiply-add fused floating point unit represents the basis for the
proposed divide-add fused circuit due to the following reasons:

e One of the two involved operations is represented by the
addition/subtraction

¢ The floating point division is similar to the floating point muiltiplication and
has the same precedence compared to the addition/subtraction

e The rich experience in the design of the floating point multiply-add fused

Multiply-add fused (multiplication followed by an addition) -F1+F2* F3-
one of the most frequent arithmetic operation [18][57][64]1[99]. It is the basic
operation for dot product, matrix muitiplication, convolution or polynomial
evaluation, which are standard operations in different applications, like digital signal
processing or computer graphics. Therefore, a hardware unit dedicated for muitiply-
add fused is necessary for a wide range of processors, like DSPs or graphical
processors.

There are two reasons for using a dedicated hardware unit to perform the
multiply-add fused operation, rather than using a multiplier and an adder [46][55]:

1. The performance of dedicated hardware muitiply-add fused unit for the
combined operation is greater compared with the solution based on a
multiplier and an adder.

2. Instead on performing two rounding operations (one rounding for
multiplication and one for addition), only one rounding operation is
performed on a dedicated unit. This leads to a reductlon of rounding errors
and an increase of the accuracy.

Therefore, in many application specific processors or even general use
desktop processors, like IBM PowerPC, the multiply-add fused had been

BUPT

94 Floating Point Divide-Add Fused for Interval Arithmetic - 4

implemented [99]. The multiply-add fused can also be used for addition or for
multiplication, but the performance of these two operations is lower compared to a
floating point adder or a floating point multiplier.

4.3.2 Basic Algorithm

Given three floating point numbers, F1 = (—1)Sl «2E1-bias . m1,
F2 = (-1)52 x2E2-bi8S .y M2, F3 = (-1)>3 +2F370135 41 M3, the multiply-add fused
operation F1+ F2*F3 involves the following steps [46][99]:

1. Addition of multiplication exponents (E2+E3-bias) and the
subtraction from the result of the addition exponent (E1-bias). In this
way, the result exponent can be determined (max (E2+E3-bias, El-bias))
and the amount for the alignment shifting for the addition operand.

2. Align the addition mantissa (1.M1) based on the exponents difference
obtained in step 1.

3. Mantissa multiplication of the multiplication operands (1.M2 and
1.mM3). This usually is carried out using a tree multiplier.

Addition of the aligned mantissa.
Result complementation.

Leading zero detection.

N o oun s

Normalization of the result mantissa in case of overflow or in case of
leading zeros.

8. Rounding

Steps 1 and 2 (exponents addition and subtraction followed by addend’s
mantissa alignment), respectively 3 (mantissas’ multiplication) are done in parallel,
while the other steps are performed sequentially. Due to the many steps in the
critical path, a large latency results for this basic algorithm.

4.3.3. Enhancements of the Basic Algorithm

In order to increase the performance of the floating point multiply-add
fused, several improvements are performed to this basic algorithm. Regarding the
multiplication, a tree multiplier (which in case of normal multipliers consists of an
encoding scheme, a partial product reduction tree and a final adder) is used [46].
However, in this case only the encoding module and the partial product reduction
tree are used. Therefore, the product will be obtained in a redundant carry-sum
form. The aligned addend will be added to this redundant form using a carry-save
adder line, resulting thus two final sum and carry strings which will be added in
large carry propagate adder.

Regarding the alignment step (step 2), a bidirectional shift (left or right
shift) may be needed, based on the sign of the exponents’ difference. In order to
avoid the bidirectional shifting, the following procedure is used [46][56][99]:

BUPT

4.3 - Floating Point Multiply-Add Fused 95

1. The addend 1.M1 is initially considered to be positioned m+3 bits (where m
is the number of bits of mantissa - in case of double precision format
m=52) to the left of the product.

2. Two zero bits will be placed in front of the product, which will stand for the
guard and round bits.

3. Rather than the E1-(E2+ E3- bias) difference (which will indicate the

amount of shifting to the left or right), a new difference will
computed: m+ 3 -(E1-(E2 + E3 - bias)). In case that the new difference is

negative, no shift will be computed.

By performing these three steps, the bidirectional rounding is avoided, only a right
shift rounding being needed. However, even in the case of effective addition,
normalization step is required.

1.M1 1.M2 1.M3
i i
t
; i L
Bit Invert ! ! Encoding Module f
T 1 - H
¥ v _
Alignment
i Right Shifter ; Partial Product
' : Reduction Tree
f ;
% i
!
v k3
CSA .]
. e
- 3
v ! v v
161 - Bit
LZA Carry Propagate Adder
| !
1 Complementer
| . ,
H i
| | !
R — Normalization —— Sticky |
| !
i :
Rounding A——

e el

Figure 4.3 - General Architecture of the Mantissa Data Path in a Multiply-Add Fused
[10][46][55]

BUPT

96 Floating Point Divide-Add Fused for Interval Arithmetic - 4

The required size for the final carry-propagate adder is of 3*m+ 2bits
[46](for double precision format 161 bits adder). As in the case of floating point
addition, instead of a leading zero detector, a leading zero predictor is used, which
runs in parallel with the final carry-propagate adder. However, unlike the floating
point addition, rounding cannot be reduced to selection by using a compound adder,
because normalization is done even in the case of effective addition. Therefore,
rounding is performed after normalization.

Another improvement of the basic algorithm of the floating point multiply-
add fused consists in the usage of a leading zero prediction instead of a leading zero
detection [46]{55). This feature is inspired from the design of the floating point
addition units. Like in the floating point addition, the leading zero prediction works
in parallel with the carry propagate adder, providing the shifting amount needed for
the normalization at the end of the addition.

The overall architecture of a floating point multiply-add fused unit is
presented in Fig. 3.1. As it can be observed, the structure presents in the
characteristic from both floating point muitipliers (such as the encoding module
based on a multiplication algorithm and the partial product reduction tree) and from
floating point adders (such as the leading zero predictor or the alignment and
normalization shifters).

4.3.4. High Performance Multiply-Add Fused Units

The basic algorithm for floating point multiply-add fused presented in
Section 3.2 presents a high latency. The module which introduces the greatest
latency is the large carry propagate adder (a three word length carry propagate
adder), which for IEEE double precision format must be of size 161. Furthermore,
the rounding step is not performed as a simple selection as in the case of floating
point addition or multiplication, due to the normalization left shift which occurs even
in the case of effective addition [55]. Several strategies for increasing the
performance of the floating point multiply-add fused have been developed and are
based either on a reduction of the carry-propagate adder size, either on reducing
rounding to a simple selection.

One technique is used in [22] and is based on using a redundant adder -
signed digit ~ for the three word addition. Two normalization shifters are used. One
normalization shifter is used after the signed digit adder. After this first
normalization shifter, a conversion from the signed digit redundant form to the
conventional representation using a two word carry propagate adder is performed.
After this carry propagate addition, another normalization shift is performed before
rounding.

A more advanced design is proposed in [55] by Lang and Bruguera (Fig.
4.4). This strategy tries to reduce the rounding operation to a simple selection, in a
similar fashion as in floating point adders or floating point multiplication, by
reducing rounding to a simple selection a major reduction in latency occurs due to
the following reasons: a single word length carry propagate adder is used (which
works in parallel with the carry, round, guard and sticky bits computation circuits)
and no carry propagate adder is used for rounding (instead a simple multiplexer
circuit is used). However, as presented in the Section 4.3.2, because of
normalization step, which in the case of the multiply-add fused is required even in
the case of effective addition, performing rounding as a simple selection after the
addition is rather difficult. -

BUPT

4.3 - Floating Point Multiply-Add Fused 97

The main contribution of the floating point multiply-add fused proposed in
[55] consists of performing normalization before the carry propagate addition. The
obtained architecture of the [55] is presented in Fig. 3.3. The normalization is
carried on the sum and carry strings which result after the carry-save adder line.
However, normalization can be performed only after the leading zero anticipation. In
order to decrease the delay, the carry save addition between the carry-sum
redundant form of the product and the addend is performed in parallel with the
leading zero prediction. Furthermore, two half adder lines are used, which also work
in parallel with leading zero predictor. Also, parts of the final compound adder are
placed after the half adder lines. The two lines of half adders and the compound
adders’ parts form two computational paths. The reason for the two computational
paths is that one path computes for the case of a positive result, while the other
computes for the case of a negative result.

1.M1 1.M2 1.M3

| .

Bit-Invert
Tree
Alignment Multiplier
Shifter
T I ‘
T
¥ Y 44
| CSA |
v [J—l—j
Bit-Invert
Sign v J
Detect [HA | [HA |
> v v v LZA
IPart of CPA Part of CPA

I—;—t"v — Hf—l'

v v
———
le———
Normalization —L—— .|
: I
v v v l
Compound Carry, Round,
Adder Sticky

[lmux lﬂ— .

!

Figure 4.4 - The Floating Point Multiply-Add Fused as Proposed in [55]

BUPT

98 Floating Point Divide-Add Fused for Interval Arithmetic - 4

Also, in parallel with the two computational path formed by the half adder
line and parts of the compound adder, and the leading zero predictor, is placed a
signed detection circuit which has the role of the sign detection of the final result.
Based on the detected sign, the result is selected between the two computational
paths. After the normalization left shifting, the final addition and rounding is
performed similar to the one used in floating point addition and multiplication. The
solution chosen by the authors in [55] consists of performing the rounding in a
similar way to the Yu-Zyner floating point multiplication rounding algorithm [109].
Thus, for rounding a circuit for the carry, sticky computation, a small three bit carry
propagate adder which computes the least, guard and round bits and one word
length compound adder which runs in parallel with carry and sticky module are
used. Based on this design is the one described in [57], which is dedicated to
increasing the throughput of the operations performed on the multiply-add fused.

1.M1 1.M2 1.M3
| i i
! ¥ v
b
! (CSA Tree
| ! 1.M3
i 1 [
N —" :
— .
, t [MUX] [MUX
| ‘rB—itTI_:_Mf’ [¥
”l——“ vert. .
: 1(! _— - Al 106tbg:h_ﬁ:
| ‘ n Sh3j§ftfer] ignment Shifter
g e |
| Detect | 2 2 v yv
| 1 [3:2CsA i { v 3 : .
1= i O X
I H :
~——{Controlled Bit Invert] .
1 LZP _Bit-Invert

-

+ | - et
i | 3:2CSA

4

l ' 34
Normalization ! Small

Shifters Small LzpP
Normalization [¢

[————y

i MUX |
| |
E s : 1
4 v v
Compound Carry, Round,
Adder Sticky
1 T

MUX

BUPT

4.3 - Floating Point Multiply-Add Fused 99

Figure 4.5 - The Double-Path Multiply-Add Fused Architecture [18]

Another approach for increasing the floating point multiply-add fused
operation performance has its inspiration drawn from the floating point addition
optimization techniques, and especially double path adders [18]. The approach to
use two parallel and mutually exclusive paths in the mantissa data path of the
floating point multiply-add fused has the main role of increasing the floating point
addition (the case when the one of the multiplication operands is equal to one)
performance. Figure 4.5 presents the general structure of the [18] multiply-add
fused.

In order to obtain the double path structure for the floating point multiply-
add fused, the alignment shifting is not performed in parallel with the multiplication.
The two computational paths are called as in the classical double path floating point
adders: the FAR path and the CLOSE path. On the CLOSE path are computed only
effective subtractions when the exponent difference is 0, 1, -1 or 2 and the
multiplication results in overflow. On the FAR path are computed the rest of the
operations. The FAR path comprises of a small 3-bit alignment right shifter, the
carry-save adder, the computational paths comprised of the half adders and parts of
the compound adder (as in the design proposed in [55]), the normalization shifters
and the leading zero prediction. The CLOSE path comprises of a large three word
length alignment right shifter, the half adders computational path, a 3-bit
normalization shifter and a small leading zero predictor. The selection between the
two computational paths is realized before the final addition and rounding. Thus,
this design requires a single compound adder, unlike the double path floating point
adders, which reqguire one compound adder for each computational path. The
rounding algorithm used in this design is the same as in Lang-Bruguera multiply-
add fused unit. This floating point multiply-add fused unit was designed in order to
increase the performance of a floating point addition when executed on such unit,
but without affecting the performance of the floating point multiply-add fused.

Regading the presented muitiply-add fused architectures, the two designs
based on combining rounding with the addition present the highest performance,
due to the fact that only a single carry propagate addition is present in the critical
path of the

4.4 Floating Point Division

In the case of the floating point multiply-add fused specific elements which
are common to multiplication are found in the internal structure of the dedicated
combined unit. These specific elements are the encoding module which implements
one multiplication algorithm and the partial product reduction tree. It is expected
that also for a dedicated floating point divide-add fused specific elements of the
floating point division units to be present in the overall architecture. Therefore, a
detailed analysis of the floating point division must be realized.

4.4.1 Basic Algorithm

The basic algorithm for the floating point division resembles greatly with the
algorithm for the floating point multiplication. The division between two IEEE

a

BUPT

100 Fioating Point Divide-Add Fused for Interval Arithmetic - 4

floating point numbers (F1=(-1)51* 2E1-bias x 1 py

andF2 = (—1)52 * 2E2-bias x 1 M2) is given by the following formula [51]:

53 * 253—bias x I M3 = F1/F2 _ (_1)51(952 * 2E1—E2+bias *(1M1/1M2) (4 6)

As it can be observed in the (4.6) the sign of the result is an exclusive-or
between the two sign, the exponent is obtained by subtracting the two exponents
and adding the bias, while the mantissa of the result is obtained by dividing the two

mantissas.
Because the result has also to be represented in IEEE 754 format the

following steps are also required [51]:

1. Normalization of the mantissa - because the mantissas of the two resuits
are within [1,' 2)interval, the result of their division is in the range [0; 2); if the

result is in the range (0,5;2)a normalization left shift with the exponent
decrement are required.

2. Rounding, followed by post normalization.

511 5[2 El E2 i.M1 1.mM2
v v l v :
XOR! Exponent
] Subtraction Mantissa
| Division
f
! Exponent :
; nen
i !
| | Update | — Nonna;lzation
Rounding
|
Ex : t >
onen
; | Uzdate +——— Normalization
T

|
I : |
S3 E3 1.M3
Figure 4.6 - Overall Architecture of a Floating Point Divider [51]

The basic architecture of a floating point muitiplier is depicted in Fig 4.6.
The largest delay module in this architecture is the mantissa divider. Furthermore,
the rounding unit significantly contributes to an increase in the delay of the unit,
because it requires a large carry propagate adder.

4.4.2 Mantissa Division

BUPT

4.4 - Floating Point Division 101

The mantissa division is the core operation for the floating point division.
The mantissa division is basically an unsigned integer operation and is the most
difficult from all basic integer arithmetic operations (addition/subtraction,
multiplication and division). Several algorithms for division have been developed,
which can be classified in four categories [29]{60][71]: digit-recurrence,
multiplicative methods, very high radix and table look-up. However, only the first
two classes of division algorithms are being implemented in the current processors.
Therefore, a detailed look for these two types of division algorithms is performed in
the following sections.

4.4.2.1 Digit-Recurrence Division

Digit recurrence division is a class of division algorithms which return a fixed
number of quotient digits at each iteration. One class of digit recurrence division is
the SRT (Sweeney, Robertson [83]and Toucher). The digit recurrence division
between two numbers (Dividend and D - divisor) consists of finding the number
Q - quotient which satisfies the following relation [52][67][100]:

Divident =Q*D + P (4.7)

where P represents the remainder of the division. The main feature of the digit
recurrence algorithms is that a remainder is obtained after the division (unlike the
multiplicative methods).

The digit recurrence algorithms consist of k iterations, in which the following
recurrence is followed [64]:

rPy = Dividend (4.8)
Pj+1:er_qj+1*D (49)

where Pj represents the partial remainder at iteration j(FPy is the first partial
remainder), rthe radix in which the operation is performed (r=2b), and
g;j represents the quotient digit. The quotient digit at iteration jis obtained using a

quotient selection function which depends on the divisor and on the partial
remainder:

qj = SEL(rPj_1,D) (4.10)

The number of iterations when dividing two n bit numbers is given by the following
relation:

k_m (4.11)
b

The final partial remainder is computed from the final remainder {71]:

P, if P._120
P__ k-1, ! k-1

- Pk—l + D,ff Pk—l <0 (412)

For the computation of the square root the relation (4.3) becomes [21]:

aN

BUPT

102 Floating Point Divide-Add Fused for Interval Arithmetic - 4

- 4.13
Pj+1::ij—z*qj+1*qj_qj+12*rI1 ()
Therefore, digit recurrence algorithms can be used for both division and square root

operations, many commercial floating point units present a combined divider and
square root unit.

D Pj
] |
L
;i- *'i -ab aD
] T
}' > MUX |
Qj+1 h4 ;J
| Adder
v
Pj+1

Figure 4.7 - Basic Block of a Digit Recurrence Divider [67]

As it can be observed from (4.9) and (4.11), the digit recurrence algorithms
are based on the subtraction operation and their complexity is O(n). Using (4.9)

and {4.10), the basic block for a digit recurrence division (the block used for the.
computation of one digit of the quotient) is presented in Fig. 4.7. The divider may
use only one such block and the division will be performed sequentially. In this case,
the divider presents a reasonable cost, but it cannot be used efficiently in pipelined
architectures (because the divider is occupied by only one division). At the opposite,
a divider can be implemented by unrolling of the previous solution. In this case, the
divider has k blocks [10]. Therefore, the cost of this solution is much higher than
the previous solution, but it has a far larger throughput. Also, combined solutions
can be used, based on a trade-off between the area overhead and desired
throughput. However, in many commercial implementations the first solution is
used, mainly because the division is not a frequent floating point operation.

4.4.2.1.1 Design Choices

Several design choices must be taken when designing a division unit, which
implies a series of both performance and cost tradeoffs. These design choices are
related to:

« Radix. A higher radix means less iteration, leading an increase in the
performance [11]. However, this reduction in iterations comes at a cost
{40]. On one hand the quotient digit selection becomes more complicated,
either increasing the combinational logic needed, either the table lookup
(the latency of the table is increased linearly with the radix, while the area
of the table quadratically) [68]. This leads to an increase in the latency of
the iteration, which may lead to the increase of the clock period.
Furthermore, higher radices (for example 8 or 16) involve the generation of

BUPT

4.4 - Floating Point Division 103

hard multiples (like 3x, 5x, etc) which are difficult to obtain. As in
multiplication, the chosen radices for division are 2 and more frequently 4.

