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Abstract 

 

Grid Computing has drawn increasing attention during the last years. In spite of the tremendous efforts spent 
in the context of this new computing field, there is little understanding on its evolution path as well as the 
challenges it raises. One of the most overlooked areas, and the focus of this thesis, is the programming 
concept and its implications on both the application layer and the underlying system. Grid application 
programming solutions are currently dominated by message-passing-like constructs and distributed shared 
data concepts are almost not present in the grid programming landscape, although their conceptual qualities, 
such as higher abstraction level, suitability for highly dynamic configurations and natural fault tolerance, are 
very attractive reasons for building flexible and scalable grid applications. Although there are many reasons 
speaking for the distributed shared data model, performance and scalability related aspects are often the 
core arguments against them. 

The objective of this work, and its major contribution, is to propose an alternative and novel solution to 
support efficiently the shared data programming concept for grids, by applying several ideas which to our 
knowledge were not put together in the grid landscape before. Other important objectives are to present a 
comprehensive overview and highlight the current situation in grid programming landscape, to analyze and 
extend some of the core qualities of a proper grid programming concept which are then used to understand 
the shortcomings of some of the existing solutions and consequently to define requirements from 
architectural point of view. The most important contribution is to design, develop and demonstrate the 
feasibility of a model for distributed shared data programming on the grid, suitable for systems dominated by 
large latency connections. The model aims to provide a more appealing programming solution based on an 
object oriented view and the combination of a relaxed memory consistency and type coherence. At the same 
level, a detailed software architecture which fulfills both the requirements and implements the defined model 
complements the design objectives of this work. This challenging goal has been achieved by designing and 
analyzing several approaches and selecting the most promising one, which has been extended by combining 
several ideas that have not been used together in the context of this problem domain:  the model introduces 
the universe concept which is an abstraction of networked machines in latency proximity and defines entry 
consistency specification as well as specialized objects which provides additional information on data 
interactions.  

The final objectives relate to the analysis of the designed grid service layer solution for shared data 
programming, which is conducted at two different levels: theoretical analysis and prototype benchmarking. 
The analysis is supported by defining an easy to apply and consistent evaluation methodology to highlight 
both behavioral and performance aspects. As the mathematical model is quite complex, the theoretical 
analysis aims to set performance boundaries in a stable system. In order to conduct experimental 
evaluations, a Java based prototype (GUN) of the grid universe has been designed and implemented. Based 
on a large set of experiments and their analysis, the suitability of different object types for specific interaction 
scenarios has been defined. 

 

 

 

 

BUPT



  
 
 

ii  
 

 ii  

 

BUPT



  
 
 

iii  
 

 iii  

Contents 

Abstract  .............................................................................................................................................. i 

Contents  ........................................................................................................................................... iii 

List of Figures  ................................................................................................................................. vi 

List of Tables  ................................................................................................................................... ix 

1 Grid Computing ......................................................................................................................... 1 

1.1 Grid History  .................................................................................................................................... 3 

1.2 Grid Applications  .......................................................................................................................... 5 
1.2.1 User Perspective ........................................................................................................................................ 5 
1.2.2 System Perspective ................................................................................................................................... 6 
1.2.3 Grid Perspective ......................................................................................................................................... 7 

1.3 Grid Programming Models  ......................................................................................................... 9 
1.3.1 Grid Programming Properties ................................................................................................................... 9 
1.3.2 Client-Server Model ................................................................................................................................. 10 
1.3.3 Peer-to-Peer Model .................................................................................................................................. 12 
1.3.4 Workflow Model ........................................................................................................................................ 12 
1.3.5 Message Passing Model ......................................................................................................................... 13 
1.3.6 Distributed Shared Data Model .............................................................................................................. 13 
1.3.7 Parallel Programming Models and Technologies ................................................................................ 14 

1.4 Grid Middleware  ...........................................................................................................................15 
1.4.1 Globus Toolkit ........................................................................................................................................... 16 
1.4.2 gLite and OMII .......................................................................................................................................... 19 

1.5 Grid Shared Data Dilemma  ........................................................................................................21 

2 Distributed Shared Memory  ................................................................................................. 24 

2.1 Design and Implementation Issues  ........................................................................................24 
2.1.1 Structure and Sharing Granularity ......................................................................................................... 25 
2.1.2 Coherence Protocols ............................................................................................................................... 26 
2.1.3 Replication Algorithms ............................................................................................................................. 27 
2.1.4 Replication Decisions .............................................................................................................................. 28 

2.2 Consistency Models ....................................................................................................................28 
2.2.1 Generic Consistency Models .................................................................................................................. 29 
2.2.2 Synchronized Consistency Models ........................................................................................................ 30 

2.3 A Programmer’s View  .................................................................................................................32 

3 A Model for Distributed Shared Objects on the Grid  .................................................... 34 

3.1 Considerations  .............................................................................................................................34 

3.2 System Model  ...............................................................................................................................36 

3.3 Basic Programming Model  ........................................................................................................37 

3.4 Motivating Scenarios  ..................................................................................................................40 
3.4.1 Distributed Order Placement .................................................................................................................. 41 
3.4.2 Command and Control ............................................................................................................................ 42 
3.4.3 Environmental Data Repository ............................................................................................................. 43 

BUPT



  
 
 

iv  
 

 iv  

3.4.4 Parallel Genetic Algorithm ...................................................................................................................... 44 
3.4.5 Distributed Builder .................................................................................................................................... 45 

3.5 Consistency Model  ......................................................................................................................46 

3.6 Specialized Objects  .....................................................................................................................49 
3.6.1 Read-Only Objects ................................................................................................................................... 50 
3.6.2 Private Objects ......................................................................................................................................... 51 
3.6.3 Migratory Objects ..................................................................................................................................... 52 
3.6.4 Producer-Consumer Objects .................................................................................................................. 53 
3.6.5 Read-Mostly Objects ............................................................................................................................... 54 
3.6.6 Result Objects .......................................................................................................................................... 54 
3.6.7 Write-Mostly Objects ................................................................................................................................ 56 
3.6.8 Generic Objects ........................................................................................................................................ 56 

3.7 Cost Model  .....................................................................................................................................56 

4 Overall System Design  .......................................................................................................... 59 

4.1 Assumptions  .................................................................................................................................59 

4.2 Replication Handling  ..................................................................................................................61 

4.3 Architecture Solution Landscape  ............................................................................................63 
4.3.1 Distributed Centralized Model ................................................................................................................ 65 
4.3.2 Centralized/Naimi-Trehel Multi-Token Model ....................................................................................... 69 
4.3.3 Hierarchical Models ................................................................................................................................. 77 

4.4 Solution Selection  .......................................................................................................................79 

5 Detailed System Architecture  ............................................................................................. 81 

5.1 Read-Only Objects Handling  ....................................................................................................83 

5.2 Private Objects Handling  ...........................................................................................................85 

5.3 Migratory Objects Handling  ......................................................................................................87 

5.4 Producer-Consumer Objects Handling  ..................................................................................90 

5.5 Read-Mostly Objects Handling  ................................................................................................92 

5.6 Result Objects Handling  ............................................................................................................95 

5.7 Write-Mostly Objects Handling  ................................................................................................98 

5.8 Object Type Transformations  ...................................................................................................99 

5.9 Object Transfer Protocol  .........................................................................................................100 

5.10 Putting All Together  ..................................................................................................................101 

6 Experiments and Theoretical Analysis  ........................................................................... 102 

6.1 Evaluation Criteria  .....................................................................................................................103 
6.1.1 Performance Criteria .............................................................................................................................. 103 
6.1.2 Resource Criteria ................................................................................................................................... 103 
6.1.3 Quality Criteria ........................................................................................................................................ 104 

6.2 Experiments  ................................................................................................................................104 
6.2.1 Grid Object Search ................................................................................................................................ 104 
6.2.2 Acquire Correctness .............................................................................................................................. 106 
6.2.3 Acquire Exclusive Correctness ............................................................................................................ 107 

BUPT



  
 
 

v  
 

 v  

6.2.4 Grid Read-Only Objects ........................................................................................................................ 108 
6.2.5 Grid Private Objects ............................................................................................................................... 109 
6.2.6 Grid Migratory Objects .......................................................................................................................... 110 
6.2.7 Grid Producer-Consumer Objects ....................................................................................................... 111 
6.2.8 Grid Read-Mostly Objects ..................................................................................................................... 112 
6.2.9 Grid Result Objects ................................................................................................................................ 113 
6.2.10 Grid Write-Mostly Objects ................................................................................................................. 114 

6.3 Theoretical System Analysis  ..................................................................................................115 
6.3.1 Grid Object Search ................................................................................................................................ 116 
6.3.2 Acquire and Acquire Exclusive ............................................................................................................. 117 
6.3.3 Grid Read-Only Objects ........................................................................................................................ 118 
6.3.4 Grid Private Objects ............................................................................................................................... 120 
6.3.5 Grid Migratory Objects .......................................................................................................................... 121 
6.3.6 Grid Producer-Consumer Objects ....................................................................................................... 123 
6.3.7 Grid Read-Mostly Objects ..................................................................................................................... 124 
6.3.8 Grid Result Objects ................................................................................................................................ 125 
6.3.9 Grid Write-Mostly Objects ..................................................................................................................... 125 

7 Prototype Analysis  ............................................................................................................... 126 

7.1 GUN Architecture  .......................................................................................................................126 
7.1.1 GUN User Layer ..................................................................................................................................... 127 
7.1.2 GUN Kernel ............................................................................................................................................. 128 
7.1.3 GUN Mutual Exclusion Handling ......................................................................................................... 129 
7.1.4 GUN Monitoring and Replication ......................................................................................................... 132 