Quotient Digit Set. The quotient digit set depends on the radixr . The
easiest way is to use a set consisting from r values. This type of set is
called the non-redundant digit set. However, using a non-redundant digit
set means a very low performance from the division algorithm (for example,
a radix-2 non-redundant digit set is equivalent to a non-restoring division).
The redundant digit set is comprised of a set of digits{-a,...,-1,0,1,...,a},

wherer -1> az%. For radix-2, the redundant digit is represented by the

set{-1,0,1} - this algorithm has been called SRT. For radix-4, there is a
minimal redundant digit set ({-2,-1,0,1,2}) and a maximally redundant
digit set ({-3,-2,-1,0,1,2,3}). The larger the redundancy, the easier

quotient selection is. For radix-4 it has been proven by Oberman [68] that
the quotient selection is about 20% faster for a maximally redundant digit
set compared with a minimally redundant digit set. However, the cost for
the increase in performance of the quotient selection is that it requires hard
multiples, which are difficult to obtain. Furthermore, a more redundant digit
set requires a more complex conversion to the non-redundant form which
must be obtained. Thus, in the case of the selection of the quotient digit set,
there must be a trade-off between the performance of the digit selection
and the construction of needed multiples and the conversion to the non-
redundant form [40].

m, m, m, m,
i Trunc(rPj-Carry)
v ¢ v ¥ ' v v v Trunc(rPj-Sum)
| 3:2csA| | 3:2c5A [3:22CsA| | 3:2C5A
r v ¥ v v v v Trunc(D*qj)

| 32csa| | 3:2csa] [32csa] | 32csA

A A 4 A , A Y
’ Sign Sign ! l Sign | ! Sign \

" Coder
QU+

Figure 4.8 - Quotient Selection Scheme Based on Comparisons [8][20]

Quotient Digit Computation/Selection. For radix-2, the quotient digit
computation is relatively simply, employing only simple and fast
combinational logic. For higher radices (radix-4), the combinational logic for
quotient digit selection would become very complicated and with high
latency. Therefore, for quotient digit selection two alternatives have been
devised. The first one is using fast memory blocks in form of look-up tables
(ROM or PLA) [64][68]. For radix-4 minimal redundant the table lookup

BUPT

104 Floating Point Divide-Add Fused for Interval Arithmetic - 4

needs as inputs seven bits from the partial remainder and three bits of the
divisor. The second alternative is represented by using a set of comparators
(8][9][10][20][21] - Fig 4.8. These comparisons are made between a
truncated partial remainder and a number of selection constants (which are
preloaded at the first iteration depending on the divisor). The quotient digit
is computed based on the results of these comparisons.

4.4.2.1.2 Redundant Remainder Representation

One important is represented by the remainder computation (4.9) which
requires a subtraction. Using a full carry propagate adder in order to perform this
addition, the latency of the division becomes very large, mainly because this
addition/subtraction is performed sequentially with the quotient digit selection.
Thus, it is required to be avoided the full carry propagate addition for partial
remainder computation. This can be achieved by using a redundant representation
of the partial remainder, either a signed digit (borrow save) or a carry-save
representation [67]. Thus, the partial remainder computation is performed very
fast, because the carry propagation is thus avoided. For example, using a carry-
save representation , the latency of this step is only 2 logic levels, which is a major
improvement compared with latency of a large carry propagate adder (8 logic levels
for IEEE double precision numbers) .

When using table lookup for quotient digit selection, the redundant
representation of the partial remainder may prove a disadvantage. The reason for
this is represented by the fact that instead of two entries to the table (the truncated
partial remainder and truncated the divisor), three entries are needed, which will
increase the table complexity and area [19]. A solution has been provided by using
a small carry propagate adder (usually one or two bits greater than the number of
bits needed for partial remainder) before the table lookup [71]. There is a tradeoff
between the size of the carry propagate adder and the complexity of the table
lookup, because smaller carry propagate adders means lower latency, but also
larger truncation errors, which will lead to a more complex table lookup (Fig. 4.9).

Pj Pj
Sum Carry
' Short CPA J
-
S
Trunc(D) Q Sel i
——— Table ab E!‘D
Lookup l r ,
.
¢ v
| MUX |
Q1 SE S
3:2 CSA 1
v v
Pj+1 Pj+1

Sum Carry

BUPT

4.4 - Floating Point Division 105

Figure 4.9 - SRT Stage with Remainder in Carry-Save Form and a Short Carry Propagate
Adder for the Quotient Selection [64]{71]

When using the comparators based method to select the quotient digits, the
subtraction for comparisons is performed using carry-save adders, without the need
of carry propagation [9][20]. A sign detector is used for determining the sign of the
subtraction and a coder is used to analyze the obtained signs and to provide the
quotient digit.

4.4.2.1.3 Overlapped Architectures

One possibility to maintain the advantages of both higher radices, such the
high number of quotient bits obtained at each iteration, and the low radices (low
latency per stage, simple quotient selection, avoidance of hard multiples) is to
design overlapped digit-recurrence architectures. By using the overlapping strategy,
higher radices is obtained from cascading lower radices stages. Four types of
overlapping strategies do exist, as described in {40]:

e Overlapped remainder formation
e Overlapped quotient selection
e Overlapped remainder and quotient formation

e Hybrid overlapping

1PR(i)
+D*a -D*a ;

f i Quotient

%‘ Selection
CSA CSA +D*a -D*a

‘ i *oe o
Quotient oo e cee Quotient 'f—iM‘UX
Selection Selection {

W

PR(i+1)

(L

4

1
|]
| SRR,

L Qi+2) Qi+1), » l PR(i+2)

Figure 4.10 - Overlapped Quotient Selection [40]

Figure 4.10 depicts the structure of a SRT divider stage based on the
overlapped quotient selection. The first quotient digit is obtaired as in a normal
SRT stage. In parallel with the first quotient digit selection several numbers of
quotient digits (for each digit in the quotient digit set) are pre-computed. The first
selected quotient digit will select the appropriate second quotient digit.

BUPT

106 Floating Point Divide-Add Fused for Interval Arithmetic - 4

By employing the overlapping strategy, higher radix can be obtained from
faster and simpler lower radix, such as radix 16 obtained from two overlapped
radix-4 stages, or radix-4 from two overlapped radix-2 stages [9]. This strategy was
employed in commercial processors, such the radix-16 divider used in ARM VFP11
obtained from two overlapped radix-4, or the radix-8 divider used by Sun obtained
from overlapping three radix-2 stages.

4.4.2.1.4 Quotient Conversion

One important feature of the digit recurrence division is that the quotient
digits are represented in a redundant form. The redundancy factor can have a
significant influence on the performance of the quotient digit selection; a higher
redundancy factor leads to a simpler selection. However, the final result must be in
a non-redundant form. Thus, a conversion from the redundant form into the non-
redundant form must be performed.

The quotient digits are obtained from gqqup togy, in kiterations, where

gopis the most significant digit and is obtained first, while qx_; is the least

significant digit and is obtained in the last step. The conversion is the
transformation of QintoQ', where the two strings are defined by the following

relation:

K)
Q=>gqg*2",g¢e{-a..-101,...,a},
i=1
! (4.11)

K ,
Q'=-q'[0]+> g *2”",q" j€{0,1}
i=1

The conversion between the redundant form and the non-redundant form is
made using the following iteration [26][27]:

q'Ul=q'li-1)+r /g, (4.12)

This type of conversion can be very simple when the obtained quotient
digits gjare positive. In this case, the addition means only adding the non-

redundant representation of the quotient digit at the end at of the partial of the
non-redundant quotient. However, the redundant quotient digits can be negative,
which means that in order to convert these digits a carry propagate addition must
be performed. The carry propagate adder leads to an increase area and latency for
the conversion, which leads to an increase area and latency for the entire division.

A method for removing the carry propagate addition in the conversion
process has been proposed by Ercegovac and Lang [27]. This method uses to
strings A[j]and B[j], one expecting positive or zero quotient digits, while the other
expecting negative digits.

The resulted quotient will have the following expression [26][27]:

Alj-11+qljl+r 7, qlj1> 0 .
Q'Ljl= Alj-11,9[j1=0 (4.13)
Blj-11+(r-|alih*r~/,qli1<0

I

BUPT

4.4 - Floating Point Division 107

In order to obtain this expression for the quotient result, the A[j]Jand B[j]
must be equal to:

Aljl=Q'lj]

_ I (4.14
BLj1 = ALY-) :

The initial value of the A[j]and B[j] strings are:

-1

+q1*r-,qy 20
All] = q1 k q

-lai|*r~",g1 20

(4.15)

+Hag -1)= r'l,ql >0

B[1]={ |
(qq|+1)*r"tq 20

The recurrence for the two strings is given by the following relation

[26][27]:
Alji-1]+q;*r7,q;20
Aljl=4 L
B[]-1]+(r—|qj|)*r J,q5<0
[] (1) j 0 (4.16)
Alj-1]+(g;-1}*r /,q; >
BLj] = ’ ’

B[j—1]+(r—|qj]—1)*r_j,qj <0

Thus, obtaining the two strings requires only a concatenation of the decoded
quotient digit at the end in each iteration. In this way the large carry propagate
adder is thus avoided, which leads to smaller latency and area. The only thing

needed to be computed is the (r—lqj|) difference, which requires a small carry

propagate adder. For example, for radix 2, there is no need for such an adder, for
radix 4 minimally redundant a two bit carry propagate adder is needed, while for
radix 4 maximally redundant a three bit carry propagate adder is needed. Thus, as
the radix and the redundancy factor increases, the more complex is the conversion.

Similar to on-fly quotient conversion is the on-fly rounding [28]. The main
difference is represented by employing another string. This new string is used due
to the fact that -1 ulp subtraction is needed when the final remainder is negative.

By these means, both the conversion of the quotient and the rounding in
case of floating point operation is convenient to perform for digit-recurrence
algorithm, which represents an advantage of this type of algorithms.

4.4,2.2 Multiplicative Methods

Multiplicative methods imply using a multiplication as core operation, unlike
the digit-recurrence methods which are based on addition/subtraction. A wide range
of such algorithms, from which two categories are more important: Newton-
Raphson algorithm and series expansion (or Goldschmidt) algorithms [26][60].

Newton-Raphson multiplicative algorithm for performing division is based on
the Newton’s method to approximate a root of the equation f(x)=0 using the

following iteration [59]:

BUPT

108 Floating Point Divide-Add Fused for Interval Arithmetic - 4

f(X;)
X/*l = /— f'(X’) (4'17)
/
If we considered the function f(x)= %—D which has the rootx =5 it is

possible to find the result of the division g = Dividend

) by employing the following
iteration[59]:

Xj. = Xj(1-2DX;) (4.18)
The series expansion method relies on determining a string of numbers X; ,
so the following relation to hold [59]:

DxXy*Xy*..5 Xy 1=

4.1
= Divident * Xy * X3 *...* X5 5 @q (4.19)

Having in mind that the divisorDe [1,2) , it is possible to represent the
divisorasD =1+ ¢, wheree e [0,1) . In this case, the following string is considered:
Xg=1-¢ Xj=1+¢> (4.20)
Therefore:

D*Xg*Xy* Xox X =(1+ e)(1-)1+2)A+eY)...(1+67) =
=1-¢2" 51 (4.21)
Divident X * X1 * X5...* X, > q

While the X; string can be computed using the following recursion:

X,'+1 =2—D*X0*X1...*X,'

(4.22)
Therefore, if we consider Y; = D* Xp * Xy...* X; the algorithm relies on the foliowing
recursions:

Xiy1 =2-Y;
Yier =Yj* Xis1 (4.23)
Qiv1=0Qi *Yin1

The two multiplication based division algorithm are very similar, due to the
following reasons [59]{60]:

Both require two floating point multiplications and one subtraction
Both have a quadratic convergence

Both require an initial estimation, which is usually implemented as a table
look-up; the number of performed steps depends heavily on this estimation

BUPT

4.4 - Floating Point Division 109

The main difference between the two multiplicative division algorithms is
that the two floating point multiplications required in Newton-Raphson are
dependent, while in the series expansion algorithm these two floating point
algorithms are independent [60]. Therefore, the second algorithm may present a
higher performance due to the possibility of pipelining the two multiplications [92].

In terms of required hardware, both algorithm rely on a slight modification
of other floating point units, such as the floating point multiplier of the floating point
multiply-add fused. Usually, this modifications increase slightly the latency of these
floating point units, mainly due to the required multiplexers used in the critical path
[26]. Another major disadvantage is represented by the rounding operation, which
requires several more iterations and the computation of the remainder using a
floating point multiplication and a floating point subtraction.

4.4.2.3 Comparison between Digit Recurrence and Multiplicative
Methods

In Table 4.3 a comparison between the two main classes of algorithms for
floating point division is performed. The comparisons are made regarding
convergence times, rounding and remainder computation and hardware
requirements.

Table 4.3 - Comparison between Two Main Classes of Division Algorithm

) Hardware
Convergence Rounding Requirements
Difficult . .
L . . . Floating point
Muhldté;zlr;céztswe Quadratic Regﬂ{;;ﬂ;;%:gaﬂzmt multipligrs or floating
subtraction point MAF
Easy
Remainder is obtained
Digit Recurrence Linear at the end of the Dedicated divider
Division iterations stages
Rounding is performed
on-fly

As presented in [92], 11 out 13 processor designs use digit recurrence
algorithms. The vast majority of the digit recurrence algorithm implemented for
division comes as a result that when implementing floating point division as shared
units with other floating point operations (floating point multipliers and floating
point multiply-add fused) a performance degradation of about 40% comes
compared to the case when division is performed as a dedicated floating point unit
using digit recurrence algorithms, as showed by Oberman based on an analysis
made on SPEC FPU benchmarks [70][69]. The conclusion was expressed by
Ercegovac and Lang, that for a dedicated floating point division unit (with no
hardware sharing with other floating point units) the best choices are represented
by digit-recurrence [26]. However, when the division is not implemented as a
specific dedicated unit and hardware sharing with other floating point units is
considered, the multiplying methods (which share the floating point muitiply-add
fused or the floating point multiplier) are the preferred ones.

BUPT

110 Floating Point Divide-Add Fused for Interval Arithmetic - 4

4.5 Floating Point Divide-Add Fused

4.5.1 Basic Algorithm and Architecture

In order to perform a floating point divide-add fused between three floating

point numbers Given three floating point numbers, F1=(—1)51*251‘bias*1.M1,

F2=(-1)°2«2E2°bi3S s 1 M2, F3=(-1)°3 26305 41 M3, the divide-add fused

operation F1 +F%3 involves the following steps [7][76]:
1. Subtraction of division exponents (E2-E3+bias) and the subtraction
from the result of the addition exponent (El-bias). In this way, the result

exponent can be determined (max (E2-E3+bias, E1-bias)) and the amount
for the alignment shifting for the addition operand.

2. Align the addition mantissa (1.M1) based on the exponents difference
obtained in step 1.

Mantissa division of the division operands (1.M2 and 1.M3).
Addition of the aligned mantissa (the aligned addend with the quotient).
Result complementation.

Leading zero detection.

N ou s

Normalization of the result mantissa in case of overflow or in case of
leading zeros.

8. Rounding (for this operation the remainder is necessary)

The proposed divide-add fused algorithm is similar to floating point multiply-
add fused algorithms [46][56]{57]. Steps 1 and 2 (exponents addition and
subtraction followed by addend’s mantissa alignment), respectively 3 (mantissas’
division) are done in parallel, while the other steps are performed sequentially.
Furthermore, as in floating point addition and floating point multiply-add fused, the
leading zero detection is replaced by a leading zero prediction which is done in
parallel with the addition.

The overall architecture is depicted in Fig. 4.12. The floating point divide-
add fused structure in its mantissa computation path contains the following blocks:
addend complementation (in case of an effective subtraction), alignment shifter, the
division module (which will have as results the quotient and the remainder), the
mantissa adder (which works in parallel with the leading zero predictor), the
normalization left shifter and the rounding unit.

This structure is very similar to the one of the floating point multiply-add
fused [46][55], the major difference being that a divider is placed instead of a
multiplication block. Furthermore, because the result of the division does not come
in a convenient redundant form (such as the carry-save form which is the typical
result of the partial products reduction tree of the tree multiptiers), the 3:2 carry
save adder, which is placed before the mantissa adder, is not required.

)

BUPT

111

4.5 - Floating Point Divide-Add Fused
Exponents 1.M1 1.M2 1.M3
|
L) :
! Exponent
!Processing [Bit-Invert |
v Divider
Alighment !
Shifter |
; + Q.
v v v ;
Carry-Propagate Adder
LZP
[Complementer)
REM
" I
Normalization v
Shifter | % sticky
v
Rounding

Mantissa Result

Figure 4.11 - Overall Architecture of the Mantissa Data Path of a Floating Point Divide-Add
Fused [7]1[76]

The biggest influence in both the performance and the area overhead in the
proposed scheme is represented by the number of quotient bits needed. The

number of quotient bits influences the following modules:

e The latency/area of the divider; greater number of quotient bits means
greater division latency, as the digit-recurrence division has a linear

complexity with the number of quotient digits

e The alignment shift amount; the number of logic levels if the barrel right

shifter used for alignment is influenced by the number of quotient bits

e The mantissa adder size

e The normalization left shifter

Therefore, a very analysis must be performed in order to use the minimum number
of quotient bits. However, this number has to be high enough in order to attain a

reasonable precision for the operation.

4.5.3 Number of Required Quotient Bits

The number of quotient bits represents the main issue-in the design of the
floating point divide-add fused, because it affects both the performance of the unit
and the area overhead. However, the number of bits has to be large enough in

order to make possible a correct IEEE rounding.

BUPT

112 Floating Point Divide-Add Fused for Interval Arithmetic - 4

In order to determine the number of quotient bits needed we will consider
different cases, depending on the difference between exponents (d - relative to the
number of bits in the mantissa m) and the effective operation which will be
executed (addition or subtraction) [7].

Casel. d2m+3

This case corresponds to the one presented in Fig. 4.13 a. The result
significant will be equal to the addend (or incremented addend in case of rounding
towards infinity). The maximum needed left shift of the addend is equal tom+3. For
rounding towards nearest even, two zero bits have to be inserted (for the round and
guard digits) - similar to the floating point multiply-add fused [46]. The sticky bit
corresponds to the condition quotient different to zero (which is always true), thus
the sticky bit is always one in this case. For rounding towards zero (truncation), no
zeros have to be inserted, the result being equal to the addend. In case of rounding
for infinity, no zeros have to be inserted and the result is equal to the incremented
addend, as the sticky bit is always one (for rounding towards zero and infinity the
condition d=>m+3 is transformed intod > m+1) Therefore, for this case, we don't

need any quotient bits.

Casell. 1<d<m+3

This second case corresponds to the case when the addend must be left-
shifted for alignment and the addition/subtraction of the quotient must be
performed (Fig 4.13.b). In this case, in case of an effective subtraction the
maximum number of leading zeros is one (as in the case of floating point addition
when the exponents’ difference is greater than one [31]). As in floating point digit
recurrence division, the remainder will be used for the computation of the sticky bit.
The number of quotient digits needed in this case depends on the rounding mode
and is:

s m-d+3for rounding towards nearest even (m-d+2 in order to align the
quotient and two quotient digits for the round and guard bit, in case of no
cancellation and no overflow, m-d+1 in case of overflow and m-d+3in
case of leading zero)

e m-d+1for rounding towards zero (truncation)

e m-d +1for rounding towards infinity

CaseIll, 1<d<-2

In this case also the addend must be added to the obtained quotient (Fig.
3). The main feature of this case is that in case of an effective subtraction, a
massive cancellation of the result can occur, thus, leading to a large number of
leading zeros (this case is similar to the CLOSE path in double path adders [31]).
Unlike the CLOSE path in the double path adders (which occurs when the exponent
difference is -1, 0 or 1), in the case of floating point divide-add fused also the case
of is considered because the most significant bit of the quotient can be equal to zero
(un-normalized quotient - Fig. 4.13.c). The number of quotient digits needed in this
case depends on the amount of the leading zeros. The maximum number of leading
zeros, considering only the addend and the most significant part of the quotient, is
equal tom (the case when the addend is equal to the most significant part of the
quotient). Furthermore, after the most significant m positions of the quotient, the
next bits of the quotient can be equal to zero (a series of k zeros). In this case, the
number of quotient bits needed, if the rounding mode is rounding towards nearest

BUPT

4.5 - Floating Point Divide-Add Fused 113

even, is equal to m+k+m+3 (m+1- leading zeros resulted after the subtraction,
k- the length of the series of zero quotient bits, m - the required length for
mantissa, 2 - guard and round bits for rounding towards nearest even). For every
rounding mode, the remainder is used for the computation of the sticky bit, as in
floating point division [28].

1.813;3384
00 Ry
“laaaa, 00 Ry
GR g
a)
l.aa,3a, 1l.a,a,33a,4 1.8,3;33a,4
909,995 R 9091929395 R 909192939495 R
lrg.rirgr; r3gs R | 1.nnriyiG:qs R 0.15r3r4G3,94Gs R
GR g GR g GR g
b)
l.g18y338, l.8/8,339,
1.0192G394 1 G¢G79595910911 R 1.91829394 001 GgG9G10G11912G15 R
00000 [1.969,9599 Gi0%11 R 0000000 :1.9g99910911] 912913 R
S S
c)
13,3;88, la,a,333, la 8,34,
1.913,G3949596979899 R 1.0,G,039495G6G79899 R 1.01G,93949596G79893 R
r4r5 refsrgly R Lryrrsry fslg fafgfy R Lryrarsirgr; iy R
GR TV~ GR ™ GR "t -
S S S
d)

Figure 4.12 - The Four Cases for Divide-Add Fuseda) d>2m+3 b) 1<d<m+3 ¢)
1<d<-2d) d<-2(in this trivial example m=5)

Case IV. d <-2

In this case the addend is shifted to the right compared to the quotient (Fig
4.13.d). Also, in this case, the maximum number of leading zeros is 1 (this case is
similar to the FAR path in the double path adder). The truncated result is given by
the most significant m -1bits of the addition of the result in case of an overflow,
mbits for no overflow and no leading zero, and m+1 bits for the leading zero case.
For rounding towards nearest even, two more bits are needed, while for rounding
towards zero and rounding towards infinity there is no need for additional bits. The
rest of the addition result bits are used for the sticky bit computation. In this case,
the number of the quotient bits is equal tom+|d|-1, for overflow, m+|d|, when no

overflow and no leading zero occurs, and m +|d|+1 when the leading zero occurs.

As it can be observed from this analysis, the third and the fourth case
represent problematic cases, due to the high number of quotients bits required.

a

BUPT

114 Floating Point Divide-Add Fused for Interval Arithmetic - 4

4.5.3 Implementations

As it was presented in the previous section, the number of quotient digits
can vary from case to case. In cases I1I and IV, the number of required quotient
digits can be very high. This will lead to lower performances, as the latency of the
division will increase, the mantissa carry-propagate adder will be larger and the two
shifters will have an increased number of levels. Better performance can be
obtained, but with a loss in precision as penalty. Several implementations are
presented in this section, the evaluation of the performance, cost and precision
being evaluated in the next section.

4.5.3.1 Pro-Accuracy Implementation

The first proposed implementation uses a number of2m+3quotient bits.
2m+3 is the minimum number of quotient bits for which in the third case in the
case of an effective subtraction, there is no loss in precision when the most
significant bits of the quotient are equal to the addend and the first quotient bit
after the result is one. This proposed floating point divide-add fused resembles with
a floating point multiply-add fused [46][55]. The alignment shifter, the adder,
leading zero predictor, the normalization shifter and the rounding unit has the same
size as in the case of a basic floating point multiply-add fused - 3m+5S.

Exponents 1.M1 1.M2 1.M3 :
| l l . !
v v) v v s
TExponent _ Bit-Tnvert]
Exoonmts 11\11 1 M2 1.M3 . Processing
| S R . 1 SRT
‘ ! 164 bit STAGE
'EXD'OI’IPn W P T A —* Algnment .
, : Shifte !
Prmessnng — aq :
, BT 109 Radix 2 ; REM
3 164 bit : : SRT Stages s A
— ‘
‘ Allgnlmen[I : o C
= S>h+[1ﬁ7[_> —_— T
. S S _t v Q ’__L v v . Z l 7 L
: Lo) 53 - bit ; : 53 - bit
! Co 164 bit Adder . . REM : 164 bit Adder REM
' LoSmmem e —-—e———) Adder i ! Adder _
: Lz - Ii, T : Lze)
omplementer | H :
. _... Complementer M J | . [Complementer .
b e =Y , ! -
PR ———) —_—
[_.1 Normalization . ; Normalization R 2
hi — s . r
iL S '|fler - Stlckyl { Shrlfter | Sticky
[. e JE——— | 2.
t Rounding -— [Rounding
Mantissa Result Mantissa Result
a) b)

Figure 4.13 - The Pro-Accuracy Architecture a)Divider Unfolded b)Sequential Generation of
Quotient Bits (m=53 - IEEE double precision format)

The proposed structure is presented Fig 4.14. The first proposed structure
(Fig. 5.3-a) presents an unfolded divide unit, which is formed from

= [2’%1 successive digit recurrence blocks, where r =2%is the working radix [64].

This structure presents a high throughput, but the area overhead is considerable
high. In the second proposed architecture (Fig 4.14-b) the quotient bits are

2

BUPT

4.5 - Floating Point Divide-Add Fused 115

obtained sequentially. This architecture presents a lower cost than the first
architecture, but has a lower throughput.

Regarding the obtained accuracy, the problematic cases do appear for the
third and the fourth case presented in the previous section. Thus, in the third case,
the problems appear in the event of an effective subtraction, when the massive
cancellation can appear and the number of leading zeros is greater than m+1 (the
last favorable case is represented by an un-normalized guotient equal in its most
significant bits to the addend - which is shifted by one position to the right
compared to the quotient). This corresponds to the case when the most significant
part formed of m+1 bits is equal to the addend, while a series of k zero bits in the
quotient follows after the most significant leading m bits. In this case, the proposed
implementation will consider the following rounding rules (which are not always
IEEE compliant):

e If the remainder is equal to zero, then the result is exact. The obtained
result will be formed by the least significant 2m - m - k + 3 bits (which follow
after the leading zero) followed by zeros until the completion of the
mantissa.

o If the remainder is different than zero, then the result will not be IEEE
compliant. For rounding to zero (truncation) the result will be formed by the
least significant 2m-m-k +2 bits (which follow after the leading zeros)
followed by zeros until the completion of the mantissa. Rounding towards
nearest even will be considered as a truncation (as the considered guard bit
and round bit will be equal to zero). In the case of rounding towards infinity,
a plus 1 addition is performed to the least significant quotient bit (the sticky
bit is indicated by the non-zero remainder).

Therefore, the maximum number of leading zero for which the result is correct
(1IEEE rounded), in the event of a non-zero remainder, is equal tom. For this case,
all four IEEE rounding modes can be performed correctly (mbits remain for the
mantissa, 1 bit is for guard bit, 1 bit for the round bit, while the remainder is
determine the sticky bit [28]).

In the fourth case of division, loss in precision does appear when the addend
is right-shifted compared to the quotient more thanm +1 positions. In this fourth
case, the most significant mbits represent the non-rounded result, followed by two
bits (the guard and round bits in case of rounding towards nearest even). The sticky
will be computed from the next m bits, the addend bits which were not added, and
the remainder. In case of a non-zero remainder, there is a probability of a possible
carry one which would result from the non-calculated quotient bits added to the
least significant bits of the addend. This carry could propagate to the most
significant bits of the result. Therefore, the result may not be correct. If for rounding
towards zero (truncation) and rounding towards nearest even, this carry was not
considered, for rounding towards infinity this carry will be considered and will be
added to the lowest significant bit of the first m bits of the result. Furthermore, a
plus one addition is also performed if the sticky bit is not equal to zero.

4.5.3.2 Pro-Accuracy Implementation

The second proposed implementation uses a number of m+ 3 quotient bits.
This number of quotient bits is the same as in a standard floating point division

aN

BUPT

116 Floating Point Divide-Add Fused for Interval Arithmetic - 4

[69]. The alignment shifter, the adder, leading zero predictor, the normalization
shifter and the rounding unit have a much smaller size compared to the previous
implementation - 2m+5. All the features of the floating point divide-add fused
presented in the previous section remain to this implementation, but their size is
smaller, which means that lower latency and lower cost is associated to this
proposed floating point divide-add fused.

Exponents 1.M1 1.M2 1.M3

Yy vy
Exponent . _Bit-Invert |

i
S prits 1 M -Processin
Exponernts L,|~‘n 1,»_42 1.M3 : 9 v 1 SRT i
b : i 111 bit STAGE i
v vy Y L LY f- --% Alignment I
Exponent. Bit-Invert ! | l
p s&ing: i !
Processing. Ly | 56 Radix 2 ;
' 111 bit | SRT Stages |
- alignment . i
o hifter ‘ Q ; |
L U 2 '] L
| T © TS3-bit ; _
i D 111 bit Adder . ¢ REM ' 111 bit Adder REM
| bbb Adder : P ; Adder
: P T Cem _It“—tvfﬁﬁ i ; w2P ‘ C I' t —I
o ! ! : omplementer :
| - omplementer - peM ") e } REM |
| . [,};‘,V [! | — ¥y - |
e Normalization - ‘ v { Norg\;lfitzatlon SEE
.: Shifter » Sticky ifter *# Sticky
''''''''' 0 - . T & -
- N S ; e I
Rounding -]l Rounding —
Mantissa Result Mantissa Resuit
a) b)

Figure 4.14 - The Pro-Performance Architecture a)Divider unfolded b)Sequential
Generation of Quotient Bits (m=53 - IEEE double precision format)

The proposed structure is presented Fig 4.15. As in the case of the floating
point divide-add fused, two architectures were designed: an architecture which has
an unfolded divider (a) and architecture which presents a sequential divider (b).

Regarding the accuracy, this floating point divide-add fused presents more
problematic cases (when it cannot be performed an IEEE compliant rounding
operation) compare to the one presented in 5.4.1. In the third case, in the event of
effective subtraction and a massive cancellation of the result, the loss in precision is
inevitable. The three types of rounding are performed as in the previous
implementation when the number of leading zeros where greater thanm+1. Loss
precision is also inevitable for the fourth case. Also, in this case, the rounding is
performed as in the previous implementation, when the addend is right-shifted with
more than m + 2 positions.

4.5.4 Variable Latency

As presented in Section 4.5.2, the number of quotient bits varies from case
to case. Thus, in the first case no quotient bits are needed, in the second case a
rather small number of quotient bits are needed, in the third case, a large number
of quotient bits are needed in case of an effective subtraction and massive
cancellation, while in the fourth case also a large number of quotient bits is
required. Therefore, devising a variable latency would ensure a higher performance

BUPT

4.5 - Floating Point Divide-Add Fused 117

when small number of quotient bits is required and a high accuracy when a large
number of bits are required.

The variable latency floating point divide-add fused is best suited to the
sequential floating point divide-add fused depicted in Fig 4.14.-b and Fig 4.15-b.
While in these designs, the feedback path of the division unit is used for generation
of the maximum number of quotient bits, in the variable latency design, the
feedback path of the division unit is used only for a limited number of times,
depending on the case. Considering the design in Fig 4.14 - b, the feedback path of
divider is used as follows:

e One time for the Case 1 (although no quotient digit is required)

e p= [qb*fl for the Case II where g is the number of required quotient bits,

r = 2Pis the radix and f the number of unfoided stages,

s p-= [%*f] for the Case III and effective addition
e p= [%*f]for the Case IV and d > -(m+1)

J [2m+%*fvor Case III and effective subtraction and Case IV and

d<-(m+1)

The decision for the number of division loops is taken based on the effective
addition and the exponents’ operation result. In the Case IV, more quotient bits can
be generated than the maximum, but this leads to an increase carry propagate
adder. In Case 111, effective subtraction, fewer quotient digits may be needed, in the
event of a small number of leading zeros. However, the number of leading zeros is
determined by the leading zero predictor, after the quotient bits have been
generated [26]. The variable latency algorithm does not require changes to the
divide-add fused unit, but only to the feedback control block.

4.5.5 Interval Divide-Add Fused

By implementing rounding towards infinity and rounding towards zero
(which can be easily extended to rounding towards negative infinity and rounding
towards positive infinity), interval arithmetic operations can be performed on the
proposed floating point divide-add fused. Furthermore, in the event of an inexact
result (due to few bits in the quotient), the performed rounding considered for both
rounding towards zero and rounding towards infinity will covered the less favorable
cases. Therefore, the principles of the interval arithmetic (the obtained result to
contain the correct result) were respected [47]. The two operations are performed
according to the Table 4.4.

BUPT

118 Floating Point Divide-Add Fused for Interval Arithmetic - 4

Table 4.4 - The Divide-Add Fused of Three Intervals X +tY/Z , for 0e Z [47]

Operation Yioi Yhi [Z10: Zhi] Result

Addition Yo > 0 Zb>0 | X+ G X+ Y%Io
Addition Yio >0 Zpi <0 Xio + Y%hi , Xpi + Yl%lo
Addition Yi <0 Z>0 | Xpo+'lo G Xhi+ Yhi 20
Addition Yii < 0 Zn <0 | Xio+ "My X+ Y’%m.

Addition Y, Yhi
Y/O <0<Yh,' Z/o>0 X/O+ IOZ/O'Xhi+ %/o

Addition _) Yhi R/
Y/O<O<Yh, Zh, <0 X,o+ /Zhl_,x,,,+ OZhi

Subtraction | g Zio>0 | xp-" X - Y/%h’_
Subtraction Yo > 0 Zhi <0 | Xpo- Y/%/o Xpi - Y%hi
Subtraction Vi <0 Zo>0 | Xp- Y/Zhi Xpi - Y/%Zlo
Subtraction Y <0 Zhi <0 | X - Y/%hi Xpj - Y%/o
Subtraction Y, Y,

. _Thi . _"lo
YIO <0< th Z/O >0 X/O IZ/O'Xh' A/o

Y, Yhi
Yo <O0<Yhi | Zpi<0 | Xjpo- %hirxhi - /Zhi

Subtraction

As it can be observed from the above table, interval divide-add fused
requires only two floating point operations. This is due to the fact that both interval
addition/subtraction and interval division require only two floating point operations.
The two operations can be performed either sequentially using only one floating
point divide-add fused, either in parallel, using two such units.

4.6 Evaluation
4.6.1 Accuracy

In order to determine the accuracy of the two proposed designs, a round-off
error analysis is performed. The round-off error analysis will consider only rounding
towards nearest even, however, it can be easily extended to the other two rounding
modes (rounding towards infinity and rounding towards zero). These round-off
errors will be compared to the round-off error introduced by the rounding towards
nearest even. This method was applied to the analysis of the round-off errors
produced by different on-fly rounding algorithms by Ercegovac and Lang in [28]. «

BUPT

4.6 - Evaluation 119

Considering the size of mantissa to be m (including the hidden one), the

round-off error introduced by a correct rounding towards nearest even is equal to

% «21-M [28].

Using the cases presented in Section 4.5.3, for the pro-accuracy

implementation, the round-off error is equal to:

Case 1
In this case the rounding is performed correctly; therefore the rounding

error is equal to the one of the rounding towards nearest even: % x2l-m

Case 11
Also in this particular case the rounding is performed correctly; therefore
the rounding error is equal to the one of the rounding towards nearest

even: % x21-m

Case 111

In this case, the problem of leading zeros can appear. When the number of
leading zeros is smaller thenm, then there are a sufficient number of bits in
order to perform a correct rounding. When the number of leading zero is
between m and m + 3, an incorrect rounding bits (sticky, round and guard)
computation does appear. In this case the rounding error is equal to 21”",
because a truncation may be performed. When the number of leading zeros
is greater than m+3, the result will consist of 2m+3-/bits of the
subtraction result in the most significant positions (where / is the number
of leading zeros), while the rest will be equal to 0. The rounding error in this

case will be equal to 21-™*(-m-3) §f |5 2m+3 than the result will be
equal to zero.

Case IV

In this case two situations do appear. In the first situation, the addend is
rightshifted by maximum m + 3 positions compared to the quotient. In this
case, the computation of the rounding bits will be correct and the result will
be correctly rounded. In the second case, the addend is rightshifted more
than m + 3 positions compared to the quotient. In the worst case, a carry
propagation to the guard and round bit or even to the most significant m
bits can appear. In this case the result will not be rounded correctly and the

maximum error is 21~ (similar to the error of a truncation).

Regarding the pro-performance implementation, the analysis will be performed in
the same way:

Case 1
In this case the rounding is performed correctiy; therefore the rounding

error is equal to the one of the rounding towards nearest even: % s2l-m,

Case 11

BUPT

120 Floating Point Divide-Add Fused for Interval Arithmetic - 4

Also in this particular case the rounding is performed correctly; therefore
the rounding error is equal to the one of the rounding towards nearest

even: % «21-m

Case III

In this case, the problem of leading zeros can appear. When the number of
leading zeros is equal to zero, then there are a sufficient number of bits in
order to perform a correct rounding. When the number of leading zero is
between 1 and 3, an incorrect rounding bits (sticky, round and guard)

computation may appear. In this case the rounding error is equal to 21"",

because a truncation may be performed. When the number of leading zeros
is greater than 3, the result will consist of m+ 3 -/bits of the subtraction
result in the most significant positions (where / is the number of leading
zeros), while the rest will be equal to 0. The rounding error in this case will

be equal to 21-m+U=3) "1f | > m +3 than the result will be equal to zero.