7.2 Experimental Results ................................................................................................................134 
7.2.1 Grid Object Search ................................................................................................................................ 135 
7.2.2 Acquire Correctness .............................................................................................................................. 138 
7.2.3 Acquire Exclusive Correctness ............................................................................................................ 143 
7.2.4 Grid Read-Only Objects ........................................................................................................................ 147 
7.2.5 Grid Private Objects ............................................................................................................................... 150 
7.2.6 Grid Migratory Objects .......................................................................................................................... 156 
7.2.7 Grid Producer-Consumer Objects ....................................................................................................... 158 
7.2.8 Grid Read-Mostly Objects ..................................................................................................................... 163 
7.2.9 Grid Result Objects ................................................................................................................................ 168 
7.2.10 Grid Write-Mostly Objects ................................................................................................................. 172 

8 Conclusions  ........................................................................................................................... 175 

Bibliography  ................................................................................................................................. 178 

Personal Publications  ................................................................................................................ 187 

Abbreviations  ............................................................................................................................... 190 

Appendix A  ................................................................................................................................... 193 

A.1 Read/Write Mutex Java Implementation  ..............................................................................193 

A.2 Distributed Centralized Algorithm  ........................................................................................194 

A.3 Centralized/Naimi-Trehel Multi-Token Algorithm  ..............................................................198 

 

BUPT



  
 
 

vi  
 

 vi  

List of Figures 

Figure 1: Grid Architecture as presented in [7] .................................................................................................. 2 

Figure 2: Relationship between OGSA, WSRF and Web Services .................................................................. 4 

Figure 3: GridCoord Application Distribution by Topic ...................................................................................... 6 

Figure 4: GridRPC Architecture ....................................................................................................................... 11 

Figure 5: Globus Toolkit Components, according to www.globus.org ............................................................ 17 

Figure 6: Globus Web Service Architecture, according to www.globus.org .................................................... 18 

Figure 7: Globus GRAM Architecture, according to www.globus.org ............................................................. 18 

Figure 8: gLite Architecture ............................................................................................................................. 19 

Figure 9: OMII Architecture ............................................................................................................................. 20 

Figure 10: Grid Layering .................................................................................................................................. 35 

Figure 11: Grid Object Reference Handling .................................................................................................... 39 

Figure 12: Grid Universe Abstractions ............................................................................................................. 39 

Figure 13: Grid Object Synchronization ........................................................................................................... 48 

Figure 14: Grid Object Interface ...................................................................................................................... 49 

Figure 15: Grid Result Object Interface ........................................................................................................... 54 

Figure 16: An Example of Possible Grid Universe Organization ..................................................................... 57 

Figure 17: Grid Universe Observation ............................................................................................................. 58 

Figure 18: Physical Universe Mapping Sample ............................................................................................... 60 

Figure 19: Distributed Centralized Architecture ............................................................................................... 66 

Figure 20: Distributed/Centralized Algorithm’s Data Structures ...................................................................... 67 

Figure 21: Remote arbiter scenario ................................................................................................................. 69 

Figure 22: Centralized/Naimi-Trehel Multi-Token Architecture ....................................................................... 71 

Figure 23: Multi-Token Queue ......................................................................................................................... 73 

Figure 24: Request-Reply Pattern ................................................................................................................... 73 

Figure 25: Centralized/Naimi-Trehel Primary Node Data Structure ................................................................ 74 

Figure 26: Acquire Interactions ........................................................................................................................ 75 

Figure 27: Acquire Exclusive Interactions ....................................................................................................... 76 

Figure 28: Hierarchical Naimi-Trehel multi-token architecture ........................................................................ 78 

Figure 29: Single Universe Node Deployment ................................................................................................ 81 

Figure 30: Multiple Universe Node Deployment .............................................................................................. 81 

Figure 31: Single Node Multiple Machine Interactions .................................................................................... 82 

Figure 32: GridObjectRef Internal Structure .................................................................................................... 83 

Figure 33: Read-Only Objects Handling .......................................................................................................... 84 

Figure 34: Private Objects Handling ................................................................................................................ 86 

Figure 35: Migratory Objects Handling ............................................................................................................ 88 

Figure 36: Producer-Consumer Objects Handling .......................................................................................... 91 

Figure 37: Read-Mostly Objects Handling ....................................................................................................... 93 

Figure 38: Result Objects Handling ................................................................................................................. 96 

Figure 39: Write-Mostly Objects Handling ....................................................................................................... 98 

Figure 40: Grid Object Reference Type Handling ........................................................................................... 99 

Figure 41: Grid Object Search ....................................................................................................................... 105 

Figure 42: Acquire Correctness ..................................................................................................................... 107 

BUPT



  
 
 

vii  
 

 vii  

Figure 43: Grid Search Object Time .............................................................................................................. 116 

Figure 44: Acquire Time ................................................................................................................................ 118 

Figure 45: Grid Read-Only Objects – Application Completion Time ............................................................. 119 

Figure 46: Grid Private Objects – Application Completion Time ................................................................... 121 

Figure 47: GUN Layers .................................................................................................................................. 126 

Figure 48: GUN User Layer ........................................................................................................................... 127 

Figure 49: GUN Architecture: GridNode and GridPrimaryNode .................................................................... 128 

Figure 50: GUN Architecture: Kernel Messages ........................................................................................... 129 

Figure 51: GUN Architecture: Message Queues ........................................................................................... 130 

Figure 52: GUN Architecture: Kernel Worker Threads .................................................................................. 131 

Figure 53: GUN Architecture: Kernel Token .................................................................................................. 131 

Figure 54: GUN Architecture: Kernel Monitor ................................................................................................ 132 

Figure 55: GUN Architecture: Replication Engine and Replication Hook ...................................................... 133 

Figure 56: GUN Architecture: Replication Rules ........................................................................................... 133 

Figure 57: GUN Experiments Setup .............................................................................................................. 134 

Figure 58: Grid Object Search – One object per node .................................................................................. 136 

Figure 59: Grid Object Search – n/2 objects per node .................................................................................. 136 

Figure 60: Grid Object Search - One object per universe ............................................................................. 137 

Figure 61: Grid Object Search – No replication ............................................................................................. 137 

Figure 62: Grid Object Search – Node dependencies with replication .......................................................... 138 

Figure 63: Grid Object Search – Node dependencies without replication ..................................................... 138 

Figure 64: Acquire time.................................................................................................................................. 139 

Figure 65: Release time ................................................................................................................................ 140 

Figure 66: Completion time ........................................................................................................................... 141 

Figure 67: Acquire time dependency to the number of nodes, d=3000ms ................................................... 141 

Figure 68: Acquire time dependency to the number of nodes, d= 2000ms .................................................. 142 

Figure 69: Acquire time dependency to the number of nodes, d=1000ms ................................................... 142 

Figure 70: Acquire time dependency to the number of nodes....................................................................... 143 

Figure 71: Release time dependency to the number of nodes ..................................................................... 143 

Figure 72: Acquire exclusive time .................................................................................................................. 145 

Figure 73: Release time ................................................................................................................................ 145 

Figure 74: Acquire exclusive time dependency to the number of nodes, d=5000ms .................................... 146 

Figure 75: Acquire exclusive time dependency to the number of nodes, d=2000ms .................................... 146 

Figure 76: Acquire exclusive time dependency to the number of nodes, d=50ms ........................................ 147 

Figure 77: Release time dependency to the number of nodes ..................................................................... 147 

Figure 78: Completion time for read-only objects .......................................................................................... 148 

Figure 79: Completion time: read-only vs. generic objects, d=3000ms ........................................................ 149 

Figure 80: Completion time: read-only vs. generic objects, d=100ms .......................................................... 149 

Figure 81: Acquire time for generic objects within the same universe .......................................................... 151 

Figure 82: Acquire time for private objects within the same universe ........................................................... 151 

Figure 83: Acquire time for grid objects across all universes ........................................................................ 152 

Figure 84: Acquire time for private objects across all universes ................................................................... 152 

Figure 85: Acquire exclusive time for generic objects within the same universe .......................................... 154 

Figure 86: Acquire exclusive time for private objects within the same universe ........................................... 154 

BUPT



  
 
 

viii  
 

 viii  

Figure 87: Acquire exclusive time for generic objects across all universes .................................................. 155 

Figure 88: Acquire exclusive time for private objects across all universes ................................................... 155 

Figure 89: Acquire exclusive time for migratory objects ................................................................................ 156 

Figure 90: Acquire exclusive time: migratory vs. generic objects, d=1000ms .............................................. 157 

Figure 91: Acquire exclusive time: migratory vs. generic objects, d=100ms ................................................ 157 

Figure 92: Completion time: migratory vs. generic objects ........................................................................... 158 

Figure 93: Acquire time: producer consumer vs. generic objects ................................................................. 159 

Figure 94: Completion time: producer consumer vs. generic objects ........................................................... 160 

Figure 95: Acquire time: producer consumer vs. generic objects for different timings ................................. 160 

Figure 96: Acquire time: producer consumer vs. generic objects for different object size ............................ 161 

Figure 97: Acquire time: producer consumer vs. generic objects with different replication .......................... 162 

Figure 98: Acquire time: producer-consumer vs. generic objects with different client counts ...................... 163 

Figure 99: Acquire time: read-mostly vs. generic objects .............................................................................. 164 

Figure 100: Acquire time: read-mostly vs. generic objects for 3 producers and 10 consumers ................... 164 

Figure 101: Acquire time: read-mostly vs. generic objects for 3 producers and 5 consumers ..................... 165 

Figure 102: Acquire time variation for read-mostly objects depending on acquire frequency ...................... 166 

Figure 103: Acquire time variation for read-mostly objects depending on replication rules .......................... 166 

Figure 104: Acquire time variation for read-mostly objects depending on producer/consumer ratio ............ 167 

Figure 105: Acquire exclusive time: result vs. generic objects for 1 consumer............................................. 168 

Figure 106: Acquire exclusive time: result vs. generic objects for 10:3 producers: consumers .................... 169 

Figure 107: Acquire exclusive time result vs. generic objects for 5:3 producers: consumers ....................... 169 

Figure 108: Acquire exclusive time variation with d for result objects ........................................................... 170 

Figure 109: Acquire exclusive time for result objects at different p-c rates, d=5000ms ................................ 171 

Figure 110: Acquire exclusive time for result objects at different p-c rates, d=2000ms ................................ 171 

Figure 111: Acquire exclusive time for write mostly and different acquire frequencies ................................ 172 