Case 1V
In this case a carry propagation to the guard and round bit or even to the
most significant m bits can appear. Therefore, the result will not be

rounded correctly and the maximum error is 2l-m (similar to the error of a
truncation).

These two implementations are compared to the accuracy obtained by perfuming
the combined operation using a floating point divider and a floating point adder. The

round-off error for the result of the floating point divider is equal to yz x21-m [28].

Considering the floating point addition, we obtain the following cases:

The addend is leftshifted by at least two positions compared to the quotient.
In this case the least significant bits of the quotient are used for the
computation of the rounding bits (guard, round, sticky). In the worst case,
the value of the sticky bit may not be the correct one (due to the fact that in
the rounding operations performed in division, quotient bits which could
influence the value of the sticky bit were “truncated”). Therefore, in this

case the round-off error is2!~™. This case corresponds to the first two
cases in the analysis performed for floating point divide-add fused.

The addend is rightshifted by at least two positions compared to the
quotient. This case is equivalent to the fourth case in the analysis of the

floating point divide-add fused and the round-off error is the same: 2l-m

The difference between exponents is 0 or 1. In the case of an effective
subtraction, leading zeros may appear. The result will be comprised of the
most significant m -/ bits (which were leftshifted during the normalization
step) followed by zeros. The maximum round-off error in this case®is

21-m+l 1 jom , than the result will be equal to zero.

BUPT

4.6 - Evaluation 121

Table 4.5 - Maximum round-off errors for divide-add fused

Max Error Max Error Max Error Min leading
Implementation Addend Addend Leading zeros
Leftshifted Rightshifted Zeros for a zero result
FP Divider+ ol-m+l
1-m 1-m ’
FP Adder 2 2 />0 i
Pro-
1-m+(/-3
performance }é x21-m 2l-m 2 (=3) m+3
DAF />3
- 21 d>m Leme(-m-3)
ro-accuracy «pl-m 1-m 2t-mi=-m=3), om+3
DAF % Yox2om, I>m+3 *
d<m

The results of the analysis are summarized in table 4.5. The table presents
the maximum error in case when addend is leftshifted compared to the quotient, the
maximum error when the addend is rightshifted compared to the quotient,
maximum error in case of leading zeros and the minimum number of leading zeros
for a zero result.

The analysis shows that even for the pro-performance divide-add fused unit
which uses the same number of quotient bits as the solution based on an adder and
divider, an increase in accuracy is obtained. Therefore, in terms of accuracy, an
implementation of the divide-add fused unit is favorable.

4.6.2 Synthesis Results

In order to obtain, two IEEE half precision divide-add fused units have been
implemented in VHDL and synthesized using Xilinx Synthesis Tool:
e A pro-accuracy divide-add fused with unrolled SRT stages
s A pro-accuracy divide-add fused with one SRT stage

These four implementations were also compared to a floating point divider
obtained using unrolled 14 SRT radix-2 stages and a AMD double path floating point
adder.

When implementing the floating point divider and the floating point divide-
add fused units, the following modules were used:

o The implemented divider stage was a SRT radix-2, used in the 167 MHz Sun
UltraSparc processor [77]). The reason for implementation was its simplicity.
However, any other type of SRT division stage can also be used, depending
on the desired performance, cost and power consumption (Fig 4. 15).

s The carry propagate adders used were implemented using Bret-Kung carry
lookahead computational chains [15].

e The alignment right shifter and the normalization left shifter were
implemented as barrel shifters.

Regarding the obtained cost, the resuits are presented in table 4.6 (for the
unfolded and one SRT stage dividers). Fig 4.16 presents a comparison between the

BUPT

122 Floating Point Divide-Add Fused for Interval Arithmetic - 4

two implemented divide-add fused versus divider plus a double path adder (both
unfolded and one SRT stage).

Table 4.6 - Cost of Proposed
Divide-Add Fused Architectures (in LUT-4)

. Divider
Architecture unrolled
Pro-Accuracy 1904

Pro-Performance 862
FP Divider+ 7764446
AMD FP Adder 1222

As it can be observed from tabel 4.7 and Fig 4.16, the cost of the pro-
accuracy implementation using unrolled SRT stages is higher compared to an
implementation consisting of a floating point divider and a double path adder.
Regarding the cost of the pro-performance implementation a decrease compared to
the other two solutions can be observed.

=
it
=1 H
il
=

L.

o

:E}J‘:u I NIRRT
: ; L st b el
i
: ll

S ko N R *[

+
SR A0

= j

-)

{ et S =

*’I
-
-

|

Figure 4.15 - Technology Schematic of the Used SRT Radix-2 Stage Obtained with XST

Comparative Cost

)

Pro- Pro- FP Div+ FP
Accuracy Performance Add

Figure 4.16 - Comparative Cost of the Three Implemented Designs

BUPT

4.6 - Evaluation 123

Regarding the latency as an indicator of performance, the considered
latency was for the unrolled SRT stages designs for both the proposed divide-add
fused implementations and the floating point division. The results are presented in
table 4.7 and Fig 4.19.

Table 4.7 - Latency of Proposed
Divide-Add Fused Architectures (in ns)

. Divider
Architecture Unrolled
Pro-Accuracy 112,657

Pro-Performance 63,546
FP Divider+ 61,746+15,83
AMD FP Adder 77,576

Latency Comparison

ns

Pro-Accuracy Pro-Performance FP Div+ FP Add

Figure 4.19 - Comparative Latency of the Three Implemented Designs

Regarding the latency, the results show that the pro-performance
implementation has a smaller latency compared to the combined floating point
divider and floating point adder, while the pro-accuracy implementation have a
higher latency, mainly because the number of quotient bits generated is almost
double. However, this latency analysis does not consider the penalties imposed by
the write back operation into the register file imposed by the storage of the floating
point division resuits.

Therefore, regarding the three considered aspects of the floating point
division followed by a floating point addition/subtraction - accuracy, cost and
latency - the implementation of a dedicated divide-add fused unit represents an
advantage compared to using a floating point adder and a floating point divider.

BUPT

124 Floating Point Divide-Add Fused for Interval Arithmetic - 4

Figure 4.17 - Technology Schematic of Mantissa Datapath for Pro-Performance Divide-Add
’ Fused Obtained with XST

BUPT

4.6 - Evaluation 125

4.7 Summary

This chapter is dedicated to the floating point divide-add fused unit, a
dedicated arithmetic unit for increasing the performance of a specific interval
arithmetic algorithm: the interval Newton’s method. To the best of my knowledge,
in this thesis is presented the first such unit. In the first section, the reasons for not
being implemented such a dedicated hardware unit are presented, which are related
to the fact that division followed by addition/subtraction is a very rare operation.

The second section of this chapter presents the interval Newton’s method.
This represents a powerful interval algorithm for nonlinear equations and systems of
equation solving, with applicability in a wide range of fields of applications. This
method has several advantages compared to other equation solving numerical
algorithms, such as: guaranteed convergence to the solution, quadratic
convergence, and no solution situation indicated in the first iteration. The basic
arithmetic operations for this method are represented by the division followed by
subtraction. Therefore, for this case, a dedicated divide-add fused would bring
certain advantages.

The next two sections are dedicated to the floating point multiply-add fused
and floating point division. Due to the fact that multiply-add fused has one of its
operation the addition and the floating point multiplication is similar to floating point
division, it is expected that the architecture of the divide-add fused unit to be
similar to the one of the multiply-add fused. Therefore, a detailed presentation of
the multiply-add fused is realized in the third section of this chapter. The basic
algorithm, enhancements of this algorithm and high performance multiply-add fused
architectures are presented. The fourth section is dedicated to the floating point
division. An overview of the two most used division algorithm classes is realized.
The first analyzed division algorithms class is represented by digit recurrence. These
algorithms have as their basic operation the addition. The main design choices, such
as radix, quotient digit set, quotient digit computation, partial remainder
representation or on-fly conversion and rounding, are presented. The second class
of division algorithms analyzed is represented by the multiplicative methods, such
as Newton-Raphson and series expansion. A comparison between these two types of
division algorithms is realized.

The final two sections present the proposed floating point divide-add fused
unit. The algorithm and the according architecture of this dedicated hardware united
are detailed. They are similar to the ones used for multiply-add fused, with several
changes: instead of the encoding module and the partial product reduction tree a
digit-recurrence divider is used. The main issue in designing a floating-point divide-
add fused unit is represented by the number of guotient bits needed. A detailed
analysis is performed. A large number of quotient bits leads to lower performance
and higher cost, but provides a better accuracy of the result. Therefore, a tradeoff
must be made between the desired performance and the needed accuracy. Two
architectures are proposed, one suitable for better accuracy, while the second is
suitable for better performance. Also, variable latency architecture can be used for
the two proposed architectures. The last chapter presents the evaluation resuits. An
analysis of the accuracy and comparison with an architecture composed of a division
and addition unit is realized. Furthermore, a cost and latency analysis based on

synthesis results is realized.

BUPT

BUPT

5. Conclusions

5.1 Context and Relevance

Interval arithmetic has been the focus of the research community for more
than four decades. In this years, a wide range of interval applications have been
developed, which have proven more reliable and in some cases with higher
performance compared to the ones based on conventional floating point arithmetic.
However, lack of appropriate hardware support made these interval algorithms and
methods to be slow and inefficient. This thesis tackles the problem of designing
dedicated floating point units for interval arithmetic. This way, basic incentives for
an efficient implementation of interval algorithms have been created.

The importance and the need for hardware units for interval arithmetic are
proven by the last initiatives of the IEEE Standards Association - Microprocessor
Standards Committee:

e The first initiative is represented by the revision and the extension of the
IEEE 754 standard for floating point arithmetic which is expected to be
released by the end of 2008.

e The second initiative is represented by the formation of the Work Group
1788 for developing an IEEE standard for interval arithmetic [116]. The
future standard - IEEE 1788 standard for interval arithmetic - is expected
to be completed by the end of 2012.

Three dedicated floating point unit have been designed and implemented.
The first two are dedicated for the most frequent operations in any arithmetic
system: addition and multiplication. This way, the basis for any interval arithmetic
system has been laid.

The third designed and implemented module is the floating point divide-add
fused. This unit comes as a dedicated floating point hardware circuit for an interval
arithmetic specific algorithm: the interval Newton’s algorithm. The interval Newton's
method represents one of the most important interval algorithms, with a wide range
of applications. The proposed unit comes in the context of designing more and more
dedicated hardware for both System-on-Chip and accelerators implemented in FPGA
based circuits [119].

Furthermore, all three units can be used for performing conventional
floating point operations. This goal represents a necessity for interval arithmetic
units, as combined interval and conventional floating point applications might be
used. Furthermore, several crucial interval operators (such as midpoint and width of
an interval) rely on conventional floating point arithmetic.

5.2 Summary

This thesis has three main chapters, each of them dedicated to the
corresponding floating point hardware unit.

F

BUPT

128 Conclusions - 5

The first hardware arithmetic unit is dedicated to the interval addition,
treated in Chapter 2. The first section of this chapter presents the two solutions for
the interval addition, which are based on the usage of conventional floating point
adders. The following subsection is dedicated to the conventional floating point
addition. The basic algorithm and the enhancements for this basic algorithm are
detailed. These enhancements of the basic floating point addition algorithm
represent the backbone of the single path floating point adder. A detailed
presentation of the double path adder follows. Several high performance floating
point adders based on the double adder architecture are described, including both
academic and commercial designs. The third section of the addition dedicated
chapter presents then proposed addition unit, which is based on the double path
adders. The proposed adder exploits the parallel structure of it, by trying to
perform the two operations required for an interval addition/subtraction
simultaneously. This represents a novel approach in the design of double path
adders. In the last section of this chapter, performance and cost evaluations were
performed for the proposed adders compared to other commercial and academic
double path adder based solutions. These evaluations showed that the proposed
adder presents the best cost/performance tradeoff with respect to other interval
adders. Furthermore, the proposed adder can be used for increasing the
performance of the conventional addition, due to its increased throughput.

The third chapter presents the interval multiplication. Unlike addition,
interval multiplication represents a difficult operation. Therefore, a number of
algorithms have been developed in order to improve the performance of this crucial
operation. These algorithms are presented in the first section of this chapter.
Further, an overview of the conventional floating point multiplication is given in the
second section. Tree multipliers are presented, different tree topologies being
analyzed. Finally, three rounding schemes for floating point multiplication are
presented: the Even-Seidel, Quach and Yu-Zyner. The third section of Chapter 3 is
dedicated to the proposed interval multiplier. Algorithm for interval multiplication
and its corresponding architecture are presented. The architecture is based on the
dual result multiplier and two floating point comparators. The three rounding
schemes presented in the previous section are modified for dual result multipliers. A
new rounding scheme is proposed. In the last section, performance and cost
estimates are realized. These estimates show an improvement in the worst case
performance for the proposed interval multiplication architecture. Furthermore, the
proposed rounding scheme has the lowest latency and lowest cost.

The fourth chapter is dedicated to the floating point divide-add fused
hardware unit. Due to the fact that divide-add fused have never been implemented
yet, to the best of my knowledge, the first sections of this chapter presents why
such a dedicated hardware unit has never been yet designed and the reasons for
which in the context of interval arithmetic, such a unit may prove and advantage.
The reasons for such a unit are related to the accelerating the interval Newton’s
method, which is presented in detail in this chapter. The following sections present
the floating point muitiply-add fused units and the floating point division, which
represent the inspiration point for such a hardware unit. The fifth section of this
chapter is dedicated to the design and implementation of the floating point divide-
add fused unit. The algorithm and its architecture are inspired from the ones used
for floating point multiply-add fused. The main difference is represented by the
usage of a divider stage instead of the encoding module and the partial product
reduction tree. The main issues regarding the implementation of this dedicated unit
are analyzed. These two issues are related to the number of quotient bits needed

BUPT

5.3 - Contributions 129

and the rounding in floating point divide-add fused. An analysis of these two
problems is performed. Last, but not least, performance and cost evaluations are
performed.

5.3 Contributions

This section will present the contributions of this thesis linked to the three
research directions pointed in Section 5.1. The motivations for these three directions
have been provided in Section 1.3 of the introductory chapter.

e Interval Addition Unit

Regarding the most frequent operation in any arithmetic system -
addition/subtraction - the major contribution is represented by the design of a new
adder architecture. The proposed adder architecture is based on the double path
adder structure and exploits the parallelism of this structure, by performing the two
floating point additions required for the interval operation. The main advantages of
the proposed adder, as they resulted from the cost and performance estimates, are:
- Higher performance compared to the interval adder based on a single
double path adder
- Lower cost compared to the interval adder based on two floating point
adders
- High throughput compared to other interval adder architectures
- Best cost/performance cost tradeoff when dealing with high number of
interval additions.

The limitations of the proposed interval adder are:
- Higher cost compared to the interval adder based on a single double path
adder
- Lower performance compared to the interval adder based on two floating
point adder
- Low performance when dealing with isolated additions, as the proposed
adder’s main characteristic is represented by the throughput

The proposed adder can also be used for increasing the throughput of the
conventional floating point addition, due to the parallel structure of it. Thus, as
estimates results show, the proposed adder present the highest performance and
the highest cots-performance tradeoff when dealing with series of large numbers of
additions. Due to higher latency compared to other floating point addition
implementations, the proposed adder is not suitable for single additions.

o Interval Multiplication Unit

Regarding the interval multiplication, the following contributions have been

proposed in this thesis:
- Interval multiplication algorithm based on the pipelined interval

multiplication proposed by Kulisch and the eight product multiplication

algorithm
- Novel interval multiplier architecture based on a dual result multiplier and
two floating point comparators

FI

BUPT

130 Conclusions - 5

- Dual result multiplier based on tree based floating point multipliers

- Novel addition and rounding units for dual result multipliers based on the
Quach rounding scheme and on the Yu-Zyner rounding schemes for
conventional floating point multiplication

- Novel addition and rounding units for dual result multiplier for usage
exclusively for interval arithmetic

The advantages of the proposed interval multiplication unit based on the dual result
multiplier are:
- Higher worst case performance compared to other interval multiplication
algorithm
- Increased functionality, as the proposed unit can also be used for
conventional floating point multiplication and interval set operations based
on comparisons
The disadvantage of the proposed unit relies in a lower medium performance
compared to other interval multipliers.

Regarding the proposed addition and rounding multiplication scheme for interval
arithmetic, the main advantages are lower latency and lower cost compared to the
rounding units based on Quach rounding scheme and on Yu-Zyner rounding
scheme.

o Floating Point Divide-Add Fused

The floating point divide-add fused has never been implemented, to the best of my
knowledge. Therefore, a motivation had to be provided for implementing this
dedicated combined operations unit. This motivation has been provided by the one
of the most powerful interval arithmetic algorithms: interval Newton’s method.
Thus, the contributions regarding the floating point divide-add fused are:
- Algorithm for floating point divide-add fused inspired from the multiply-add
fused algorithm
- Architecture for divide-add fused inspired from the basic multiply-add fused
architecture based on digit-recurrence dividers
- A detailed analysis of the number of quotient bits required for performing
the divide-add fused architecture
- Variable latency architecture for divide-add fused units

This way, a specific divide-add fused floating point unit for interval Newton’s method
have been proposed and implemented. Therefore, performance and precision
increases for one of the most powerful interval arithmetic algorithm has been
provided.

5.4 Future Work

This thesis has addressed immediate problems regarding the design of the
floating point hardware units for interval arithmetic. However, as the future IEEE
1788 standard for interval arithmetic will be developed, several modification of the
proposed design will have to be done in order to be fully compliant to the standard.
The proposed units didn't address specific problems closely related to an arithmetic

F}

BUPT

5.4 - Future Work 131

standards such as the special quantities (such as infinity, zero, NaN used in the IEEE
754) or the exceptions and their handling.

The second research direction is represented by the combining the divide-
add fused architectures with other division algorithms classes, such as the
multiplication methods (Newton-Raphson, series expansion) and very high radix
algorithms. This way, a wide variety of divide-add fused floating point units with
different performance/cost/power characteristics should be provided. Furthermore,
higher performance divide-add fused architectures inspired from multiply-add fused
structure are considered for future implementations.

The third research direction will be the design of interval function evaluators
in order to further increase the performance of the interval Newton’s method and
other interval algorithms which make extensive use of function evaluators. Thus,
hardware implementations for functions such exponentiation, logarithmic, square
root or function describing surfaces, curves, etc. This way, dedicated hardware
accelerators for specific applications which used interval arithmetic algorithms, such
as the computer graphics, will be considered for implementation.

BUPT

BUPT

Appendix A
VHDL Source Code and Technology Schematics for
ISCAS’85 Benchmark Circuits

In order to increase the confidence of the obtained synthesis results, five ISCAS'85
benchmark circuits were modeled in VHDL and synthesized with Xilinx Synthesis
Tool (XST) for Xilinx Virtex-4 FPGA. These circuits are described in [39], while their
Verilog HDL source codes can be found at
http://www.eecs.umich.edu/~jhayes/iscas.restore/benchmark.htmi [118].