Figure 112: Acquire exclusive time dependency to the replication rule ........................................................ 173 

Figure 113: Acquire exclusive time variation for different p:c ratios and d=5000ms ..................................... 174 

Figure 114: Acquire exclusive time variation for different p:c ratios and d=2000ms ..................................... 174 

 

BUPT



  
 
 

ix  
 

 ix  

List of Tables 

Table 1: Replication Rules ............................................................................................................................... 63 

Table 2: Solution Criteria ................................................................................................................................. 79 

Table 3: Solution Criteria Description .............................................................................................................. 80 

Table 4: Read-Only Object Characteristics ..................................................................................................... 83 

Table 5: Private Object Characteristics ........................................................................................................... 85 

Table 6: Migratory Object Characteristics ....................................................................................................... 87 

Table 7: Producer-Consumer Object Characteristics ...................................................................................... 90 

Table 8: Read-Mostly Object Characteristics .................................................................................................. 92 

Table 9: Result Object Characteristics ............................................................................................................ 95 

Table 10: Write-Mostly Object Characteristics ................................................................................................ 99 

Table 11: Object Transformation Synchronization ........................................................................................ 100 

Table 12: Acquire measurements for one worker ......................................................................................... 139 

Table 13: Acquire exclusive measurements for one client ............................................................................ 144 

Table 14: Read-only object measurements for one client ............................................................................. 148 

Table 15: Generic objects measurements for one client and acquire operation ........................................... 150 

Table 16: Private objects measurements for one client and acquire operation ............................................ 150 

Table 17: Generic object measurements for one worker on acquire exclusive operation ............................ 153 

Table 18: Private object measurements for one worker on acquire exclusive operation .............................. 153 

Table 19: Producer consumer vs. generic objects for one consumer ........................................................... 159 

Table 20: Producer consumer vs. generic objects for 30 clients ................................................................... 160 

Table 21: Producer consumer vs. generic objects for 30 clients and different timing ................................... 161 

Table 22: Producer consumer vs. generic objects for 30 clients and different object size ........................... 162 

Table 23: Producer consumer vs. generic objects for 30 clients and different replication ............................ 162 

Table 24: Producer-consumer vs. generic objects for 30 clients and different replication ............................ 163 

Table 25: Read-mostly vs. generic objects for 30 clients .............................................................................. 164 

Table 26: Read-mostly vs. generic objects for 3 producers and 10 consumers ........................................... 164 

Table 27: Read-mostly vs. generic objects for 3 producers and 5 consumers ............................................. 165 

Table 28: Parameter variation for read-mostly objects depending on acquire frequency ............................. 165 

Table 29: Parameter variation for read-mostly objects depending on replication rules ................................ 166 

Table 30: Parameter variation for read-mostly objects depending on producer/consumer ratio .................. 167 

Table 31: Result vs. generic objects for 1 consumer .................................................................................... 168 

Table 32: Result vs. generic objects for 10:3 producers: consumers ........................................................... 169 

Table 33: Result vs. generic objects for 10:3 producers: consumers ........................................................... 170 

Table 34: Parameter variation with d for result objects ................................................................................. 170 

Table 35: Parameter variation for result objects at different p-c rates .......................................................... 171 

Table 36: Parameter values for write mostly and different acquire frequencies ........................................... 172 

Table 37: Parameter dependency to the replication rule ............................................................................... 173 

Table 38: Parameter variation for different p:c ratios and d=5000ms ........................................................... 173 

Table 39: Parameter variation for different p:c ratios and d=2000ms ........................................................... 174 

 

  

BUPT



  
 
 

x  
 

 x  

 

 

 

BUPT



A Grid Service Layer for Shared Data Programming  

 
 

 1 / 207 
 

1 Grid Computing 
 

In spite of all major advances in computing systems performance, traditional uniprocessor 
architectures may not be able to sustain the rate of realizable performance increments in the near future 
[1]. Concurrency has proved to be the major factor in achieving higher performance in existing systems. It 
is parallelism whose lack this time creates a bottleneck in system’s data path and memory. By making 
use of parallel computing techniques, systems could make better use of existing resources, hide large 
communication latencies in wide distributed computing systems and provide better throughput. 

 Distributed and parallel applications have been used successfully in many computing domains 
due to the cost compelling argument. Parallel applications in engineering have been developed to solve a 
variety of discrete and continuous optimization problems [2]. Many of the traditional algorithms like 
branch-and-bound and quick-sort have been parallelized and enabled successfully on parallel 
architectures. Other fields of interest are represented by scientific applications where large data sets are 
being processed by parallel processing units. Parallel computing has also provided great support in 
developing commercial applications and research tools in computer systems like high processing power 
for cryptography and simulation algorithms. 

 Due to last decade’s accelerated movement towards globalization and wide distribution of 
resources, parallel computing as presented above is not suitable to cope with the wide variety of 
computing demands. It is very difficult to identify and address other computing entities in a dynamic and 
global environment. Distributed computing has been facing many challenges ever since. Complexity and 
management cost for these systems has become higher and higher. Data management has raised new 
challenges by requesting to have the right data at the right computing location together with a higher 
degree of confidence through security and authentication. Although performance has been traditionally 
the main reason for parallel computing, challenges to performance assurance in the presence of 
significant load variance make it difficult to achieve. Last but not least, the system’s compliance level 
towards users and standardization (e.g. heterogeneity) introduces another dimension in the distributed 
computing systems. Thanks to the networking and middleware advances, these problems have been 
addressed by the new evolving dimension of distributed computing, grid computing. As distributed 
systems have been applied to industry, the term grid has become a marketing slogan [3]. Any type of 
distributed file system might be called a storage grid or a file sharing application could be called a media 
distribution grid. According to Foster and Kesselman, grid systems must be evaluated according to their 
application, their business value and non trivial results rather than their architecture [4].  

The term grid was introduced by the first time in 1998 by Foster and Kesselman who gave the 
following definition [5]:  "A computational grid is a hardware and software infrastructure that provides 
dependable, consistent, pervasive and inexpensive access to high-end computational capabilities". The 
definition introduces the idea of “on-demand computing” and similarities with the electric power 
distribution grid could be observed. Later on, Foster defined the qualities of the grid system through a 
three point checklist, where he mentioned also that the list still leaves room for debate. The three point 
checklist states that a grid system must coordinate resources that are not subject to centralized control 
and use standard, open, general-purpose protocols and interfaces in order to deliver nontrivial qualities of 
service [4]. According to Foster, a grid system should not be under centralized control, but provide 
decentralized resource coordination. Open standards and open source protocols must be used in order to 
support its grid services. All grid resources should be used in a coordinated fashion to deliver a non-trivial 
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quality of service. Basically, the grid definition refers to a grid system. A grid is an incarnation of a grid 
system, an actual working system or a concrete grid system. Most of the times the term grid is used to 
refer to a grid system, but the term “the grid” would refer to a global, ubiquitous grid in the same sense as 
“the internet”, which would eventually exist in the future. We think that this stage would be the ultimate 
evolution point of the grid. A recent survey conducted among more than 170 grid researchers [6] shows 
that although there is a common understanding of the grid term, most researchers have slightly different 
visions about what the grid really is. One of the most debated points was the physical versus logical 
representation of a grid. The understanding of the relationships between grid computing, distributed 
computing and web based computing proved to be quite subtle, leading to quite radical opinions. For 
example, some think that grid computing is a combination of distributed, high-throughput and 
collaborative systems, while some believe that grid computing is only a concept or movement rather than 
a system. 

By applying the above definition in distributed systems, it appears that the requirements that grid 
systems must provide basic functions like resource discovery, information collection and publishing, data 
management between resources, process management, common security mechanism underlying the 
above process and session recording and accounting. As all this aspects cannot be supported by the 
underlying operating system, all these issues are addressed in the layer on top of the operating systems, 
the middleware. 

 

Figure 1: Grid Architecture as presented in [7] 

A generic architecture of a grid system was introduced in [7] and was defined as a layered 
diagram consisting of six major categorized components as depicted in Figure 1. The bottom level 
component, Fabric, represents the hardware and software resources to be shared in the grid system. The 
layer above, Connectivity, realizes the communication between resources and provides general security 
services as required by the grid system, using open source secure protocols. The Resource layer refers 
to services for resource management and control for a single resource, where information and 
management protocols are devised in order to allow the Collective and Application layer to get resource 
information and request resources. The Collective layer consists of services that manage multiple 
resources where resource registries, allocation and scheduling services, monitoring services and data 
management services are provided. The upper layer, Application, represents the actual applications that 
are executed in the grid system. Interestingly, grid applications are not constrained to access Collective, 
but they could make use of Resource or Connectivity layers directly.   
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1.1 Grid History 

We cannot talk about grid computing as a new computing field that was created as a result of a 
big-bang process, but rather as a slow evolution. Among the evolution path different events, ranging from 
technology to social and environmental aspects, have played a role in the development of nowadays grid 
computing domain. We believe that everything started with the demand of more computing power that 
initially motivated the research into high performance computing. The history of high performance 
computing begins in early 1940 with the Manhattan project, when the Department of Energy (DOE) of the 
United States aimed to develop advanced methods for some critical problems of their interests. One 
result of their pioneering activity was the development of the Monte Carlo method where statistical 
samples were used to predict behavior of large groups [3]. 

 Another milestone in the development path of current grid systems was linking computers 
together in networks in 1970, when Xerox created the first Ethernet network.  New developments in 
operating systems like timesharing systems brought the attention on the importance of putting machines 
to work together. Together with the Internet in the mid 1990s, two major projects brought a new direction 
in distributed computing. The SETI@home [8] and distributed.net projects put together an impressive 
number of computers in search for extraterrestrial information respectively to break encryption codes. 
Nowadays we are witnessing the last milestone, when our society benefits out of the high performance 
computing by exploring new dimensions in science, research and commerce. If consider strictly grid 
evolution, there are three stages in the grid system evolution.  

The first stage started around 1989 in the academic world when efforts were made to link 
supercomputing sites by what was called meta-computing. In the mid 1990s projects like FAFNER [9] and 
I-WAY [10] provided meta-computing computational resources to a range of high-performance 
applications. The FAFNER [9] project was setup to factor RSA130 using a new numerical factoring 
technique on computational web servers, whereas the I-WAY [10] project aimed to integrate available US 
national high bandwidth networks into a high performance network linking computational units and 
visualization environments. FAFNER was the forerunner for SETI@home and I-WAY for Globus [11]. 

 The second stage in grid computing evolution addressed the heterogeneity, adaptability and 
scalability in previous meta-computing systems. This led to quick advances in middleware technology and 
early efforts towards standardization. Components like grid middleware kernels, distributed object 
systems, resource brokers, schedulers, integrated and peer-to-peer systems represent concrete 
advances in grid computing technology and second generation building blocks [12]. The second 
generation grid computing addressed core issues like administrative hierarchy, communication services, 
information services, naming services, distributed file systems, resource management and reservation, 
system information, fault tolerance and security and authorization. These challenges led to a plethora of 
tools: second generation of the Globus toolkit [11], Jini [13], Condor [14], Sun Grid Engine [15], Storage 
Resource Broker [16], Nimrod-G [17] and many others. The end of this stage marked the introduction of 
grid portals like NPACI HotPage [18] and grid portal toolkits like the Grid Portal Toolkit [19] and NASA 
IPG [20]. Also integrated grid solutions have started to become available such as Cactus [21], Unicore 
[22], DataGrid [23] and WebFlow [24]. 

 The third generation of grid systems paves the way to e-science applications and large scale 
service oriented architectures which promote high functional reuse. Key features like distributed 
collaboration and virtual organizations are some of the introduced novelties.  A trend towards 
autonomous computing has been introduced together with self-organizing and fault tolerant grid systems. 
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The building blocks for such wide and complex technology have been made possible by the adoption of 
service oriented architectures via web service standardization technologies: SOAP [25], WSDL [26], 
UDDI [27] and WSFL [28]. Grid and web service technologies started to converge together with the 
introduction of Open Grid Service Architecture, OGSA, [29] at the Global Grid Forum, GGF [30]. OGSA 
aims for the integration of services across distributed and heterogeneous virtual organizations with 
disparate resources and relationships. These are addressed by merging the grid and web service 
technologies into a more generic service specification. The repeated critiques that OGSA specification 
was too large and cumbersome led to the specification of Web Service Resource Specification, WSRF 
[31]. The relationship between OGSA, WSRF and web services is illustrated in Figure 2. Similar 
extensions to web services are being developed for the grid in the direction of providing semantic 
information on grid services and information content. The semantic grid is expected to provide rich, 
seamless and pervasive access to globally distributed heterogeneous resources. This is the latest stage 
of grid development. 

 

Figure 2: Relationship between OGSA, WSRF and Web Services 

 Throughout the grid evolution we could observe an increase in heterogeneous grid environments 
that are constructed out of large resources such as CPU and data storage. One of such systems is 
Grid’5000 [32] which constructed a highly configurable and controllable experimental grid. It was intended 
to supply 5000 processing units distributed across nine French sites connected over a 10Gb/s connection 
with a latency between 4 and 29ms. A similar system can be found in the US, namely the TeraGrid [33] 
project, which contains over 22 000 processors over nine sites. Data connections are up to 30Gb/s with a 
latency between 3 and 80ms that tie together a wide range of heterogeneous systems. The biggest grid 
system known to be put together is EGEE (Enabling Grids for E-sciencE). “The EGEE project brings 
together scientists and engineers from more than 240 institutions in 45 countries world-wide to provide a 
seamless Grid infrastructure for e-Science that is available to scientists 24 hours-a-day. Conceived from 
the start as a four-year project, the second two-year phase started on 1 April 2006, and is funded by the 
European Commission. Expanding from originally two scientific fields, high energy physics and life 
sciences, EGEE now integrates applications from many other scientific fields, ranging from geology to 
computational chemistry. Generally, the EGEE Grid infrastructure is ideal for any scientific research 
especially where the time and resources needed for running the applications are considered impractical 
when using traditional IT infrastructures .The EGEE Grid consists of 41,000 CPU available to users 24 
hours a day, 7 days a week, in addition to about 5 PB disk (5 million Gigabytes) + tape MSS of storage, 
and maintains 100,000 concurrent jobs. Having such resources available changes the way scientific 
research takes place. The end use depends on the users' needs: large storage capacity, the bandwidth 
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that the infrastructure provides, or the sheer computing power available.” – excerpt from the EGEE web 
page (http://www.eu-egee.org/).  

More complex grid systems than these are expected to be deployed in the near future and pave 
the way towards “the grid” as the ultimate point of evolution that would be a worldwide system available 
to the general public as the internet is today. 

1.2 Grid Applications 

1.2.1 User Perspective 

The last decade has seen a growing number of large-scale Grid infrastructure deployment 
projects including NASA’s Information Power Grid (IPG) [34], DoE’s Science Grid [35], NSF’s TeraGrid 
[33] and the UK e-Science Grid [36]. NSF has many Grid activities as part of Partnerships in Advanced 
Computational Infrastructure (PACI) and is developing a new cyber-infrastructure initiative. Similar large-
scale Grid projects are being developed in Asia and all over Europe for example, in the Netherlands, 
France, Italy, Ireland, Poland and Scandinavia [12]. Depending on the application domain, we distinguish 
several categories of grid applications.  

Life science applications are applications that are dealing with biology, bioinformatics and 
genomics and are moving to grid systems due to their large computational demands and need to access 
and mine large data sets. Some of these projects are the Protein Data Bank project [37], myGrid project 
[38], the Biomedical Information Research Network, BIRN [39]. The later provides large scale simulation 
and analysis features and remote instrumentation capabilities. 

Second category is represented by engineering applications where applications aim to take 
advantage of cost-effective computational resources. One of the largest engineering grid applications is 
owned by NASA, the NASA IPG system and represents a milestone in modern large scale engineering 
execution. The European counterparts are represented by the Geodise project [40] which provides 
engineering design knowledge repository used by Rolls-Royce among many others. 

Data-oriented applications are another group of wide-spread grid applications which address the 
problem of operating on large data sets. An example of a data-oriented application is the Distributed 
Aircraft Maintenance Environment, DAME [41] which has been developed in the United Kingdom. It uses 
grid technology to handle gigabytes of in-flight data gathered by operational aircraft engines and to 
integrate maintenance, manufacturer and analysis centers.  

Physical science applications are one of the pioneering applications in grid computing. Particle 
physics applications like GriPhyN [42], Particle Physics Data Grid [43], EU DataGrid [44] and nuclear 
accelerator analysis projects at CERN have been an early proof of grid technology applied to large data 
flow and highly parallelized applications. 

Last but not least, commercial applications have been started to emerge in the context of 
enterprise computing and they are addressing problem domains like automation, security, utility 
computing, computing cost reduction, disaster recovery etc. They have been starting to benefit from the 
collaborative approach in e-Science that proved to be a modern approach in sharing collective wisdom. 
An overview of grid application distribution by the topics addressed has been presented in the GridCoord 
report [45] and reproduced in Figure 3. 
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Figure 3: GridCoord Application Distribution by Topic 

1.2.2 System Perspective 

Considering the application architecture and factors like data locality and task or service 
interaction patterns, grid applications could be divided in four categories: loosely coupled applications, 
pipelined applications, tightly synchronized applications and widely distributed applications.  

Loosely coupled applications are made out of small tasks with typically small memory, data and 
communications demands, but very compute demanding. They could be running in large cluster 
environments with large latency and low bandwidth characteristics. One of these applications is 
SETI@home [8], where input data decomposition has been applied before submitting the data set for 
processing. Pipelined applications are typically processing streams of data like multimedia or other kind of 
real time broadcasted data. These applications have higher memory and data demands than loosely 
coupled applications and some of them impose hard constraints in terms of data path delivery. Tasks are 
typically organized as coarse grained parallel tasks and require more task communications. Applications 
in this category are dealing with real-time data acquisition and processing of large data sets, acquired for 
example via satellites or remote sensors which might be located outside of the data processing units. One 
of these applications is the Biomedical Information Research Network [39]. 

Tightly synchronized applications are data-intensive applications that have the same 
requirements as the previous ones, but in addition they are exhibiting intensive synchronization on the 
communication infrastructure by intensive inter-task communication patterns. These applications are 
running in high performance computing systems which provide enough latency for intensive 
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communications. Modeling applications such as climate, physics, biology or aeronautics fall in this 
category. Widely distributed applications are data oriented applications that are performing a series of 
operations on wide distributed data sets. They have little demands for memory, data and computation 
resources, but need to work on a heterogeneous and widely distributed grid infrastructure and access 
data owned by different organizations. Biomedical applications that are searching and updating large data 
sets are part of this category of applications. 

Summarizing the application view from the system perspective, grid systems could be divided 
into three categories: computational, data and service grids. Computational grids are aggregating 
computing resources and provided a total computing power higher than the power of any individual part. 
Depending of their usage, computational grids could be further divided into high throughput grids and 
supercomputing grids. While supercomputing implies that multiple jobs are run in parallel to reduce the 
completion time of a job, high throughput grids are focusing to improve the completion rate of a stream of 
jobs, by trying to run as many jobs as possible in a given time unit. The data grids focus on providing and 
managing data sets in distributed grid environments. The latter category, service grids is an emerging 
concept inspired from service oriented architectures and basically addresses on-demand, collaborative 
and workflow computing. Collaborative and on-demand computing provide services that are not provided 
by any single machine, by dynamically aggregating different resources and services. Interactions 
between users and machines are thus possible through dynamic virtual services. 

1.2.3 Grid Perspective 

Any grid-enabled application requires some services of the underlying grid infrastructure in order 
to perform properly. There are other applications such as monolithic legacy application which do not 
require any special execution support which can be simply run transparently on a grid system. However, 
the grid system is still required to perform some tasks in order to provide the necessary execution context 
for the target application. As the grid is continuously evolving and is progressively defined by bodies such 
as the Global Grid Forum, it is important to identify the generic grid application types as well as the grid 
specific operations that are required during their deployment and execution. On the above types of grid 
systems one can develop several types of applications. Based on the primary focus of the application, the 
following taxonomy can be devised: community-centric, data-centric, computation-centric and interaction-
centric applications.  