Al. C17 Benchmark Circuit

entity C17 is
Port (in_gl : in STD_LOGIC;

in_g2 : in STD_LOGIC;
in_g3 : in STD_LOGIC,
in_g4 : in STD_LOGIC;
in_g5 : in STD_LOGIC;
out_g1l : out STD_LOGIC;
out_g2 : out STD_LOGIC);

end C17;

architecture Behavioral of C17 is

signal g11,g12,921,922:std_logic;

begin
Nandl_1: gll<=in_gl nand in_g3;
Nand1_2: gi2<=in_g3 nand in_g4;
Nand2_1: g21<=in_g2 nand g12;
Nand2_2: g22<=in_g5 nand g12;
Nand3_1: out_gl<=gll nand g21;
Nand3_2: out_g2<=g21 nand g22;

end Behavioral;

m T LUT4_EE4C
o —: '
P oj——— > EED
‘ i ’ - !
i >~ BTV P e
o Pt [
.
[T
e
D
E® !

Figure Al - Technology Schematic for C17 Obtained with XST

BUPT

http://www.eecs.umich.edu/~jhayes/iscas.restore/benchmark.html

134 Appendix - A

A2. C432 Benchmark Circuit

entity C432 is
Port (e : in STD_LOGIC_VECTOR (8 downto 0);
a:in STD_LOGIC_VECTOR (8 downto 0);
b:in STD_LOGIC_VECTOR (8 downto 0);
c:in STD_LOGIC_VECTOR (8 downto 0);
pa : out STD_LOGIC;
pb : out STD_LOGIC;
pc : out STD_LOGIC;
Chan : out STD_LOGIC_VECTOR (3 downto 0));
end C432;

architecture Struct of C432 is
component ml
port (a:in std_logic_vector (8 downto 0);
e:in std_logic_vector (8 downto 0);
pa:out std_logic;
x1:out std_logic_vector (8 downto 0));
end component;
component m2
port (x1 : in STD_LOGIC_VECTOR (8 downto 0);
b:in STD_LOGIC_VECTOR (8 downto 0);
e : in STD_LOGIC_VECTOR (8 downto 0);
pb : out STD_LOGIC;
x2 : out STD_LOGIC_VECTOR (8 downto 0));
end component;
component m3
Port (x1 : in STD_LOGIC_VECTOR (8 downto 0);
X2 :in STD_LOGIC_VECTOR (8 downto 0);
c:in STD_LOGIC_VECTOR (8 downto 0);
e :in STD_LOGIC_VECTOR (8 downto 0);
pc : out STD_LOGIC);
end component;
component m4
Port (e : in STD_LOGIC_VECTOR (8 downto 0);
a:in STD_LOGIC_VECTOR (8 downto 0);
pa : in STD_LOGIC;
b :in STD_LOGIC_VECTOR (8 downto 0);
pb : in STD_LOGIC;
C:in STD_LOGIC_VECTOR (8 downto 0);
pc:in STD_LOGIC;
i . out STD_LOGIC_VECTOR (8 downto 0));
end component;
component m5
Port (i:in STD_LOGIC_VECTOR (8 downto 0);
chan : out STD_LOGIC_VECTOR (3 downto 0));
end component;

signal pa_int, pb_int,pc_int:std_logic;

signal x1,x2,i:std_logic_vector (8 downto 0);

begin
M1_logic: m1l port map (a, e, pa_int, x1);
M2_logic: m2 port map (x1, b, e, pb_int, x2);
M3_logic: m3 port map (x1, x2, ¢, e, pc_int);

M4 _logic: m4 port map (e, a, pa_int, b, pb_int, c, pc_int, i);

M5_logic: m5 port map (i, chan);

BUPT

A2 - Appendix 135

pa<=pa_int;

pb<=pb_int;

pc<=pc_int;
end Struct;

entity ml is
Port (a :in STD_LOGIC_VECTOR (8 downto 0);
e :in STD_LOGIC_VECTOR (8 downto 0);
pa : out STD_LOGIC;
x1 : out STD_LOGIC_VECTOR (8 downto 0));
end m1;

architecture Behavioral of m1 is
signal g1:std_logic_vector (8 downto 0);
signal pa_gen:std_logic;
begin
G1l_logic:
for i in 8 downto 0 generate
gl(i)<= (not a(i)) nand e(i);
end generate;

PA_logic:

pa_gen<=not (g1(0) and g1(1) and g1(2) and g1(3) and g1(4)
and g1(5) and g1(6) and g1(7) and g1(8));

pa<=pa_gen;

X1_logic:
for i in 8 downto 0 generate
x1(i)<=pa_gen xor g1(i);
end generate;
end Behavioral;

entity m2 is
Port (x1 : in STD_LOGIC_VECTOR (8 downto 0);
b : in STD_LOGIC_VECTOR (8 downto 0};
e : in STD_LOGIC_VECTOR (8 downto 0);
pb : out STD_LOGIC;
x2 : out STD_LOGIC_VECTOR (8 downto 0));
end m2;
architecture Behavioral of m2 is
signal g1, g2: std_logic_vector(8 downto 0);
signal pb_gen: std_logic;
begin
G1G2_logic:
for i in 8 downto O generate
gi(i)<=(not e(i)) nor b(i);
g2(i)<=g1(i) nand x1(i);
end generate;
PB_logic:
pb_gen<= not (g2(0) and g2(1) and g2(2)
and g2(3) and g2(4) and g2(5)
and g2(6) and g2(7) and g2(8));
pb<=pb_gen;
x2_logic: .
for i in 0 to 8 generate
x2(i)<=pb_gen xor g2(i);
end generate;
end Behavioral;

BUPT

136 Appendix - A

entity m3 is
Port (x1 : in STD_LOGIC_VECTOR (8 downto 0);
x2 : in STD_LOGIC_VECTOR (8 downto 0);
c:in STD_LOGIC_VECTOR (8 downto 0);
e :in STD_LOGIC_VECTOR (8 downto 0);
pc : out STD_LOGIC);
end m3;

architecture Behavioral of m3 is
signal g1,rc:std_logic_vector(8 downto 0);
begin
gl_logic:
for i in 8 downto O generate
gl(i)<= (not e(i)) nor c(i);
end generate;
RC_logic:
for i in 8 downto 0 generate
rc(i)<= not (g1(i) and x1(i) and x2(i));
end generate;
PC_logic:
pc<=not (rc(0) and rc(1) and rc(2) and rc(3)
and rc(4) and rc(5) and rc(6) and rc(7)
and rc(8));
end Behavioral;

entity m4 is
Port (e : in STD_LOGIC_VECTOR (8 downto 0);
a:in STD_LOGIC_VECTOR (8 downto 0);
pa :in STD_LOGIC;
b :in STD_LOGIC_VECTOR (8 downto 0);
pb :in STD_LOGIC;
c:in STD_LOGIC_VECTOR (8 downto 0);
pc : in STD_LOGIC;
i:out STD_LOGIC_VECTOR (8 downto 0));
end m4;
architecture Behavioral of m4 is
signal ga,gb,gc:std_logic_vector(8 downto 0);
begin
i_logic:
for j in 8 downto 0 generate
GA_logic: ga(j)<= a(j) nand pa;
GB_logic: gb(j)<= b(j) nand pb;
GC_logic: ge(j)<= ¢(j) nand pc;
I_generation: i(J)<= not (e(j) and ga(j) and gb(j) and gc(j));
end generate;
end Behavioral,;

entity mS is
Port (i:in STD_LOGIC_VECTOR (8 downto 0);
chan : out STD_LOGIC_VECTOR (3 downto 0));
end mS5;

architecture Behavioral of mS is
signal i7_0, i6_5, i5_2, i6_3, i6_1: std_logic;
begin
chan3_logic:
i7_0<=i(7),and i(6) and i(5) and i(4)
and i(3) and i(2) and i(1) and i(0);

BUPT

A3 - Appendix 137

chan(3)<= not ((not i(8)) nor i7_0);
chan2_logic:

i6_5<= not i(5) nand i(6);

chan(2)<=not (i(7) and i(6) and i(4) and i6_5);
chanl_logic:

i5_2<= not (i(5) and i(4) and (not i(2)));

chan(1)<=not (i(7) and i(6) and i5_2 and i6_3);
chan9_logic:

i6_3<= not (i(6) and i(5) and i(4) and i(3));

i6_1<= not (i(6) and i(5) and i(2) and (not i(1)));

chan(0)<= not (i(7) and i6_S and i6_3 and i6_1);

end Behavioral;

o { ' —g! }
255 ' g
[| o) (o i ; '
] =:; J- | ity
[= U
’ ; i | i]
T [
i
4t

Figure A2 - Technology Schematic of C432 Benchmark Circuit Obtained with XST

A3. C499 Benchmark Circuit

entity c499 is
Port (r: in STD_LOGIC,;
ic : in STD_LOGIC_VECTOR (7 downto 0);
id : in STD_LOGIC_VECTOR (31 downto 0);
od : out STD_LOGIC_VECTOR (31 downto 0));

end c499;

architecture Struct of c499 is
component m1l
Port (r: in STD_LOGIC;
ic :in STD_LOGIC_VECTOR (7 downto 0);
id : in STD_LOGIC_VECTOR (31 downto 0);
s : out STD_LOGIC_VECTOR (7 downto 0));
end component;

component m2
Port (s : in STD_LOGIC_VECTOR (7 downto 0);

id : in STD_LOGIC_VECTOR (31 downto 0);

od : out STD_LOGIC_VECTCR (31 downto 0)); -
end component;
signal s:std_Jogic_vector (7 downto 0);
begin

BUPT

138 Appendix - A

M1_logic: ml port map(r, ic, id, s);

M2_logic: m2 port map(s, id, od);

end Struct;

entity ml is
Port (r : in STD_LOGIC;
ic : in STD_LOGIC_VECTOR (7 downto 0);
id : in STD_LOGIC_VECTOR (31 downto 0);
s : out STD_LOGIC_VECTOR (7 downto 0));

end ml;

architecture Behavioral of m1l is

begin

s(0)<=(id(0) xor id(4) xor id(8) xor id(12)) xor (id(16) xor id(17) xor id(18) xor id(19))
s(1)<=(id(1) xor id(5) xor id(9) xor id(13)) xor (id(24) xor id(25) xor id(26) xor id(27)) xor
s(2)<=(id(2) xor id(5) xor id(10) xor id(14)) xor (id(16) xor id(17) xor id(18) xor id(19))
s(3)<=(id(3) xor id(7) xor id(11) xor id(15)) xor (id(20) xor id(21) xor id(22) xor id(23))
s(4)<=(id(16) xor id(20) xor id(24) xor id(28)) xor (id(0) xor id(1) xor id(2) xor id(3))
s(5)<=(id(17) xor id(21) xor id(25) xor id(29)) xor (id(8) xor id(9) xor id(10) xor id(11))
s(6)<=(id(18) xor id(22) xor id(26) xor id(30)) xor (id(0) xor id(1) xor id(2) xor id(3))

s(7)<=(id(19) xor id(23) xor id(27) xor id(31)) xor (id(4) xor id(5) xor id(6) xor id(7)) xor

xor (id(20) xor id(21) xor id(22) xor id(23)) xor (r and ic(0));
(id(28) xor id(29) xor id(30) xor id(31)) xor (r and ic(1));
xor (id(24) xor id(25) xor id(26) xor id(27)) xor (r and ic(2));
xor (id(28) xor id(29) xor id(30) xor id(31)) xor (r and ic(3));
xor (id(4) xor id(5) xor id(6) xor id(7)) xor (r and ic(4));

xor (id(12) xor id(13) xor id(14) xor id(15)) xor (r and ic(5));
xor (id(8) xor id(9) xor id(10) xor id(11)) xor (r and ic(6));

(id(12) xor id(13) xor id(14) xor id(15)) xor (r and ic(7));

end Behavioral;

entity m2 is
Port (s : in STD_LOGIC_VECTOR (7 downto 0);
id : in STD_LOGIC_VECTOR (31 downto 0);
od : out STD_LOGIC_VECTOR (31 downto 0));

end m2;

architecture Behavioral of m2 is

begin

od(0)<= ((s(0) and (not s(1)) and (not s(2)) and (not s(3)))and

(s(4) and (not s(5)) and s(6) and (not s(7)))) xor id(0);
od(1)<= (((not s(0)) and s(1) and (not s(2)) and (not s(3)))and

(s(4) and (not s(5)) and s(6) and (not s(7)))) xor id(1);
0d(2)<= (((not s(0)) and (not s(1)) and s(2) and (not s(3))) and

(s(4) and (not s(5)) and s(6) and (not s(7)))) xor id(2);
0d(3)<= (((not s(0)) and (not s(1)) and (not s(2)) and s(3)) and

(s(4) and (not s(5)) and s(6) and (not s(7)))) xor id(3);
od(4)<= ((s(0) and (not s(1)) and (not s(2)) and (not s(3))) and

(s(4) and (not s(5)) and (not s(6)) and s(7))) xor id(4);
od(5)<= (((not s(0)) and s(1) and (not s(2)) and (not s(3))) and

(s(4) and (not s(5)) and (not s(6)) and s(7))) xor id(S);
od(6)<= (((not s(0)) and (not s(1)) and s(2) and (not s(3))) and

(s(4) and (not s(5)) and (not s(6)) and s(7))) xor id(6);
od(7)<= (((not s(0)) and (not s(1)) and (not s(2)) and s(3)) and

(s(4) and (not s(5)) and (not s(6)) and s(7))) xor id(7);
od(8)<= ((s(0) and (not s(1)) and (not s(2)) and (not s(3))) and

((not s(4)) and s(5) and s(6) and (not s(7)))) xor id(8);

BUPT

A3 - Appendix 139

od(9)<= (((not s(0)) and s(1) and (not s(2)) and (not s(3))) and

((not s(4)) and s(5) and s(6) and (not s(7)))) xor id(9);
0d(10)<= (((not s(0)) and (not s(1)) and s(2) and (not s(3)))and

((not s(4)) and s(5) and s(6) and (not s(7)))) xor id(10);
od(11)<= (({(not s(0)) and (not s(1)) and (not s(2)) and s(3))and

((not s(4)) and s(5) and s(6) and (not s(7)))) xor id(11);
od(12)<= ((s(0) and (not s(1)) and (not s(2)) and (not s(3)))and

((not s(4)) and s(5) and (not s(6)) and s(7))) xor id(12);
od(13)<= (((not s(0)) and s(1) and (not s(2)) and (not s(3))) and

((not s(4)) and s(5) and (not s(6)) and s(7))) xor id(13);
od(14)<= (((not s(0)) and (not s(1)) and s(2) and (not s(3))) and

((not s(4)) and s(5) and (not s(6)) and s(7))) xor id(14);
od(15)<= (({(not s(0)) and (not s(1)) and (not s(2)) and s(3))and

((not s(4)) and s(5) and (not s(6)) and s(7))) xor id(15);
od(16)<= ((s(4) and (not s(5)) and (not s(6)) and (not s(7)))and

(s(0) and (not s(1)) and s(2) and (not s(3)))) xor id(16);
0d(17)<= (((not s(4)) and s(5) and (not s(6)) and (not s(7)))and

(s(0) and (not s(1)) and s(2) and (not s(3)))) xor id(17);
od(18)<= ({(not s(4)) and (not s(5)) and s(6) and (not s(7)))and

(s(0) and (not s(1)) and s(2) and (not s(3)))) xor id(18);
0d(19)<= (((not s(4)) and (not s(5)) and (not s(6)) and s(7)) and

(s(0) and (not s(1)) and s(2) and (not s(3)))) xor id(19);
0d(20)<= ((s(4) and (not s(5)) and (not s(6)) and (not s(7)))and

(s(0) and (not s(1)) and (not s(2)) and s(3))) xor id(20);
od(21)<= (((not s(4)) and s(5) and (not s(6)) and (not s(7)))

and (s(0) and (not s(1)) and (not s(2)) and s(3))) xor id(21);
0d(22)<= (((not s(4)) and (not s(5)) and s(6) and (not s(7)))

and (s(0) and (not s(1)) and (not s(2)) and s(3))) xor id(22);
0d(23)<= (({not s(4)) and (not s(5)) and (not s(6)) and s(7))

and (s(0) and (not s(1)) and (not s(2)) and s(3))) xor id(23);
0d(24)<= ((s(4) and (not s(5)) and (not s(6}) and (not s(7)))

and ((not s(0)) and s(1) and s(2) and (not s(3)))) xor id(24),;
od(25)<= (((not s(4)) and s(5) and (not s(6)) and (not s(7)))

and ((not s(0)) and s(1) and s(2) and (not s(3)))) xor id(25);
0d(26)<= (((not s(4)) and (not s(5)) and s(6) and (not s(7)))

and ({not s(0)) and s(1) and s(2) and (not s(3)))) xor id(26),
0d(27)<= (({(not s(4)) and (not s(5)) and (not s(6)) and s(7))

and ((not s(0)) and s(1) and s(2) and (not s(3)))) xor id(27),
0d(28)<= ({s(4) and (not s(5)) and (not s(6)) and (not s(7)))

and ((not s(0)) and s(1) and (not s(2)) and s(3))) xor id(28);
0d(29)<= (((not s(4)) and s(5) and (not s(6)) and (not s(7)))

and ((not s(0)) and s(1) and (not s(2)) and s(3))) xor id(29);
0d(30)<= ({(not s(4)) and (not s(5)) and s(6) and (not s(7)))

and ((not s(0)) and s(1) and (not s(2)) and s(3))) xor id(30);
od(31)<= ({(not s(4)) and (not s(5)) and (not s(6)) and s(7))

and ((not s(0)) and s(1) and (not s(2)) and s(3))) xor id(31);

end Behavioral;

BUPT

140 Appendix - A
:‘ —={¥]

> -

W

Figure A3 - Technology Schematic of C499 Benchmark Circuit Obtained with XST

A4 C6288 Benchmark Circuit

entity C6288 is
Port (a:in STD_LOGIC_VECTOR (15 downto 0);
b :in STD_LOGIC_VECTOR (15 downto 0);
p : out STD_LOGIC_VECTOR (31 downto 0));
end C6288;

architecture Struct of C6288 is

type matrix is array(15 downtp 0) of std_logic_vector(15 downto 0);

BUPT

A4 - Appendix 141

component HA

Port (a:

in STD_LOGIC;

b :in STD_LOGIC;
s : out STD_LOGIC;
cout:out STD_LOGIC);

end component;

component FA

Port (a:

in STD_LOGIC,;

b :in STD_LOGIC;