First category of grid applications are community-centric applications that aim to bring together 
people or communities by enabling different kinds of collaborative interactions and workflows. Large scale 
interactive video conferencing systems and scientific collaborative systems are two examples of 
community-centric applications where workflow management plays a key role among distributed 
resource.   

Data-centric applications are data oriented applications that supply large scale distributed data 
from various data providing sources like sensors, satellites or data processing units. Most of the time, 
they provide specialized data access to different kinds of data. Typically, data-centric applications are 
operating on large scale distributed data repositories that are commonly found in scientific and 
environmental applications. These kinds of applications have been grown very much during the grid 
development stages and their growth rate is expected to continue on the same rate.  

BUPT



A Grid Service Layer for Shared Data Programming  

 
 

 8 / 207 
 

 Computation-centric applications are focusing on achieving high-computational throughput that is 
required in many simulation and prediction application such as climate modeling, avionics, economic 
forecasting, and industrial modeling. They represent most legacy high performance computing 
applications that see the grid as a computational resource pool for their intensive computations. It is 
expected that these applications will move from parallel processing to grid processing, in order to 
overcome the resource limitation of parallel computers.   

Last but not least, interaction-centric applications refer to time critical applications where user 
interaction happens during a decision-making process that most of the times involve visualization. It is 
required that the application provides a quick response, thus issues like load balancing, resource 
reservation, performance assuring are key points to be addressed in this case. Currently, the interaction 
level is reduced to visualization or simple user interaction, but event standardization could automate the 
life cycle of these applications and increase their throughput which is limited by the interaction process. 

The grid operation taxonomy can be devised in respect of grid operations types: basic operations, 
information and interaction operations and compound operations [12]. Basic operations are building 
blocks for any grid job execution and consist of resource selection, job initialization and data transfer 
operations. In a grid environment which consists of many different types of resources, one or more 
resources have to be selected to carry through the designed task. Resource selection is done based on 
resource registration, locating and monitoring. Job initialization refers to provide the proper execution 
context and credential verification plus supplying the necessary input data (known as data staging). Data 
operations are typically basic data transfer operations such as file copying on a grid level. Based on the 
simplified grid data transfer model, advanced data operations could be provided such as reliable data 
transfer, data replication and searching. 

Information and interaction operations are a great help in managing and collecting different kinds 
of information in a grid system. Information can refer to resources (CPU, storage), software, users, data 
etc. A special class of information is application monitoring which is a fundamental requirement for job 
scheduling and resource reservation operations. Information can be delivered by either push or pull 
mechanisms (interaction). The pull approach is simply user or application driven, whereas push involved 
reliable notification mechanisms to the user or different grid components.  

Compound operations are built on the above mentioned operations and provide new and 
versatile features in the grid environment. Combining resource selection, information retrieval and data 
transfer results in a new migration operation. Application migration implies changing the execution 
location of a job, by transferring its state and data to a new execution node. Thus, the grid execution 
framework could provide new resources where a job can be finished earlier as in its previous location. 
Spawning is another compound operation that involves creating sub-jobs of a main job and spreading 
them on the grid. As processes might be executed recursively, a hierarchy of complex grid workflows can 
be created. Such an operation requires resource acquisition, data transfer from the main job or process to 
the other resources, initialization and collecting the results from the sub-jobs. Combining job migration 
and job spawning leads to task farming. Task farming is a typical case of parameter search solution 
where a main master process spawns processes on the grid that search a subset of the possible 
combinations. The main process spawns new processes until its task is completed and the search space 
is exhausted or the solution is found. 
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1.3 Grid Programming Models 

During the last two decades we have witnessed a massive movement from traditional client-
server computing to distributed, network based computing and lately service oriented architectures. Grid 
programming introduces many challenges that were not addressed previously in sequential computing, 
parallel and distributed computing. Basically, grid programming orchestrates interactions between 
resources, services, shared or distributed data structures in a heterogeneous and dynamic environment. 
Most of the current grid applications mainly consist of job submissions, or they are parallel or distributed 
applications that have been ported on top of grid middleware and transformed in grid enabled 
applications. Next generation of grid applications, that are going to unleash the envisaged computing 
potential, involve heterogeneous and dynamic interaction between different types of systems and 
resources with run-time changes in topology and configuration. Dynamism and disparate resources are 
core features that grid systems and programming methodologies must address, instead of putting the 
burden on the application side. 

When referring to a programming model, we refer to the conceptual computation orchestration 
technique and not necessarily to a programming language. A programming model can be presented in 
several forms such as an application programming interface (API), a tool with external functionality or a 
conceptual model. In the grid context, most successful programming models must enable high 
performance and flexible resource composition and management. At the same time, a programming 
model is directly influencing the entire software life cycle: design, implementation, debugging, operation, 
maintenance [12]. There are several issues that grid programming paradigms must address in the context 
of future grid systems. These include wide area scalability, latency and bandwidth hierarchy, fault 
tolerance, automatic management capabilities. It is clearly desired that grid programming paradigms must 
have certain programming properties that support building high quality and efficient grid codes. Next, we 
present the grid programming properties and then the main distributed computing programming models. 

1.3.1 Grid Programming Properties 

Programming properties have been introduced since the time of parallel computing. Extending 
these properties for grid systems is one important step towards providing the means to design and 
develop efficient grid codes. Ideally these characteristics have to be addressed by the programming tools 
and paradigms and not to be explicitly programmed by the application programmer. Based on [46] there 
are seven important properties of grid programming models. In addition, we extend the programming 
properties with a new one that we see as a true challenge that needs to be addressed in grid 
programming models. 

Usability. Grid programming tools must support various types of programming concepts and 
paradigms from local computing to large scale high performance computing. There should be no 
constraints in building program codes that are targeted to a specific architecture so that different 
development paths are followed depending on the system’s requirements and architecture.  

Dynamic and Heterogeneous Configuration.  Grid applications are running in dynamic and 
heterogeneous environments that change frequently due to machine availability, new connection paths, 
dynamic communication latencies due to connection changes, new resource availability or potential 
failures. In order to have an efficient programming paradigm, configuration and architectural details must 
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be ignored by the programmer. These must be addressed internally by either the framework or additional 
components. 

Portability. Portability is not a new topic and is best captured by the sentence “write once, run 
anywhere”. For grid systems, portability is similar to supporting programs to be run independently of the 
underlying architecture. Portability and architecture independence is vital to support dynamic and 
heterogeneous configurations. 

Interoperability. Grid systems are based on open standards and protocols. Open protocols 
assure a greater level of inter-operability. Without using open standards and protocols the possibility to 
extend grid architectures is reduced. Protocols, services and interfaces might expose programming 
models that must be interoperable as well. 

Reliable performance.  One of the motivations for grid systems is to offer tremendous amount of 
cost effective computing power by harnessing unused distributed resources in an efficient and uniform 
way. Thus, one of the most demanded requests for grids is high quality reliable computing power. In 
some special cases predictive performance, known in deterministic models, is a demand that the grid 
must deliver with high quality and accuracy. Grid programming tools must not limit the performance of the 
developed application. In other words, the performance bottleneck should not be the programming tools 
or paradigms. Besides reliable performance, another key aspect is that of performance portability. 

Reliability and Fault Tolerance. Previously reliability and fault tolerance were addressed in the 
developed solution. In case of grid systems, this is not applicable anymore as grids aim to expose higher 
level functionality with advanced management support. Still, errors and failures must be notified, but built-
in run-time mechanisms must be present to allow automatically error detection and correction. 

Security and Privacy. As the grid spans between virtual organizations with possible different 
security policies, security issues, rights management and privacy have been a major concern. As grid 
codes are running across different administrative domains, it is very important that security be part of grid 
programming tools. Basically this is solved by the grid middleware by delegating credentials. However, 
delegation chain might be the weak link if not handled properly by every indirection level. 

Uncertainty  is in our view a final challenge that grid systems must address that appears due to 
several factors. Most obvious factor is the dynamic and unpredictable environment which might change 
not only in structure, but also in behavior (e.g. due to service upgrades). Failures play an important role 
too in the landscape of uncertainty as their chances increase as the grid expands (its scale increases). 
Last but not least, incomplete knowledge of the global system state, which is a common characteristic in 
distributed asynchronous systems, contributes to the increase of system uncertainty too. 

1.3.2 Client-Server Model 

The client-server model is the simplest distributed computing model, where a node called server 
offers services that are requested by clients. In this model, the client is always a consumer whereas the 
server is a provider. The model is demand driven as clients are actively requesting server services while 
servers are passively waiting for requests. The interaction between clients and servers could be stateless 
or statefull, but there is no consent of state management which is highly application dependent. Complex 
applications could be developed using this model by organizing clients to access concurrently multiple 
servers and servers to serve multiple clients in parallel. 
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This centralized setup increases the dependencies between clients and servers and might be a 
bottleneck in case the server cannot process enough requests simultaneously. A workaround to alleviate 
the server bottleneck is to provide a layered architecture containing multiple servers organized in different 
levels. Such solution was applied for example to the DNS servers. DNS like systems have the advantage 
that they are easy to manage and identify, but have the single point of failure which makes them not 
suitable for highly available systems. 

 

Figure 4: GridRPC Architecture 

In this category we consider Remote Procedure Call (RPC) and Remote Method Invocation (RMI) 
models which involve calling a procedure or a remote object’s method located at a remote server. The 
semantics associated with the call is determined at design time, thus no explicit parameter marshaling is 
required. At the grid level, the GridRPC [47], an extension of the RPC model, provides standard RPC 
operations and specific grid operations like dynamic resource discovery and scheduling, security via 
X.509 certificates and fault tolerance through automated check-pointing, rollback and retry features. 
Different implementations of GridRPC like Ninf [48] or NetSolve [49] which provide powerful client-server 
programming frameworks based on remote procedure call. In such a system, applications are written as 
task-parallel programs that invoke a remote executable located on the grid. The remote executable 
contains computation code that is executed asynchronously as a result of a RPC call. A generic view on 
the GridRPC architecture is depicted in Figure 4 where GRAM represents the server component of the 
RPC and MDS represents a registry containing registered GridRPC components. 

One of the drawbacks of RPC-like solutions is the assumption about the common knowledge of 
procedure names and identifiers. More, it defines and freezes the syntax and semantics of the remote 
interface a priori, at compile time. The model is pretty static and it does not address dynamism, 
uncertainty or security. It also puts a burden at the application level by forcing the application to handle 
reliable message delivery and providing basic mechanisms for failure management. RPC-like approaches 
address heterogeneity by using neutral description languages for the interfaces (e.g. IDL). At this time, 
there is a proposal to enhance the RMI model for the grid which could significantly improve the 
unnecessary communication overhead of method compositions on the grid [50]. Web services fall in the 
same client-server model, the only difference being in the invocation details, where parameters are 
marshaled in language neutral XML representation, ensuring thus platform and language independence 
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and the ability to build loosely coupled systems. Of course, the price for flexibility and loosely coupling is 
paid by the higher costs of XML representation conversions. 

1.3.3 Peer-to-Peer Model 

Peer-to-peer systems (P2P) are decentralized distributed systems, by removing the roles of 
clients and servers and replacing them with a generic peer component which exposes uniform services in 
the entire peer-to-peer system. A peer-to-peer node performs both roles of client and server and cannot 
be distinguished from other nodes. The role of the peer to initiate or respond to other peers depends on 
what role fits better to the use of computing resources such as CPU cycles, space or network bandwidth. 
In most peer-to-peer models, peers have similar computing power, have same capabilities and can 
handle multiple concurrent interactions. Peer-to-peer applications have been used to provide file sharing, 
web caching, distributed informative systems and other kind of services that are living in a large and 
dynamic distributed environment. These applications are highly efficient when the data they are operating 
on is immutable. 

Peer-to-peer middleware such as Pastry [51], Tapestry [52] or Chord [53] are recent technologies 
that have provided a great boost in the development of peer-to-peer applications. The peer-to-peer 
middleware is making use of current naming, routing, and replication and security techniques in new ways 
to build a reliable resource sharing layer over an unreliable and untrusted collection of computers. A 
family of protocols designed for the Java language and P2P computing is the JXTA framework [54]. The 
JXTA framework defines the P2P communication through XML messages which provides support so that 
peers can form self-organized and self-configured groups without any centralized management 
infrastructure. Peers can make advertisements and can communicate and route messages by making 
use of JXTA protocols which are shielding the complex and dynamic underlying communication 
infrastructure. According to [55], JXTA can be successfully used to build Java-enabled grids. 

1.3.4 Workflow Model 

A workflow is an automation of a process, where information or tasks are passed from one 
participant to another where an action is to be applied, according to a set of predefined rules. The 
concept of the workflow model relies on service oriented architectures and collaborative systems. The 
service oriented architecture is a collection of message oriented services defined in terms of messages 
exchanged between providers and requestors. Services are description oriented and are described using 
standardized meta-information (e.g. in XML dialect). Such services are implementation independent, 
network use oriented and have typically a small number of operations with large and complex messages. 
Service semantics is separately documented as the service specification does not mandate any 
semantics.  

Most popular and promising service oriented architectures are based on web services. These 
could easily be organized in workflows. There are many web service composition languages like PDL, 
XPDL, BPSS, EDOC, BPML or BPEL4WS which provide web service workflow models that are widely 
used in industry, commerce and research domains [56]. Composition and flow specification for languages 
for web and grid services include BPEL [57], Grid Services Flow Language, GSFL [58], Web Services 
Flow Language, WSFL [59], XLANG [60] or Web Services Choreography Interface, WSCI [61]. Scientific 
workflow models typically require large data volumes, advanced workflow monitoring and control support, 
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dynamic configuration and hierarchical composition. Such requirements make them perfectly suitable for 
grid systems and standardization work is an ongoing activity [58]. 

1.3.5 Message Passing Model 

The message passing model refers to processes running in separate address spaces that are 
exchanging information between each other via messages. Typical roles are publisher and subscriber, 
where publishers are actively publishing a stream of data to a communication channel and subscribers 
are passively receiving data through the subscribed channel. Unlike the client-server model, the publisher 
is active and not passive like the server and the subscriber is passive unlike the active client. 

Message passing specifications like MPI [62] define inter-process primitives that shield 
programmers from communication issues due to complex network protocols and heterogeneous 
platforms. It enables communication using primitives such as send and receive by explicit data copying 
from one process to another. Data access and synchronization control is left to the applications level, as 
in all previous models. This model is also known as share nothing. One of the main advantages of this 
model is performance, the only limiting factor being the communication medium congestion. On the other 
side, this model is shifting much responsibility on the application side where the application has to 
manage application specific communication protocols, must address dynamic configurations and built 
support for fault tolerance.  Other strengths of this model consist of high portability and user control. In 
other words, message passing programs are highly portable and they give the programmer total control 
over the data transfers between processes.  

Although message passing tools focus on performance, they do not support heterogeneity, 
dynamism or uncertainty. Further, they assume that all processes are trusted and they do not address 
security. MPICH-G2 [63], a grid enabled implementation of MPI hides heterogeneity using services 
provided by the grid middleware. It makes use of Globus [11] services to couple together multiple 
machines. It supports advanced data transformation routines and multi-protocol communication. In terms 
of dynamism support, MPI-2 [64] specification adds dynamic process creation and runtime modification of 
the processing sets. A refinement of the message-passing model is represented by the register and notify 
model, where consumers are registering to a service provider for a lease period. Providers are notifying 
consumers with service data during the valid lease period. The roles are similar to the publisher and 
subscriber where the provider is active and the consumer is passive. Such model is implemented in the 
COM+ [65] and Jini [13] technologies. 

1.3.6 Distributed Shared Data Model 

The distributed shared data model exposes a global shared memory space that is shared among 
processes on loosely coupled processors and which creates the illusion of a single large memory space. 
Basically, it integrates local memory in a networking environment into a single entity, shared by multiple 
processes located at different sites. The programmer has thus the illusion of a large address space. This 
concept emerged from the hardware shared memory used between multi-processors and was extended 
on loosely coupled processors, which is also known under the term of distributed virtual shared memory. 

One of the most well known specifications for distributed shared memory model (DSM) is the 
tuplespace model which was introduced in 1982 in the context of the programming language called Linda 
[66]. Tuplespaces are abstract communication and computation environments that form the basis of the 
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Linda communication model. The Linda [66] programming language uses shared object spaces, known 
as tuple spaces, which are accessed by standardized methods. Communication is done by placing and 
removing tuples from the shared memory space. A similar implementation has been provided by Java 
Spaces [67] in the Java programming language that was introduced by Sun Microsystems, where a Java 
API is provided for the tuplespace model and language specific extensions for richer typing, object 
orientation, subtype matching and transactional support. TSpaces project [68] represents another Java 
implementation of the tuplespace model which adds database capabilities and is oriented more on data 
repositories than global communication. Implementations like Linda [66] and Java Spaces [67], where 
communication is done by placing and removing objects in a global space, make available higher level 
abstractions that are easier to use and program. However, due to the new interaction approach, which 
does not happen explicitly anymore, there is a slight thinking shift needed while using the object space 
approach. This model seemed very appealing to its initiators and was thought as of a concept that could 
support any computational model [69]. 

The main advantages of this model are better usability, support for dynamic configurations and 
fault tolerance as it naturally addresses all of them. Performance and interoperability have been seen 
always as weak points; perhaps this is why the model is not as popular as the message passing 
approach. 

1.3.7 Parallel Programming Models and Technologies 

Message passing and shared data models represent the most important concepts of parallel 
programming models. Parallel programs can be divided in two categories, depending on the aspect they 
parallelize, namely the execution of the same task on different data elements (data parallelism) or the 
concurrent execution of different tasks on the same data element (task parallelism). Most parallel and grid 
programs are data parallel in nature. One of the reasons for this characteristic is that the concurrency 
level that can be algorithmically obtained via data parallelism is higher than the one represented by task 
parallelism. In other words, it is easier to elaborate an algorithm and apply it on different data, rather than 
devise the same number of algorithms as data structures and apply them on a single data item. However, 
task parallelism is quite important in the context of distributed computing, where distributed components 
run different codes on potentially the same data items, but on different locations. In the context of grid 
computing, we expect to witness grid codes that are structure d as a task parallel composition of 
data parallel components. 

From the programming perspective, parallelism can be expressed either explicitly or implicitly. 
Normally, an explicit parallel program contains programmer written statements that define concurrent 
activities such as control threads. On the other side, implicit parallelism relies on higher level constructs 
and specifications of program behavior, which are translated by a compiler or run-time environment into 
parallel activities. The flexibility and total control over the parallel activities that is a core characteristic of 
explicit models is not present anymore in case of implicit models, where the programming activity is highly 
simplified, but the user does not have complete control over the parallel activities.   

There are a plethora of technologies that supply an implementation of parallel models, both 
message passing and distributed shared data. Some of them have been already referred in the above 
sections, but there are many others that were not mentioned. We highlight briefly some of the most 
important technologies for parallel programming that are commonly used in nowadays applications. 