¢in : in STD_LOGIC;

s : out STD_LOGIC;
cout : out STD_LOGIC);

end component;

signal line0, linel, line2, line3, line4, line5, line6, line7: std_logic_vector (15 downto 0);

signal line8, line9, linel0, linell, linel2, linel3, linel4, linel5: std_logic_vector (15 downto

0);
signal s,c:matrix;

begin

line_generation:

foriinO

to 15 generate
line0(i)<=a(i) and b(0);
linel(i)<=a(i) and b(1);
line2(i)<=a(i) and b(2);
line3(i)<=a(i) and b(3);
lined(i)<=a(i) and b(4);
line5(i)<=a(i) and b{5);
line6(i)<=a(i) and b(6);
line7(i)<=a(i) and b(7);
line8(i)<=a(i) and b(8);
line9(i)<=a(i) and b(9);
line10(i)<=a(i) and b(10);
linel1(i)<=a(i) and b(11);
line12(i)<=a(i) and b(12);
line13(i)<=a(i) and b(13);
line14(i)<=a(i) and b(14);
line15(i)<=a(i) and b(15);

end generate;

matrix_generation:

foriin1

to 15 generate
HA_lineO:

HA port map (line0(i), line1(i-1), s(@)(i-1), c(0)(i));

s(0)(15)<=line1({15);
c(0)(0)<="'0";

FA_linel:

FA port map(line2(i-1), s(0)(i), c(0)(i), s(1)(i-1), c(1)(D));

s(1)(15)<=line2(15);
c(1)(0)<='0";

FA_line2:

FA port map(line3(i-1), s(1)(i), c(1)(i), s

s(2)(15)<=line3(15);
c(2)(0)<="'0";

(2)(i-1), c(2)(1));

BUPT

142 Appendix - A

FA_line3:

FA port map(lined(i-1), s(2)(i), c(2)(i), s(3)(i-1), e(3)(i));
s(3)(15)<=line4(15);
c(3)(0)<="0";

FA_line4:

FA port map(line5(i-1), s(3)(i), c(3)(i), s(4)(i-1), c(4)(i));
s(4)(15)<=line5(15);
c(4)(0)<="0";

FA_line5:

FA port map(line6(i-1), s(4)(i), c(4)(i), s(5)(i-1), c(5)(1));
s{5)(15)<=line6(15);
c(5)(0)<="0";

FA_line6:

FA port map(line7(i-1), s(5)(i), c(5)(i), s(6)(i-1), c(6)(i));
s(6)(15)<=line7(15);
c(6)(0)<='0";

FA_line7:

FA port map(line8(i-1), s(6)(i), ¢(6)(i), s(7)(i-1), c(7)(i));
s(7)(15)<=line8(15);
c(7)(0)<="0";

FA_line8:

FA port map(lineS(i-1), s(7)(i), c(7)(i), s(8)(i-1), c(8)(1));
s(8)(15)<=line9(15);
c(8)(0)<="0";

FA_line9:

FA port map(line10(i-1), s(8)(i), c(8)(i), s(9)(i-1), c(9)(i));
5(9)(15)<=line10(15);
c(9)(0)<="0";

FA_linel0:

FA port map(linel1(i-1), s(9)(i), c(9)(i), s(10)(i-1), c(10)(i));
s(10)(15)<=line7(15);
c(10)(0)<='0";

FA_linell:

FA port map(line12(i-1), s(10)(i), c(10)(i), s(11)(i-1), c(11)(i));
s(11)(15)<=line8(15);
c(11)(0)<="'0";

FA_linel2:

FA port map(line13(i-1), s(11)(i), c(11)(i), s(12)(i-1), c(12)(i));
s(12)(15)<=line13(15);
c(12)(0)<='0";

FA_linel3:

FA port map(linel4(i-1), s(12)(i), c(12)(i), s(13)(i-1), c(13)(i));
s(13)(15)<=line14(15);
c(13)(0)<="0";

FA_linel4:

FA port map(line15(i-1), s(13)(i), c(13)(i), s(14)(i-1), c(14)(i));
s(14)(15)<=Iline15(15);

BUPT

A4 - Appendix 143

c(14)(0)<="'0";

FA_linel5:

FA port map(c(15)(i-1), s(14)(i), c(14)(i), s(15)(i-1), c(15)(i));

c(15)(0)<="0

s(15)(15)<=c(15)(15);

end generate;

p(0)<=line0(0);
p(1)<=s(0)(0);
p(2)<=s(1)(0);
p(3)<=s(2)(0);
p(4)<=s(3)(0);
p(5)<=s(4)(0);
p(6)<=s(5)(0);
p(7)<=s(6)(0);
p(8)<=s(7)(0);
p(9)<=s(8)(0);
p(10)<=s(9)(0);
p(11)<=s(10)(0);
p(12)<=s(11)(0);
p(13)<=s(12)(0);
p(14)<=s(13)(0);
p(15)<=s(14)(0);

p_generation:

foriin O to 15 generate
p(16+i)<=s(15)(i);

end generate;
end Struct;

entity FA is
Port (a :in STD_LOGIC;
b:in STD_LOGIC;
cin : in STD_LOGIC;
s : out STD_LOGIC;
cout : out STD_LOGIC);
end FA;

architecture Behavioral of FA is
begin
s<=a xor b xor cin;

cout<=(a and b) or (a and cin) or (b and cin};

end Behavioral;

entity HA is
Port (a : in STD_LOGIC;
b:in STD_LOGIC;
s : out STD_LOGIC;
cout:out STD_LOGIC);
end HA;

architecture Behavioral of HA is
begin

s<=a xor b;

cout<=a and b;
end Behavioral;

BUPT

144 Appendix - A

s |

Li

Figure A4 - Technology Schematic of C6288 Benchmark Circuit Obtained with XST

A5 74181 Benchmark Circuit

entity C74181 is
Port (a:in STD_LOGIC_VECTOR (3 downto 0);
b :in STD_LOGIC_VECTOR (3 downto 0);
s :in STD_LOGIC_VECTOR (3 downto 0);
cin :in STD_LOGIC;
m : in STD_LOGIC;
eq : out STD_LOGIC;
f : out STD_LOGIC_VECTOR (3 downto 0);
x : out STD_LOGIC;
y : out STD_LOGIC;
cout : out STD_LOGIC);
end C74181;
architecture Struct of C74181 is
component ml
Port (a: in STD_LOGIC_VECTOR (3 downto 0);
b :in STD_LOGIC_VECTOR (3 downto 0);
s :in STD_LOGIC_VECTOR (1 downto 0);
e : out STD_LOGIC_VECTOR (3 downto 0));
end component;
component m2
Port (a : in STD_LOGIC_VECTOR (3 downto 0);
b :in STD_LOGIC_VECTOR (3 downto 0);
s : in STD_LOGIC_VECTOR (1 downto 0);
d : out STD_LOGIC_VECTOR (3 downto 0));
end component;
component CLA

J

BUPT

AS - Appendix 145

Port (d :in STD_LOGIC_VECTOR (3 downto 0);
e :in STD_LOGIC_VECTOR (3 downto 0);
cin :in STD_LOGIC;
¢ : out STD_LOGIC_VECTOR (3 downto 0);
cout : out STD_LOGIC;
x : out STD_LOGIC;
y : out STD_LOGIC);
end component;
signal d,e,carry, f_buf:std_logic_vector(3 downto 0);
signal s1, s2:std_logic_vector(1 downto 0);
begin
s1(0)<=s(2);
s1(1)<=s(3);
s2(0)<=s(0);
s2(1)<=s(1);
M1_logic: m1 port map(a,b,sl,e);
M2_logic: m2 port map(a,b,s2,d),;
CLA_logic: CLA port map(d,e,cin, carry, cout, x, y);
f_generation:
for i in O to 3 generate
f_buf(i)<=(m or carry(i)) xor e(i) xor d(i);
f(i) <=f_buf(i);
end generate;
eq<=f_buf(0) and f_buf(1) and f_buf(2) and f_buf(3);
end Struct;

entity CLA is
Port (d : in STD_LOGIC_VECTOR (3 downto 0);
e :in STD_LOGIC_VECTOR (3 downto 0);
cin : in STD_LOGIC;
c : out STD_LOGIC_VECTOR (3 downto 0);
cout : out STD_LOGIC;
x : out STD_LOGIC;
y : out STD_LOGIC);
end CLA;
architecture Behavioral of CLA is
signal c0g0,c0g01,c0g012,c0g0123:std_logic;
signal p0g1,p0g12,p0g123,p1g2,p1g23,p2g3:std_logic;
signal y_buf:std_logic;
begin
p_g_products:
c0g0<=cin and e(0);
c0g01<=cin and e(0) and e(1);
c0g012<=cin and e(0) and e(1) and e(2);
c0g0123<=cin and e(0) and e(1) and e(3);
pOgl<=d(0) and e(1);
p0g12<=d(0) and e(1) and e(2);
p0g123<=d(0) and e(1) and e(2) and e(3);
plg2<=d(1) and e(2),;
plg23<=d(1) and e(2) and e(3);
p2g3<=d(2) and e(3),;
x<=(e(0) nand e(1)) nand (e(2) nand &(3)),
carry:
c¢(0)<=not cin;
¢(1)<=d(0) nor c0g0;
c(2)<=not (d(1) or pOg1l or c0g01);
c(3)<=not (d(2) or p1g2 or p0g12 or c0g012);
y_buf<=not (d(3) or p293 or p1g23 or p0g123);

BUPT

146 Appendix - A

cout<=y_buf nand (not c0g0123);
y<=y_buf;
end Behavioral;

entity ml is
Port (a :in STD_LOGIC_VECTOR (3 downto 0);
b :in STD_LOGIC_VECTOR (3 downto 0);
s :in STD_LOGIC_VECTOR (1 downto 0);
e : out STD_LOGIC_VECTOR (3 downto 0));
end mi1;
architecture Behavioral of m1 is
begin
result_generation:
foriin O to 3 generate
e(i)<=(a(i) and b(i) and s(1)) nor (a(i) and (not b(i)) and s(0));
end generate;
end Behavioral;

entity m2 is
Port (@ : in STD_LOGIC_VECTOR (3 downto 0);
b : in STD_LOGIC_VECTOR (3 downto 0);
s :in STD_LOGIC_VECTOR (1 downto 0);
d : out STD_LOGIC_VECTOR (3 downto 0));
end m2;
architecture Behavioral of m2 is
begin
d_generation:
for i in O to 3 generate
d(i)<=((not b(i) and s(1)) nor (b(i) and s(0))) nor a(i);
end generate;
end Behavioral;

T = et ~
NS i st
= FoT= s P
) als el .
oHEclo
=t
-

&

Figure A5 - Technology ‘Schematic of 74181 Benchmark Circuits Obtained with XST

BUPT

Appendix B
VHDL Descriptions for Basic Modules Used in the IEEE
Half Precision FP Synthesizable Designs

B1l. Compound Adder

entity CompoundAdder12 is
Port (a:in STD_LOGIC_VECTOR (11 downto 0);
b :in STD_LOGIC_VECTOR (11 downto 0);
s : out STD_LOGIC_VECTOR (11 downto 0);
sl : out STD_LOGIC_VECTOR (11 downto 0));
end CompoundAdder12;

architecture Behavioral of CompoundAdder12 is

component CLA_cell
Port (g_ij : in STD_LOGIC;
p_ij : in STD_LOGIC;
g_jk : in STD_LOGIC;
p_jk : in STD_LOGIC;
g_ik : out STD_LOGIC;
p_ik : out STD_LOGIC);
end component;

signal p_levell, g_levell:std_logic_vector(11 downto 0);
signal p_level2, g_level2:std_logic_vector(11 downto 0);
signal p_level3, g_level3:std_logic_vector(11 downto 0);
signal p_leveld, g_level4:std_logic_vector(11 downto 0);
signal p_levelS, g_level5:std_logic_vector(11 downto 0);
signal c0,c1:std_logic_vector(11 downto 0);

begin

levell:

foriin O to 11 generate
p_levell(i)<=a(i) xor b(i);
g_levell(i)<=a(i) and b(i};
s(i)<=p_levell(i) xor cO(i);
s1(i)<=p_levell(i) xor c1(i),

end generate;

level2_p:
foriin O to S generate
CLA_block2_0: CLA_cell port map(g_levell(2*i), p_levell(2*i),
g_levell(2*i+1), p_levell(2*i+1),
g_level2(2*i+1), p_level2(2*i+1));
g_level2(2*i)<=g_levei(2*i);
p_level2(2*i)<=g_level1(2*i);
end generate;

level3_p:

BUPT

148 Appendix - B

foriin O to 2 generate

CLA_block3_0:CLA_cell port map(g_level2(4*i+1), p_level2(4*i+1),
g_level2(4*i+3), p_level2(4*i+3),
g_level3(4*i+3), p_level3(4*i+3));

CLA_block3_1:CLA_cell port map(g_level2(4*i+1), p_level2(4*i+1),
g_level2(4*i+2), p_level2(4*i+2),
g_level3(4*i+2), p_level3(4*i+2)),;

g_level3(4*i)<=g_level2(4*i),

p_level3(4*i)<=p_level2(4*i);

g_level3(4*i+1)<=g_level2(4*i+1);

p_level3(4*i+1)<=p_level2(4*i+1);
end generate;

level4_p:
foriin O to 3 generate
CLA_block4: CLA_cell port map(g_level3(3), p_level3(3),

g_level3(4+i), p_level3(4+i),
g_leveld(4+i), p_leveld(4+i));

g_leveld(i)<=g_level3(i);

p_leveld(i)<=p_level3(i);

g_level4(8+i)<=g_level3(8+i);

p_level4(8+i)<=p_level3(8+i);
end generate;

level5_p:
foriin O to 3 generate
CLA_block5: CLA_cell port map(g_level4(7), p_leveld(7),

g_leveld(8+i), p_leveld(8+i),
g_level5(8+i), p_level5(8+i));

g_level5(i)<=g_level4(i);

p_level5(i)<=p_level4(i);

g_level5(4+i)<=g_leveld(4+i);

p_levelS(4+i)<=p_level4(4+i);
end generate;

carry_formation:

foriin O to 10 generate
c0(i+1)<=g_level5(i);
cl(i+1)<=g_level5(i) or p_level5(i);

end generate;

c0(0)<='0";

c1(0)<="1";

end Behavioral;

entity CLA_cell is
Port (g_ij : in STD_LOGIC;

p_ij : in STD_LOGIC;
g_jk : in STD_LOGIC;
p_jk : in STD_LOGIC;
g_ik : out STD_LOGIC;
p_ik : out STD_LOGIC);

end CLA_cell;

architecture Behavioral of CLA_cell is
begin
p_ik<=p_ij and p_jk;
g_ik<=g_jk or (p_jk and g_ij);
end Behavioral,;

BUPT

B2 - Appendix 149

B2. Leading Zero Predictor

entity LZP is
Port (a:in STD_LOGIC_VECTOR (10 downto 0);
b:in STD_LOGIC_VECTOR (10 downto 0);
sub : in STD_LOGIC;
norm : out STD_LOGIC_VECTOR (3 downto 0));
end LZP;

architecture Behavioral of LZP is
component encoding_cell
Port (a : in STD_LOGIC;
b :in STD_LOGIC;
s_sup: in std_logic;
g_sup: in std_logic;
e_inf: in std_logic;
s : out STD_LOGIC;
g : out STD_LOGIC;
e : out STD_LOGIC,;
f : out std_logic);
end component;
component lzd
Port (f: in STD_LOGIC_VECTOR (10 downto 0);
z : out STD_LOGIC_VECTOR (3 downto 0));
end component;

signal f:std_logic_vector(10 downto 0);
signal g,s,e:std_logic_vector (11 downto 0);
signal z:std_logic_vector(3 downto 0);
begin
g(0)<='0";
s(0)<="0";
e(11)<="1";
encoding_modules:
for i in O to 10 generate
enc_cell: encoding_cell port map(a(i),b(i), s(i),qg(i),e(i+1),
s(i+1),g(i+1),e(i),f(i));
end generate;
leading_zero_detection.
izd port map(f, z);
result:
foriin O to 3 generate
norm{i)<=sub and z(i);
end generate;
end Behavioral;

entity LZD is
Port (f: in STD_LOGIC_VECTOR (10 downto 0);
z : out STD_LOGIC_VECTOR (3 downto 0));
end LZD;

architecture Behavioral of LZD is

signal vO:std_logic_vector(2 downto 0);

signal p0_0,p0_1,p0_2:std_logic_vector(1 downto 0); “
signal v1:std_logic;

signal p1_0:std_logic_vector(2 downto),

signal p2_0:std_logic_vector(3 downto 0);

BUPT

150 Appendix - B

begin

first_level_4_bits:

v0(2)<=f(10) or f(9) or f(8) or f(7),
p0_2(1)<=f(10) nor f(9);

p0_2(0)<=(f(10) nor (not f(9))) or (f(10) nor f(8));
v0(1)<=f(6) or f(5) or f(4) or f(3);

p0_1(1)<=f(6) nor f(5);

p0_1{0)<=(f(6) nor (not f(5))) or (f(6) nor f(4));
v0(0)<=f(2) or f(1) or f(0);

p0_0(1)<=f(2) nor f(1);

p0_0(0)<=(f(2) nor (not f(1))) or (f(2) nor f(0));

second_level_8_bits:

vi<=v0(2) or vO(1);

pl_0(2)<=not(v0(2));

pl_O(1l)<= p0_2(1) when v0(2)="1" else
p0_1(1) when v0(2)="'0' else
IO,;

pl_0(0)<= p0_2(0) when v0(2)="1' else
p0_1(0) when v0(2)='0' else
IOI;

third_level 11 bits:

p2_0(3)<=not v1;
p2_0(2)<= pl_0(2) when v1='1" else
(not v0(0)) when v1="0' else
lol;
p2_0(1)<= pl_0(1) when v1="'1' else
(v0(0) and p0_0(1)) when v1='0" else
IO';
p2_0(0)<= p1_0(0) when v1="1' else
(v0(0) and p0_0(0)) when v1='0' else
Z<=p2_0;

end Behavioral;

B3. Booth Radix-4 Encoding Module

entity Booth_encoder is
Port (a :in STD_LOGIC_VECTOR (10 downto 0);

b :in STD_LOGIC_VECTOR (10 downto 0);

pp0 : out STD_LOGIC_VECTOR (14 downto 0);
ppl : out STD_LOGIC_VECTOR (15 downto 0);
pp2 : out STD_LOGIC_VECTOR (15 downto 0);
pp3 : out STD_LOGIC_VECTOR (15 downto 0);
pp4 : out STD_LOGIC_VECTOR (14 downto 0);
pp5 : out STD_LOGIC_VECTOR (12 downto 0));

end Booth_encoder;

architecture Behavioral of Booth_encoder is
component booth_encoding_cell

Port (x_i0 : in STD_LOGIC;
x_il :in STD_LOGIC;
x_i2 :in STD_LOGIC;
sell : out STD_LOGIC;
sel2 : out STD_LOGIC;
s : out STD_LOGIC); *

lol;