BUPT



A Grid Service Layer for Shared Data Programming  

 
 

 15 / 207 
 

MPI [62] is regarded as the technology of choice when it comes to constructing scalable parallel 
applications with a high portability degree. There are a plethora of MPI libraries and bindings to 
programming languages like C, C++, Java and Fortran. MPI is regarded as an efficient communication 
solution that puts some extra burden on the developer in order to orchestrate data exchanges between 
remote processes. PVM [70] is another implementation of message passing model and represents one of 
the predecessors of MPI libraries. One of the major design goals was portability which turned out to 
sacrifice performance. The evolution path of MPI standards (MPI-1 and MPI-2) added dynamics and 
portability and provided better performance than PVM implementations. As a result the PVM approach 
began to suffer in terms of popularity. Parallelizing compilers are an appealing tool for generating 
parallel codes automatically out of high level constructs. Due to the complexity of parallel compiler 
construction, they had success primarily on shared memory architectures with a small number of 
processors. In general the performance obtained using parallel compilers is small if no information is 
provided by the user and the entire code generation is done automatically. However, the situation is 
greatly improved when user provided annotations are supplied into the code. OpenMP [71] is a parallel 
programming solution that makes use of a parallel execution library and a parallel compiler in order to 
supply a solution for shared data programming. It is intended for shared data architectures and provides 
bindings to C, C++ or Fortran. OpenMP exploits loop parallelism in both fine and coarse grain parallel 
activities and preserves sequential execution semantics. High Performance Fortran [72] is an extension 
of the Fortran language with a set of directives and new language constructs to provide a data parallel 
programming model. Different to OpenMP, High Performance Fortran focuses on user support for data 
distribution in order to support a high performance execution on heterogeneous machines, especially on 
shared memory architectures. Solutions for implicit data parallelism include libraries like POOMA [73] and 
HPC++ [74] that abstract parallel operations. Both solutions rely on standard object oriented technologies 
that define classes in order to encapsulate parallelism. One of their major advantages is code clarity and 
clearly defined abstractions. The down side of these approaches is opacity, because debugging and 
library extensions are very complex tasks. 

The importance of parallel programming technologies can be considered in the context of 
evolution of parallel systems towards large scale complex and hybrid entities. Architectural advances that 
translate into higher complexities restrict their availability for the general programmer and require more 
and more the exclusive expertise of a domain expert. We believe that this natural evolution aspect has 
high chances to slow down the development of grid applications. As a result, one must rely on flexible, 
complex and at the same time easy to use programming models suitable for the development of grid 
applications. Considering the impressive technologies and concepts that are currently involved in grid 
computing, we expect a slow convergence process towards mature and generally accepted programming 
models for grid programming. 

1.4 Grid Middleware 

Grid middleware is a software layer built on top of operating systems services that provides a 
series of cooperating services and interfaces in order to offer transparent and seamless access to grid 
resources. Some of the most important grid middleware solutions are briefly described in the following 
sections. A grid middleware is used in order to construct grid systems like (listed in [75]): 

• EGEE: Enabling Grids for E-Science in Europe (http://public.eu-egee.org/): An ambitious Grid 
project that brings together scientists and engineers from more than 240 institutions in 45 
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countries world-wide to provide a seamless Grid infrastructure for e-Science that is available to 
scientists 24 hours-a-day. EGEE will also be responsible for providing the awesome 
computational power required by the LHC described above. 

• NEESit (http://it.nees.org/): Provides an extensive infrastructure for the NEES (Network for 
Earthquake Engineering Simulation) Collaboratory by linking together earthquake research 
centers in the US. 

• TeraGrid (http://www.teragrid.org/): A Grid system providing a powerful infrastructure for open 
scientific research. As of 2004, TeraGrid had 20 teraflops of computing power and 1 petabyte of 
distributed storage. 

• Access Grid (http://www.accessgrid.org/): A Grid system used for “large-scale distributed 
meetings, collaborative work sessions, seminars, lectures, tutorials, and training”. 

• eDiaMoND (http://www.ediamond.ox.ac.uk/): The eDiaMoND project is an example of how Grid 
computing can be used for e-Health. This project “pools and distributes information on breast 
cancer treatment, enables early screening and diagnosis, and provides medical professionals 
with tools and information to treat the disease”. 

1.4.1 Globus Toolkit 

The Globus Toolkit [11] is a grid middleware mainly developed at the University of Chicago and 
represents a community-based, open-architecture, open-source set of services and software libraries that 
supports grids and grid applications. It provides a collection of components that supply a ready to use 
framework for building collaborative distributed applications. The focus is to provide tools and protocols 
that address heterogeneity in large scale distributed systems and to provide reference implementations to 
the latest protocols adopted by standardization bodies like IETF, W3C, OASIS or OGF. 

The toolkit includes software components provided as web services or non web services for the 
following grid problem domains: security, information infrastructure, resource management, data 
management, communication, fault detection, and portability. It is packaged as a set of components that 
can be used either independently or together to develop applications. The current Globus Toolkit (version 
4.2.1, version 5.0 being announced for December 2009) has reached the forth evolution stage. Its main 
modules are depicted with different colors in Figure 5. The Common Runtime components provide core 
tools for building web-service and non-web-service services. The Security module provides secure 
communication means in the grid and defines the Grid Security Infrastructure (GSI). Data management 
module provides protocols and tools to manage large data sets like the reliable FTP and GridFTP 
protocols. Information services components comprise monitoring and discovery services (MDS) that 
enable uniform resource location and monitoring in a virtual environment. Last but not least, the execution 
management module provides the management services for job execution, scheduling, coordination and 
monitoring.  

In the last two releases (starting with 4.00 and reaching 4.21 at the time of writing this thesis), 
Globus has focused to provide web service interfaces for mainly all its components and has been 
redesigned to enhance scalability, modularity, performance and usability. At the same time it leverages 
existing web service standards like WS-Addressing, WS-Security and WS-I Basic profiles and 
accommodates further standards like WS-Resource Framework and WS-Notification. The architecture of 
its web service runtime is depicted in Figure 6. 
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Figure 5: Globus Toolkit Components, according to www.globus.org 

Grid security services provide support to control the access to grid resources. It allows multi-user 
collaborations through federated mutually trusted services. Globus users are allowed to set up dynamic 
trust domains supporting thus user specific resources that are working together to a common goal. The 
entire security module is built on top of web service standards. Credential management is done by the 
single sign-on proxy called MyProxy and Community Authorization Service. Data management 
components provide functionality for moving large data sets through the GridFTP protocol. Data staging is 
integrated into the execution and resource allocation framework, GRAM (Globus Resource Allocation 
Manager). Globus provides data access mechanisms by providing replication catalogs via the Resource 
Location Service (RLS). Efficient and reliable data replication is provided by the Data Replication Service 
(DRS). Globus provides mechanisms and interfaces for data access such as GridFTP for file access and 
OGSA-DAI [76] for any kind of data (database, files, memory). 
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used directly to publish, for example, information concerning the resources on the Grid. Specialized 
services
relies on registering the location of publishers of information and what subset of the total information they 
are publishing. This allows consumers to issue queries to the information
know where the information was published.

Job Management Services
contain resource management, workload management, accounting, job provenance, and package 
manager services.
network resources.
the system, so that a
three main service groups that relate to data and file access: Storage Element,
Data Management. Closely related to the data services are the security
Manager. Data manageme
and catalogs ha
scheduling that exposes interfaces for data placement in the grid environmen

Open Middleware Infrastructure Institute (OMII)
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1.5 Grid Shared Data Dilemma 

Although the number of networked machines has been constantly increased, the number of new 
distributed applications is still much lower. One of the obvious reasons for such a slower growth factor is 
the degree of difficulty in creating and maintaining wide distributed applications. Some of the core issues 
that are faced by distributed applications are due to latencies, synchronization and partial failures. Most of 
the times, communication still takes place over large latency connections and requires a much longer 
time relative to the processing speed. Only on dedicated grids ideal conditions can hold during the entire 
application lifetime. Next, the increasing heterogeneity and the greater difficulty to replace large spread 
legacy systems impose an important break on grid application development. Last but not least, the 
emergence of mobile computing raises complex questions on application deployment and performance 
assurance in various contexts. One of the answers we see to these challenges is in the gri d 
programming model. This is the major focus of this work. 

As shown in previous sections, grid systems consist of both computational and data resources. 
According to the grid definition introduced in the beginning of this chapter, grid systems must provide 
transparent and standardized support to their resources including transparent access to application data. 
If simply considering the data layer of a grid system, based on the grid definition and database theory, we 
can abstract several criteria of grid data management. First, any grid data access should be made 
transparently. Transparence refers to the data location and the form it is accessed. If multiple copies of 
the same data exist in the grid, coherence would be the second quality that the data management layer 
should provide, by guaranteeing that a certain well known coherence protocol, for all executions. As data 
must be available beyond application execution time frame, persistence ensures that data is safely and 
securely available on a contracted time frame. Last but not least, the data management layer should 
ensure a certain degree of performance while operating on distributed data sets. Next, we briefly highlight 
some of the existing solutions for grid shared data handling. 

The Globus middleware defines a data management concept based the notion of data catalogs. 
Globus implements a set of protocols and utilities for data transfers and services for meta-data 
management. Globus toolkit provides a reference implementation for the standardized transfer protocol 
adapted for data transfers on the grid called GridFTP [79]. GridFTP is based on the FTP protocol and 
optimized for wide scale transfers, security and multiple parallel data streams. It supports stripped and 
parallel data channels, partial files, independent and automatic TCP buffering and progress monitoring. 
On top of GridFTP protocol, several other data management services have been built. These include 
Reliable Transfer Protocol (RFT) and Distributed Replication Service (DRS). RFT address the problem of 
reliable file transfer based on check-pointing information in a database and recovery mechanisms. 
Basically a reliable transfer is started and automatically carried on by the system. In case of a failure the 
transfer is automatically restarted and carried on to its completion. The transfer status could be checked 
either by subscribing to a notification or by polling. Replicated file management is provided by the Replica 
Location Service (RLS) which is simply a registry where logical associations are made between logical file 
names and physical files. Services like DRS make use of this information to replicate files among different 
locations. Considering the criteria of the grid data management layer, one can notice that Globus fulfills 
only the persistence and performance criteria. Other important characteristics such as transparence and 
coherence must be explicitly programmed at the application level. More, it seems that the only support 
that Globus provides is simply file oriented leaving a big gap to in-memory data sharing applications. As a 
consequence, we conclude that Globus does not provide support to progr am and build efficient 
large scale data sharing applications. Most grid applications that are running on Globus rely on 
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external message passing concepts. Thus, in the grid landscape, there are very few solutions for large 
scale data sharing models. 