BUPT

end component;
component booth_line
Port (a : in STD_LOGIC_VECTOR (10 downto 0);
sell : in STD_LOGIC;
sel2 : in STD_LOGIC;
a_booth : out STD_LOGIC_VECTOR (11 downto 0));
end component;

signal zero, one:std_logic;

signal line0, linel, line2, line3, line4, line5:std_logic_vector(11 downto 0);
signal sell_0, sell_1, sell_2, sell_3, sell_4, sell_5:std_logic;

signal sel2_0, sel2_1, sel2_2, sel2_3, sel2_4, sel2_5:std_logic;

signal s0, s1, s2, s3, s4, s5:std_logic;

begin
zero<='0";
one<='1l";

booth_encoding_cell_0:

booth_encoding_cell port map(zero, a(0), a(l), sell_0, sel2_0, s0);
booth_line_0:

booth_line port map(b, sell_0, sel2_0, line0);
partial_product_0:

foriin O to 11 generate

ppO0(i)<=line0(i);

end generate;
pp0(12)<=s0;
pp0(13)<=s0;
pp0(14)<=not s0O;

booth_encoding_cell_1:

booth_encoding_cell port map(a(l), a(2), a(3), seli_1, sel2_1, s1);
booth_line_1:

booth_line port map(b, sell_1, sel2_1, linel);
partial_product_1:

foriin O to 11 generate

ppl(i+2)<=linel(i) xor s1;

end generate;
ppl(14)<=not s1;
ppl(15)<=one;
pp1(0)<=s0;
ppl(1l)<=zero;

booth_encoding_cell_2:

booth_encoding_cell port map(a(3), a(4), a(5), sel1_2, sel2_2, s2);
booth_line_2:

booth_line port map(b, sell_2, sel2_2, line2);
partial_product_2:

foriin O to 11 generate

pp2(i+2)<=line2(i) xor s2;

end generate;
pp2(14)<=not s2;
pp2(15)<=o0ne;
pp2(0)<=s1;
pp2(1)<=zero,

booth_encoding_cell _3:
booth_encoding_cell port map(a(5), a(6), a(7), sell_3, sel2_3, s3);

BUPT

152 Appendix - B

booth_line_3:
booth_line port map(b, sell_3, sel2_3, line3);

partial_product_3:

foriin O to 11 generate
pp3(i+2)<=line3(i) xor s3;

end generate;

pp3(14)<=not s3;

pp3(15)<=one;

pp3(0)<=s2;

pp3(1)<=zero;

booth_encoding_cell_4:

booth_encoding_cell port map(a(7), a(8), a(9), sell_4, sel2_4, s4);
booth_line 4:

booth_line port map(b, sell_4, sel2_4, lined);
partial_product_4:

foriin O to 11 generate

pp4(i+2)<=line4(i) xor s4,

end generate;
pp4(14)<= not s4;
pp4(0)<=s3;
pp4(1l)<=zero;

booth_encoding_cell_5:
booth_encoding_cell port map(a(9), a(10), zero, sell_5, sel2_5, s5);

booth_line_5:

booth_line port map(b, sell_5, sel2_5, line5);
partial_product_5:

foriin O to 10 generate

pp5(i+2)<=lineS5(i) xor s5;

end generate;
pp5(0)<=s4;
pp5(1)<=zero;

end Behavioral;

entity Booth_encoding_cell is
Port (x_i0 : in STD_LOGIC;
x_il :in STD_LOGIC;
x_i2 :in STD_LOGIC;
sell : out STD_LOGIC;
sel2 : out STD_LOGIC;
s : out STD_LOGIC);
end Booth_encoding_cell;

architecture Behavioral of Booth_encoding_cell is
begin
sell<=x_i0 xor x_il;
sel2<=(x_i0 xor x_il) nor (x_il xnor x_i2);
s<=x_i2;
end Behavioral;

entity booth_line is -
Port (a:in STD_LOGIC_VECTOR (10 downto 0);
sell : in STD_LOGIC;
sel2 : in STD_LOGIC;
a_booth : out STD_LOGIC_VECTOR (11 downto 0));
end booth_line;

BUPT

B4 - Appendix 153

architecture Behavioral of booth_line is
signal a_prep, a2_prep:std_logic_vector(11 downto 0);
begin
muitiplicand_prep:
a_prep(10 downto 0)<=a(i);
a2_prep(11 downto 1)<=a(i);
a_prep(11)<='0";
a2_prep(0)<='0";
line_encoding:
foriin O to 11 generate

a_booth(i)<=(a_prep(i) and sell) or (a2_prep(i) and sel2);

end generate;
end Behavioral;

B4. Wallace Tree

entity wallace_tree is
Port (pp0 : in STD_LOGIC_VECTOR (14 downto 0);

ppl : in STD_LOGIC_VECTOR (15 downto 0);
pp2 : in STD_LOGIC_VECTOR (15 downto 0);
pp3 : in STD_LOGIC_VECTOR (15 downto 0);
pp4 : in STD_LOGIC_VECTOR (14 downto 0);
pp5 : in STD_LOGIC_VECTOR (12 downto 0);
sum : out STD_LOGIC_VECTOR (21 downto 0);
carry : out STD_LOGIC_VECTOR (21 downto 0));

end wallace_tree;

architecture Behavioral of wallace_tree is
component fa_cell
Port (a : in STD_LOGIC;

b:in STD_LOGIC;

cin : in STD_LOGIC;

s : out STD_LOGIC,

c : out STD_LOGIC);
end component;

signal pp0_0, pp1_0, pp2_0:std_logic_vector(17 downto 0);
signal pp3_0, pp4_0, pp5_0:std_logic_vector(16 downto 0);
signal s1, c1:std_logic_vector(17 downto 0);
signal s2, c2:std_logic_vector(16 downto 0);
signal pp0O_1, ppl_1, pp2_1:std_logic_vector(20 downto 0);
signal s3, c3:std_logic_vector(20 downto 0);
signal pp0_2, pp1_2, pp2_2:std_logic_vector(21 downto 0);
signal s4,c4:std_logic_vector(21 downto 0);
begin

pp0_0(14 downto 0)<=pp0;

pp0_0(15)<='0";

pp0_0(16)<='0";

pp0_0(17)<="0";

ppl_0(15 downto 0)<=pp1l;

ppl1_0(16)<="'0";

ppl_0(17)<='0";

pp2_0(17 downto 2)<=pp2;

pp2_0(0)<="0';

pp2_0(1)<='0";

fa_line0_1:

foriin O to 17 generate

BUPT

154 Appendix - B

full_adder0:fa_cell port map (pp2_0(i),pp1_0(i),pp0_0(i),s1(i),c1(i));
end generate;

pp3_0(15 downto 0)<=pp3;

pp3_0(16)<="'0";

pp4_0(16 downto 2)<=pp4;

pp4_0(0)<="0";

pp4_0(1)<="'0";

ppS_0(16 downto 4)<=pp5;

pp5_0(0)<='0";

pp5_0(1)<="0';

pp5_0(2)<="'0";

PP5_0(3)<="0";

fa_linel_1:

foriin O to 16 generate
full_adder1:fa_cell port map(pp5_0(i),pp4_0(i),pp3_0(i),s2(i),c2(i));

end generate;

pp0_1(17 downto 0)<=s1;
pp0_1(18)<='0";
pp0_1(19)<="'0";
pp0_1(20)<="'0";
ppl_1(18 downto 1)<=ci;
pp1_1(0)<="0";
ppl_1(19)<='0";
ppl_1(20)<="0";
pp2_1(20 downto 4)<=s2;
pp2_1(0)<='0";
pp2_1(1)<='0";
pp2_1(2)<='0";
pPp2_1(3)<='0;
fa_adder0_2:
foriin O to 20 generate
full_adder2:fa_cell port map(pp2_1(i),pp1_1(i),ppO_1(i),s3(i),c3(i));
end generate;

pp0_2(20 downto 0)<=s3;
pp0_2(21)<="'0";
ppl_2(21 downto 1)<=c3;
pp1_2(0)<='0";
pp2_2(21 downto 5)<=c2;
pp2_2(0)<="0";
pp2_2(1)<="0";
Pp2_2(2)<='0";
pp2_2(3)<='0’;
Pp2_2(4)<='0";
fa_adder0_3:
foriin O to 21 generate
full_adder3:fa_cell port map(pp2_2(i),ppl_2(i),pp0_2(i),s4(i),ca(i));
end generate;

sum<=s4;
carry(21 downto 1)<=c4(20 downto 0);
carry(0)<="0'";

end Behavioral;

B5. SRT Radix 2 Stage

BUPT

B5 -~ Appendix 155

entity SRT_stage is
Port (pr_s : in STD_LOGIC_VECTOR (14 downto 0);

pr_c:in STD_LOGIC_VECTOR (15 downto 0);
d:in STD_LOGIC_VECTOR (13 downto 0);
pr_s_next : out STD_LOGIC_VECTOR (14 downto 0);
pr_c_next : out STD_LOGIC_VECTOR (15 downto 0);
q : out STD_LOGIC_VECTOR (1 downto 0));

end SRT_stage;

architecture Behavioral of SRT_stage is
component selection_logic
Port (pr_s : in STD_LOGIC_VECTOR (3 downto 0);
pr_c:in STD_LOGIC_VECTOR (3 downto 0);
g : out STD_LOGIC_VECTOR (1 downto 0));
end component;

signal d_neg, d_pos, d_zero, d_add:std_logic_vector(14 downto 0);
signal q_par:std_logic_vector(1 downto 0);
signal cin:std_logic;
signal pr_s_sel, pr_c_sel:std_logic_vector(3 downto 0);
signal pr_c_add, pr_s_res:std_logic_vector(14 downto 0);
signal pr_c_res:std_logic_vector(15 downto 0);
begin
" d_pos(13 downto 0)<=d;
d_pos(14)<="0";
d_zero<="000000000000000";
negate:
foriin O to 14 generate
d_neg(i)<=not d_pos(i);
end generate;
multiplexing:
d_add<=d_neg when g_par="01" else
d_pos when g_par="10" else
d_zero;
cin<='1' when g_par="01" else '0’;

pr_s_sel<=pr_s(13 downto 10);

pr_c_sel<=pr_c(13 downto 10);

quotient_sel:
selection_logic port map(pr_s_sel, pr_c_sel, q_par);

pr_c_add(14 downto 1)<=pr_c(14 downto 1);

pr_c_add(0)<=cin;

carry_save_addition:

foriin O to 14 generate
pr_s_res(i)<=pr_c_add(i) xor pr_s(i) xor d_add(i);
pr_c_res(i+1)<=(pr_c_add(i) and pr_s(i)) or (pr_c_add(i) and d_add(i}) or

(pr_s(i) and d_add(i));

end generate;

pr_s_next<=pr_s_res;

pr_c_next(15 downto 1)<=pr_c_res(15 downto 1);

pr_c_next(0)<='0";

g<=g_par;

end Behavioral;

entity selection_logic is
Port (pr_s : in STD_LOGIC_VECTOR (3 downto 0);
pr_c:in STD_LOGIC_VECTOR (3 downto 0);

BUPT

156 Appendix - B

g : out STD_LOGIC_VECTOR (1 downto 0));
end selection_logic;

architecture Behavioral of selection_logic is

signal sum:std_logic_vector(3 downto 0);
signal all_0, all_1, zero:std_logic;

begin
sum<=pr_s + pr_c;

all_0<= not(sum(0) or sum(1) or sum(2) or sum(3));

all_1<=sum(0) and sum(1) and sum(2) and sum(3);

zero<=not(pr_s(3) or pr_c(3) or pr_s(2) or pr_c(2) or
pr_s(1) or pr_c(1) or pr_s(0) or pr_c(0));

g<="00" when ((all_1 or (zero and all_0))="'1") else

"01" when ((not sum(3) and not (zero and all_0))="'1") else

"10" when ((sum(3) and (not all_1))='1") else "11";
end Behavioral;

entity quotient_formation_block is
generic(n:integer:=8);
port(g_digit:in std_logic_vector(1 downto 0);
g_n:in std_logic_vector(n-1 downto 0);
gm_n:in std_logic_vector(n-1 downto 0);
g_n1:out std_logic_vector(n downto 0);
gm_n1l:out std_logic_vector (n downto 0));
end quotient_formation_block;

architecture Behavioral of quotient_formation_block is
begin
gq_n1(n downto 1)<=gqm_n when (q_digit="10") else

q_n,;
gq_n1(0)<="1" when (q_digit="01" or q_digit="10") else
|0|.

gqm_nl(n downto 1)<=qg_n when (q_digit="01") else
aqm_n;
am_n1(0)<="'1"' when (q_digit="00") else ‘0';
end Behavioral;

BUPT

REFERENCES

[1]

(2]

(3]

(4]

[5]

(6]

(7]

(8]

(9]

[10]
[11]

[12]

A. Akkas A Combined Interval and Floating-Point Comparator/Seilector
Proceedings 13th IEEE International Conference on Application-Specific
Systems, Architectures and Processors (ASAP'02), 2002, pp 208-217

H. A. AlTwaijry Area and Performance Optimized CMOS Multipliers PhD.
Thesis, Stanford University, 1997

A. Amaricai, M. Vladutiu, L.Prodan, M. Udrescu, O. Boncalo Design of
Addition and Multiplication Units for High Performance Interval
Arithmetic Processor Proceedings 10™ IEEE Workshop on Design and
Diagnostics of Electronic Circuits and Systems, 2007, pp 223-226

A. Amaricai, M. Vladutiu, L.Prodan, M. Udrescu, O. Boncalo Hardware
Support for Combined Interval and Floating Point Multiplication
Proceedings 14th Mixed Design Of Integrated Circuits and Systems, pp 278-
282

A. Amaricai, M. Vladutiu, L.Prodan, M. Udrescu, O. Boncalo Exploiting
Parallelism in Double Path Adders’ Structure for Increased
Throughput of Floating Point Addition Proceedings 10th EUROMICRO
Conference on Digital System Design, Architectures, Methods and Tools,
2007, pp 132-137

A. Amaricai, M. Vladutiu, L.Prodan, M. Udrescu, O. Boncalo Floating point
multiplication rounding schemes for interval arithmetic Proceedings
19th IEEE Application-Specific System, Architectures and Processors (ASAP-
2008), 2008, pp 19-24

A. Amaricai, M. Vladutiu, L.Prodan, M. Udrescu, O. Boncalo Floating Point
Divide-Add Fused for Newton’s Interval Method Proceedings of the
Euromicro Work In Progress Session held in Conjunction with Euromicro SEAA
2008 and Euromicro DSD 2008, September 3-5, Parma, Italy, ISBN 978-3-
902457-20-3

E. Antelo, T. Lang, P. Montuschi, A. Nannarelli, Fast Radix-4 Division with
Selection by Comparisons, Proc. 13" IEEE International Conference on
Application Specific Systems, Architectures and Processors (ASAP'02), 2002,
pp 185-190

E. Antelo, T. Lang, P. Montuschi, A. Nannarelli, Digit-Recurrence Dividers
with Reduced Logical Depth IEEE Trans. on Computers, Vol.54, No. 7,
2005, pp. 837-852

ARM VFP11 Vector Floating Point Technical Reference Manual, 2002

D.E. Atkins Higher Radix Division Using Estimates of the Division and
Partial Remainders IEEE Trans on Computer, Vol. 11, no. 10, 1968

A. Beaumont-Smith, N. Burgess, S. Lefrere, C.C. Lim Reduced Latency IEEE
Floating Point Standard Adder Architectures Proceedings 14" 1EEE
Symposium on Computer Arithmetic (ARITH-14), 1999, pp 35-42

BUPT

158 REFERENCES

(13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

G.W. Bewick Fast Multiplication: Algorithms and Implementation PhD.
Thesis, Stanford University, 1994

P. Bonato, V. G. Oklobdzija Ewvaluation of Booth’s Algorithm for
Implementation in Parallel Multipliers Proceedings 29" Asilomar
Conference on Signals, Systems and Computers, 1995, pp 608-610

R. P. Brent, H. T. Kung A Regular Layout for Parallel Adders IEEE
Transaction on Computers, Vol. 31, No. 3, 1982, pp 260-264

J. D. Bruguera, T. Lang Leading One Prediction with Concurrent Position
Prediction IEEE Transaction on Computers, Vol.48, No. 10,1998, pp 1083-
1097

J. D. Bruguera, T. Lang Rounding in Floating Point Addition Using a
Compound Adder Internal Report, University Santiago de Compostela, 2000

J. Bruguera, T. Lang, Floating-Point Fused Multiply-Add: Reduced
Latency for Floating Point Addition , Proc. 17" IEEE Symposium on
Computer Arithmetic (ARITH-17), 2005, pp. 42-51

N. Burgess, T. Williams, Choices of Operand Truncation in the SRT
Division Algorithm, IEEE Trans. on Computers, Vol. 44, No.7, 1995, pp.
933-938

N. Burgess, C. Hinds Design Issues in Radix-4 Square Root and Divide
Unit Proc. 35™ Asilomar Conference, 2001, pp 1646-1650

N. Burgess, C. Hinds, Design of the ARM VFP11 Divide and Square Root
Synthesizable Macrocell, Proc. 18" IEEE Symposium on Computer
Arithmetic (ARITH-18), 2007

C. Chen, L.A. Chen, J}.R. Chen Architectural Desigh of a Fast
Multiplication-Add Fused Unit Using Signed-Digit Addition, Proc.
Euromicro Symposium on Digital System Design (DSD’01), 2001,

L. Dadda Some Schemes for Parallel Multipliers Alta Frequenza, No. 34,
1965, pp. 349-356

D. Daney, Y. Papegay, A. Neumaier, Interval Methods for Certification of
the Kinematic Calibration of Parallel Robots Proc. 2004 IEEE
International Conference on Robots and Automation, 2004, pp. 1913-1918

M. Daumas, G. Melquiond, C. Munoz Guaranteed Profs Using Interval
Arithmetic, Proceedings 17th 1EEE Symposium on Computer Arithmetic
(ARITH-17), 2005, pp 188-195

M. Ercegovac, T. Lang Digital Arithmetic Morgan Kaufmann Publishers, ISBN
978-1-55860-798-9, 2003

M. Ercegovac, T. Lang, On-the-Fly Conversion of Redundant into
Conventional Representation, IEEE Trans. on Computers, Vol. 36, No. 7,
1987, pp. 895-897

M. Ercegovac, T. Lang, On-the-Fly Rounding, IEEE Trans. On Computers,
Vol. 41, No. 12, 1992, pp. 1497-1503

BUPT

REFERENCES 159

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

M. Ercegovac, T. Lang, P. Montuschi Very High Radix Division with
Prescaling and Selection by Rounding, IEEE Trans. On Computers, Vol.
43, No. 8, 1994 pp. 909-918

G. Even, P.M. Seidel A Comparison of Three Rounding Algorithm for
IEEE Floating-Point Multiplication IEEE Transactions on Computers, Vol.
49, No. 7, 2000, pp 638-650

P.M. Farmwald On the Design of High Performance Digital Arithmetic
Circuits PhD. Thesis, Stanford University, 1981

Z. Gallias Proving The Existence Of Periodic Solutions Using Global
Interval Newton Method Proc. IEEE International Conference on Circuits
and Systems (ISCAS'99), 1999, pp. 294-297

C.J. Gau, M.A. Stadtherr Parallel Interval Newton Using Message
Passing: Dynamic Load Balancing Strategies Proc. ACM/IEEE SC 2001
Conference, 2001, pp 23-46

M. Gavriliu Towards More Efficient Interval Analysis: Corner Forms and
a Remainder Newton Method, PhD. Thesis, Caltech, 2005

G. Gerwig, M. Kroener Floating Point Unit in Standard Cell Design with
116 Bit Wide Dataflow Proceedings 14" IEEE Symposium on Computer
Arithmetic (ARITH-14), 1999, pp 266-273

D. Goldberg What Every Computer Scientist Should Know about
Floating Point Arithmetic ACM Computing Surveys, Vol. 23, No.1, 1991, pp
5-48

V.Y. Gorshtein, A.I. Grushin, S.R. Shevstov Floating Point Addition
Methods and Apparatus US Patent 5808926, Sun Microsystems, 1998

T.D. Han, W.C. Park Apparatus and Method for Performing Rounding
and Addition in Parallel in Floating Point Multiplier US Patent 6269385,
Hyundai Electronics, 2001

M. Hansen, H. Yalcin,]J.P. Hayes Unveiling he ISCAS-85 Benchmarks: A
Case Study in Reverse Engineering IEEE Design and Test, vol. 16, no. 3,
pp. 72-80, 1999

D.L. Harris. S.F. Oberman, M.A. Horowitz SRT Division and Architectures,
Proc. 13* IEEE Symposium on Computer Arithmetic (ARITH-13), 1997, pp.
18-25

B. Hayes A Lucid Interval American Scientist, Vol. 91, No.6, 2003, pp.484-
488

J. L. Hennessy, D. A. Patterson Computer Architecture, Fourth Edition: A
Quantitative Approach, Morgan Kaufmann Publishers, ISBN 978-
0123704900, 2006

E. Hokenek, R.K. Montoye Leading Zero Anticipator in the IBM RISC
System/6000 Floating Point Execution Unit IBM Journal of Research and
Development, vol. 34, No.1, 1990, 71-77)

FI

BUPT

160

REFERENCES

[44]

(45]

(46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(601

C. Huang, X. Wu, J. Lai, C. Sun, G. Li A Design of High Speed Double
Precision Floating Point Adder Using Macro Modules , Proceedings 2005
Asia-Pacific Design Automation Conference (ASP-DAC), 2005, pp D11-D12

Institue for Electric and Electronical Engineers (IEEE), IEEE Standard VHDL
Reference Manual, ANSI/IEEE Std 1076/1987

R. Jessani, M. Putrino, Comparison of Single and Dual Path Multiply-Add
Fused Floating Point Units, IEEE Trans. on Computers, Vol. 47, No. 9,
1998, pp. 927-937

R.B. Kearfott Interval Computations: Introduction, Uses and Resources,
Euromath Bulletin, Vol. 2, No. 1, 1996, pp. 95-112

R. B. Kearfott, M. Novoa, INTBIS, a Portable Interval Newton/Bisection
Package, ACM Trans. On Mathematical Software, Vol. 16, Issue 2, 1990, pp
152-157

R. Kirchner, U. Kulisch Hardware Support for Interval Arithmetic Reliable
Computing, Vol 12, No. 3, 2007, pp 225-237

S. Knowles A Family of Adders Proceedings 15" IEEE Symposium on
Computer Arithmetic (ARITH-15), 2001, pp 277-285

I. Koren Computer Arithmetic Algorithms AK Peters Ltd, ISBN 978-1-
56881-160-4, 2001

P. Kornerup Digit Selection for SRT Division and Square Root, IEEE
Trans. On Computers, Vol. 54, No.3, 2005, pp 294-303

U.W. Kulisch Advanced Arithmetic for the Digital Computer Springer-
Verlag, ISBN 978-3-21183-870-9, 2002

U.W. Kulisch Letters to IEEE Computer Arithmetic Standard Revision
Group, 2008

T. Lang, J. Bruguera, Floating Point Fused Multiply-Add with Reduced
Latency, Proc. 2002 IEEE International Conference on Computer Design
(ICCD-2002), 2002, pp 145-150

G. Li, Z. Li Design of a A Fully Pipelined Single-Precision Multiply-Add-
Fused Unit Proc. 20th International Conference on VLSI Design (VLSID'07),
2007, pp 318-323

Z. Li, G. Li Design of a Double-Precision Floating Point Multiply-Add
Fused with Consideration of Data Dependence, Proc. IEEE Annual
Symposium on VLSI (ISVLSI), 2007, pp 492-497

D. Lozier The Use of Floating Point and Interval Arithmetic in the
Computation of Error Bounds IEEE Trans. On Computers, Vol. 32, Issue 4,
1983, pp. 414-417

A.A. Lliddicoat High Performance Arithmetic for Division and
Elementary Functions PhD. Thesis, Stanford University, 2002

A.A. Liddicoat High Performance Floating Point Divide, Proc. Euromicro
Symposium on Digital System Design (DSD'01), 2001, pp 354-360

BUPT

REFERENCES 161

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

R.E. Moore Interval Arithmetic and Automatic Error Analysis, PhD
Thesis, Stanford University, 1962

Z.Y. Mou, F. Jutand Cellular Multiplier Comprising of a Tree of
Overturned Stairs Type, and Method of Design US Patent 5497342,
France Telecom, 1996

A. Naini, A. Dhablania, W. James, D. Das Sarma 1-GHz HAL SPARC64 Dual
Floating Point Unit with RAS Features Proceedings 15" IEEE Symposium
on Computer Arithmetic (ARITH-15), 2001, pp 173-184

S.F. Oberman Design Issues in High Performance Floating Point
Arithmetic Units PhD. Thesis, Stanford University, 1996

S.F. Oberman Floating Point Arithmetic Unit Including an Efficient
Close Data Path US Patent 6094668, Advanced Micro Devices, 2000

S.F. Oberman, H. Al-Twaijri, M.J. Flynn The SNAP Project: Design of
Floating Point Units Proceedings 13" IEEE Symposium on Computer
Arithmetic (ARITH-13), 1997, pp 157-166

S.F. Oberman, N. Quach, M.]. Flynn The Design and Implementation of
High Performance Floating Point Divider, Technical Report CSL-TR-94-
599, Stanford University, 1994

S.F. Oberman, M.). Flynn Measuring the Complexity of SRT Tables,
Technical Report CSL-TR-95-679, Stanford University, 1995

S.F. Oberman Design Issues in High Performance Floating Point
Arithmetic Units PhD. Thesis, Stanford University, 1996

S.F. Oberman, M.). Flynn Design Issues in Division and Other Floating
Point Operations IEEE Trans. On Computers, Vol. 46, No.2, 1997, pp 154-
161

S.F. Oberman, M.]). Flynn Division Algorithms and Implementations IEEE
Trans. On Computers, Vol. 46, No. 8, 1997, pp. 833-854

N. Ohkubo, M. Suzuki, T. Shinbo, T. Yamanaka, A. Shimizu, K. Sasaki, Y.
Nakagome A 4.4 ns CMOS 54*54 Multiplier Using Pass Transistor
Multiplexer 1IEEE Journal of Solid State Circuits, Vol. 30, No. 3, pp 251-257,
1995

V.G. Oklobdzija An Algorithmic and Novel Design of Leading Zero
Detector Circuit: Comparison with Logic Synthesis IEEE Transactions on
Very Large Scale Integration System, Vol.2, No. 1, 1994, pp 124-128

B. Parhami Computer Arithmetic: Algorithms and Hardware Designs
Oxford University Press, ISBN 978-0-19512-583-2, 1999

W.]. Paul, P.M. Seidel To Booth or Not to Booth Integration, the VLSI
Journal, Vol. 32, No. 11, 2002, pp 5-40

V. Petcu, A. Amaricai, M. Vladutiu A Dual-Threaded Architecture for
Interval Arithmetic Coprocessor with Shared Floating Point Units Proc.
11th IEEE Workshop on Design and Diagnostics of Electronic Circuits and
Systems (DDECS), 2008,

BUPT

162

REFERENCES

177]

[78]

[79]

[80]

[81]

[82]

[83]

(84}

[85]

[86]

[87]

(88]

[89]

[90]

[91]

[92]

J. A. Prabhu, G. B. Zyner 167 MHz Radix-8 Divide and Square Root Using
Overlapped Radix-2 Stages Proceedings 15" IEEE Symposium on
Computer Arithmetic (ARITH-15), 1995

N.T. Quach, M.J. Flynn An Improved Algorithm for High Speed Floating
Point Addition Technical Report CSL-TR-90-442, Stanford University, 1990

N.T. Quach, N. Takagi, M.J. Flynn On Fast IEEE Rounding Technical Report
CSL-TR-91-459, Stanford University, 1991

N.T. Quach, M.]J. Flynn Leading One Prediction - Implementation,
Generalization and Application Technical Report CSL-TR-91-463, Stanford
University, 1991

H. Ratschek, J. Rokne New Computer Methods for Global Optimization,
Ellis Horwood Ltd., 1988

N. Revol, Interval Newton Iteration in Multiple Precision for the
Univariate Case, Technical Report 4334, INRIA, 2001

J.E. Robertson A New Class of Digital Division Methods IRE Trans. On
Electronic Computer, Vol. EC-7, 1958, pp. 218-222

J.F. Sanjuan-Estrada, L.G. Casado, I. Garcia, Reliable Algorithms for Ray
Intersection in Computer Graphics Based on Interval Arithmetic, Proc.
16" Brazilian Symposium on Computer Graphics and Image Processing, 2003

M.). Schmookler, K.}. Nowka Leading Zero Detection and Anticipation: A
Comparisson of Methods Proceedings 15" IEEE Symposium on Computer
Arithmetic (ARITH-15), 2001, pp 7-12

M.]J. Schulte A Variable-Precision, Interval Arithmetic Processor PhD.
Thesis, University of Texas at Austin, 1996

M.). Schulte, E. Swartzlander Hardware Design and Arithmetic
Algorithms for Variable-Precision Interval Arithmetic Coprocessor
Proceedings 12 Symposium on Computer Arithmetic (ARITH-12), 1995, pp
222-230

P.M. Seidel On the Design of IEEE Compliant Floating Point Units and
Their Quantitative Analysis PhD. Thesis, University of Saarlanden, 1999

P.M. Seidel, G. Even On the Design of Fast IEEE Floating Point Adders
Proceedings 15" IEEE Symposium on Computer Arithmetic (ARITH-15), 2001,
pp 184-194

P.M. Seidel, G. Even Delay-Optimized Implementation of IEEE Floating
Point Addition IEEE Transaction on Computers, Vol. 53, No.2 , 2004, pp 97-
113

R. Shettar, R.M. Banakar, P.S. Nataraj Implementation of Interval
Arithmetic Algorithms on FPGAs, Proceeding 2007 International
Conference on Computational Intelligence and Multimedia Application, 2007,
pp 196-200 h

P. Soderquist, M. Lesser Area and Performance Tradeoffs in Floating
Point Divide and Square Root Implementations, ACM Computing
Surveys, Vol. 28, No. 3, 1996

BUPT

REFERENCES 163

[93] G. L. Steele Jr. Comparator Unit for Comparing Values of Floating Point
Operands US Patent 7191202, 2007

[94] J.E. Stine Design Issues for Accurate and Reliable Arithmetic PhD.
Thesis, Lehigh University, 2000

[95] 1. E. Stine, M.]. Schulte A Combined Interval and Floating Point Divider,
Proc. 32nd Asilomar Conference on Signals, Systems and Computers, vol.1,
1998, pp. 218-222

[96] 3.E. Stine, M.}. Schulte A Combined Interval and Floating Point
Multiplier Proceedings 8" ACM Great Lakes Symposium on VLSI, 1998, pp
208-215

[97] SUN Microsystems, Interval Arithmetic in High Performance Computing,
2002

[98] A. Tyagi A Reduced Area Scheme for Carry Select Adder IEEE
Transaction on Computer, Vol. 42, No. 10, 1993, pp 1163-1170

[99] S.D. Trong, M. Schmookler, E. M. Schwarz, P6 Binary Floating Point Unit,
Proc. 18th IEEE Symposium on Computer Arithmetic (ARITH-18), 2007, pp
77-86

[100] M. Viadutiu Arhitectura Calculatoarelor, Vol. 1: Aritmetica Sistemelor
de Calcul, Editura Politehnica, 2008

[101] C.S. Wallace A Suggestion for a Fast Multiplier IEEE Transaction on
Electronic Computers, EC-13, Issue 1, 1964, pp 14-17

[102] G.W. Walster, E.R. Hansen Solving A Nonlinear Equation Through
Interval Arithmetic and Term Consistency, US Patent 6823352, Sun
Microsystems, 2004

[103] G.W. Walster, E.R. Hansen Solving Systems of Nonlinear Equations
Using Interval Arithmetic and Term Consistency, US Patent 6859817,
Sun Microsystems, 2005

[104] G.W. Walster, E.R. Hansen Termination Criteria for the One Dimensional
Interval Version of Newton’s Method, US Patent 6914320, Sun
Microsystems, 2005

[105] G.W. Walster, E.R. Hansen Methods and Apparatus for Solving Systems
of Nonlinear Equations Using Interval Arithmetic, US Patent 6915321,
Sun Microsystems, 2005

[106] A. Weinberger 4-2 Carry Save Adder Module IBM Technical Disclosure, Vol.
23, 1981

[107]3. Wolf von Gudenberg Hardware Support for Interval Arithmetic
Scientific Computing with Automatic Result Verification, Academic Press, ISBN
978-0-12044-210-2, 1993, pp 549-570

[108] Xilinx Xilinx ISE 10.1 Design Suite Software Manual, 2008

[109] R.K. Yu, G.B. Zyner 167 MHz Radix 4 Floating Point Multiplier
Proceedings 12" IEEE Symposium on Computer Arithmetic (ARITH-12), 1995,
pp 149-154

BUPT

164 REFERENCES

[110] D. Zuras, W. McAllister Balanced Delay Trees and Combinatorial Division
in VLSI IEEE Journal of Solid State Circuits, Vol. 21, No. 5, pp 814-819, 1986

[111] ***http://www.boost.org/doc/libs/1_35_0/libs/numeric/interval/doc/interval.
htm - the Boost C++ Interval Arithmetic

[112] ***http://www-sop.inria.fr/coprin/aol/form.html - the ALIAS interval library
[113] *** http://www.cgal.org/ -the Computational Geometry Algorithms Library

f114] *** http://perso.ens-lyon.fr/nathalie.revol/mpfi_toc.html - the Multiple
Precision Floating Point Interval Library (MPFI)

[115] *** http://www.ti3.tu-harburg.de/rump/intlab/index.html - the Interval
extension of MATLAB

[116] *** http://standards.ieee.org/announcements/intervalarith.html - IEEE
Standard Association WorkGroup 1788

[117] *** http://www.inria.fr/recherche/equipes/coprin.en.html - The COPRIN

Project webpage

[118] ***http://www.eecs.umich.edu/~jhayes/iscas.restore/benchmark.html -
ISCAS’85 and ISCAS'89 WebPages at University of Michigan at Ann Harbour

[119] **x* http://www.altera.com/products/ip/processors/nios2/tools/c2h/ni2-
c2h.html! - Altera Nios 1I Acceleration of Mandelbrot Algorithm webpage

BUPT

http://www.boost.org/doc/hbs/l_35_0/libs/numeric/interval/doc%5e
http://www-sop.inria.fr/coprin/aol/form.html
http://www.cgal.org/
http://perso.ens-lyon.fr/nathalie.revol/mpfi_toc.html
http://www.ti3.tu-harburg.de/rump/intlab/index.html
http://standards.ieee.org/announcements/intervalarith.html
http://www.inria.fr/recherche/equipes/coprin.en.html
http://www.eecs.umich.edu/'%3e'jhayes/iscas.restore/benchmark.html
http://www.altera.com/products/ip/processors/nios2/tools/c2h/ni2-

e

Titluri recent publicate in colectia ,, TEZE DE DOCTORAT”
seria 10: Stiinta Calculatoarelor

1. lonel Muscalagiu — Contributii la implementarea, evaluarea si imbundtdtirea
performantelor tehnicilor de cautare asincrone in cadrul programarii bazate
pe constrdngeri distribuite, ISBN 978-973-625-592-2, (2007);

2. Daniel Cioi — Contributii la utilizarea realitatii virtuale in proiectarea
asistata de calculator, ISBN 978-973-625-613-4, (2008);

3. Sorin Babii — Cercetdri privind cresterea performantelor retelelor neuronale
intr-un mediu de calcul distribuit, ISBN 978-973-625-559-5, (2008);

4. Norbert Neidenbach - Das Service-Management eines IT-Outsourcing-
Projektes durch ITIL-Best-Practices, IT-Outsourcing kostenoptimiert planen
und steuern, ISBN 978-973-625-660-8, (2008);

5. Edwin Hans Wolf - Das Geschdftsmodell (Business model) MDS (Managed
Desktop Support) im IT-Outsourcing, Leistungserbringung im Rahmen des
MDS-Geschdftsmodells, ISBN 978-973-625-661-5, (2008);

6. Adrian Zafiu — Minimizarea sistemelor decizionale multivalente deterministe
§i nedeterministe, ISBN 978-973-625-678-3, (2008);

7. Daniel lercan — Contributions to the Development of Real-Time Programming
Techniques and Technologies, ISBN 978-973-625-719-3, (2008);

8. Laurentia Timar — Contributii referitoare la configurarea optimald prin
prisma performantd-fiabilitate a unor retele de dispozitive de achizifia datelor
cu aplicabilitate la excavatoarele cu cupe, ISBN 978-973-625-775-9, (2008);

9. Dan Ciresan — Recunoagterea sirurilor numerice scrise de mand, ISBN 978-
973-625-777-3, (2008);

10. Emanuel Tundrea — Contributions to the modelling and the use of software
product lines, ISBN 978-973-625-793-3, (2008).

SN
o HE)
@

EDITURA POLITEHNICA

BUPT