The LOTS system [80] is a distributed shared memory solution designed for large object spaces 
implemented in C++. Its primary goal was to be able to accommodate a large collection of objects and 
supply a huge distributed storage. The core feature is the ability to dynamically map objects from the 
virtual memory to local disks, being the first distributed shared memory system to supply a storage space 
independent of the total memory process space, but limited to the local disk storage. LOTS uses a 
mixture of write-invalidate and write-update protocols to handle barrier and data synchronization. 
Although it uses a relaxed consistency model, namely scope consistency, LOTS seems to be only 
suitable for cluster computing and fast interconnected machines. As all tests were conducted in cluster 
environments, there is no evidence of its suitability for large scale grid computing.  

Another solution for grid shared data programming that came to our knowledge is SMG [81], 
which stands for Shared Memory for Grids. Although the name is pretty self explaining, it appears that 
SMG exists only as a prototypical idea. More, as SMG implementation is designed to be based on 
message passing libraries, more specifically on MPICH distribution, it is clear that it bears the 
characteristics and limitations of MPI and thus is unlikely to be suitable for large scale grid systems. Even 
its authors made a note that the MPI implementation makes implementation hard due to its missing 
support for multithreading and all existing MPI multithreaded implementations are not grid enabled. The 
choice for the consistency protocol is entry consistency. Important information on SMG such as detailed 
design, replication policies, mutual exclusion handling and performance measurements are currently 
missing, but from its existing description, we could conclude that it does not represent a viable solution for 
grid shared data programming. 

Teamster-G [82] is one of the few recent software distributed shared memory systems designed 
for the grid. Although is intended for the grid, Teamster-G is implemented directly on top of the Linux 
operating system and is integrated into the Globus system. At run-time, it constructs a virtual dedicated 
cluster based on the data sharing requirements and does not rely on resource reservations like in the 
Globus approach. Same as in case of the previous solutions, there is little information on the concrete 
design and performance measurements. Nevertheless, it is documented that Teamster-G relies on 
discovery mechanisms provided by Globus such as indexing services and implements its own shared 
data layer based on a proprietary operating system. There is no information available on shared data 
replication handling as well as algorithms for mutual exclusion handling across grids. 

One of the very latest and most complete solutions for grid shared data programming is JUXMEM 
[83]. JUXMEM supplies a non-structured, low level shared address space based on peer-to-peer 
concepts and uses JXTA [54] peer-to-peer middleware implementation. As no shared data structures are 
provided, the user is in charge of mapping the flat memory storage to its data types and is in charge of 
this explicit conversion whenever data is accessed. Same as the other approaches, it relies on a relaxed 
memory consistency model. One of the drawbacks of this approach is the fixed replication scheme that 
bounds data replicas at creation or fault time and which does not consider the system dynamics such as 
data usage patterns. A second drawback that is also mentioned by its authors refers to the peer-to-peer 
middleware solution, JXTA which turned out not to be very efficient for grid systems. Although its authors 
have tailored some of JXTA’s protocols, there is much room for performance improvements. Last but not 
least, even if a large set of tests have been conducted on French grids, most of the tests were executed 
over fast interconnections. There is very little evidence on JUXMEM’s behavior in large scale 
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environments. We believe that due to the direct peer-to-peer middleware dependencies, it is unlikely that 
such a system would exhibit a very good performance over large latency connections. 

Last but not least, Dedisys [84] is an interesting research project in the distributed systems 
domain that aims to construct dependable distributed computing systems. Closely related to distributed 
shared data programming problem, the project aims to improve availability of both service and data 
centric components (data sharing and services). It uses replication as a basic mean to achieve availability 
for the data centric part and resource redundancy for the service centric part. Dedisys takes a very 
different approach to most other similar projects and makes use of replication protocols in order to allow 
non-critical operations in system degraded situations when network partitions are formed. In those cases 
non-conflicting operations can be executed in all partitions even if replicas might diverge and integrity 
constrains are violated. Dedisys proposes a reconciliation protocol based on user supplied policies that 
are used in order to re-establish replica and constraint consistency after nodes rejoin and network 
partitions are unified. The system is basically working in three distinct modes: the normal mode where no 
faults occur, degraded mode when network partitions occur and reconciliation mode where partitions are 
unified. System-wide consistency can only be re-established if all nodes are reachable. If not all the 
nodes are reachable after reconciliation, constraint consistency is re-established within the new partition 
or constraint consistency is discarded and only replica consistency is re-established. Dedisys goes more 
in the direction of constraint consistency than on data consistency. The consistency constraints as well as 
the reconciliation part need to be specified by the programmer and implemented programmatically and 
are checked by the system on method execution granularity. Thus, the system is focusing more on the 
system state rather than on distributed data state. It is not clear to what extent the constraint consistency 
specification increases the application code complexity. Last but not least, it appears that the major focus 
is on availability, fault tolerance at the system level rather than on the performance of the distributed 
shared data mechanisms. Similar to previously mentioned projects, there is no clear analysis on the 
system behavior in the context of wide scale, large latency systems.  

We have pointed out that there are few shared memory systems designed for the grid. Many of 
these systems were tested in particular environments that represent ideal scenarios of fast connected 
machines most of the times being grouped as high performance clusters. These testing scenarios are 
pretty far from the ultimate evolution point of tomorrow’s grid. Thus, we aim to investigate the problem of 
distributed shared memory for grid systems and aim to provide a system specification that addresses the 
following main points we found missing in most of the existing solutions: 

• Large scale system over large latency connections – we address a true grid that is 
large scaled and where large latency connections are dominant between machines 
located at large distances 

• Relaxed consistency and type coherence – we address relaxed consistency models 
together with type consistency as we expect that relaxed consistency does not carry 
sufficient information on data usage 

• Object oriented architecture – we address an object oriented architecture as the most 
promising interface towards the grid application programmer 

• Quantifiable system validation – addresses both prototype based evaluation, as well 
as theoretical or through formal methods as a proof of concept for the system model 
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2 Distributed Shared Memory 
 

Distributed environments cannot be constructed unless their components are able to 
communicate to each other. One approach for communication handling is message passing, which 
involves sending and receiving explicit messages from one entity to another. Message format has to be 
agreed by both sender and receiver and each entity has to know an identifier or the “address” of its 
counterpart. Another approach was introduced by the concept of distributed shared memory  (DSM), 
which abstracts data sharing between loosely coupled processes running on computers that do not share 
physical memory. The processes see the DSM as a single address space, which in reality is built by 
smaller distributed private memories belonging to each component of the system. Thus, DSM exists only 
virtually. 

 One of the main issues in designing and implementing DSM systems is to ensure good 
performance for their applications. Nowadays, distributed systems are typically widely distributed and 
have a large number of machines. Any access to a piece of data abstracted by a DSM might trigger a 
large communication overhead due to data movement and synchronization over large latency 
connections. One widespread approach to compensate large latencies is caching, by replicating data 
across the networked entities and keeping their values consistent to a well known protocol. Thus, the 
local memory of some or all nodes has copies of the data shared by the DSM. When data is supposed to 
be retrieved by a process, it is first looked-up in the local cache and, if not found or not valid anymore, the 
corresponding data is fetched from one of the remote cached copies. 

 One of the first implementation of DSM was the Apollo domain file system [85] which allowed 
processes to map files into their address space. Since then, a lot of research has been done in this 
domain leading to several approaches in designing and implementing DSM systems. More than twenty 
years ago, new directions have been suggested in distributed computing [86]. These were directed to 
increase the number of deployed, real-life DSM systems, free and open source DSM, highly integrated 
DSM environments, better tools and better performance. Many of the topics highlighted two decades ago 
are still being on the research table today. This proves that advances in distributed computing do not fully 
suit users and applications needs and further improvements are necessary. 

2.1 Design and Implementation Issues 

Distributed shared memory implementations have been mainly done in software. There are only a 
few hardware solutions that have been developed in the context of shared multiprocessor architectures 
based on Non Uniform Memory Architectures (NUMA) architecture like the Dash [87] and PLUS systems 
[88]. Generally speaking, NUMA architectures are those that exhibit different access costs to the 
distributed data.  Dash and PLUS systems consisted of processors grouped in several boards, each of 
them seeing a single address space containing the memory of all the other boards. The strategy of the 
first software DSM systems such as Ivy [89], Munin [90], Clouds [91] and Mirage [92] was to map the 
distributed shared memory into a special address range of their virtual address space. The same address 
range was used in all the machines which led to a uniform system. These systems are called paged-
based DSM and they were providing services at the operating system level. First system that pioneered 
the era of the middleware based DSM was Orca [93], followed by Linda [66], JavaSpaces [67] and 
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TSpaces [68]. They introduced a middleware layer on top of the operating system, totally hardware and 
network independent that provided data sharing means among loosely coupled processes. 

 Both paged-based and middleware DSM systems can run programs designed for shared 
memories on architectures that do not have such kind of physical memory. In the first case the kernel of 
the operating system is responsible to trigger the proper page faults and retrieve the faulting data. This 
architecture does not make any assumptions on how the data is organized into the memory space. 
However, the middleware solution makes clear assumptions on the structure of the data being handled 
into the distributed shared memory. Thus, it enforces to build higher level abstractions as building blocks 
of the contained data. 

 In a DSM system, data is shared by registering it to the virtual address space. As potentially 
many machines are accessing the same data, it is more efficient to have copies of the data located in the 
neighborhood of the machines that are making the request. This approach is trying to hide potentially high 
network latencies for data access. Having several copies of the same data distributed into the system 
leads to the problem of locating data efficiently, maintaining the correct system view on the data and 
managing consistency between the copies. This implies that a synchronization protocol must exist to 
keep the whole system consistent according to its specification. 

 Designing and implementing DSM systems is a complex and challenging process. These 
systems raise a series of issues such as data location and replication between machines, data update 
protocols (coherence), data granularity and the structure of the shared memory space, replication 
strategies of shared data, trashing, heterogeneity and the consistency model provided to their clients. The 
above mentioned aspects are discussed in the following sections. 

2.1.1 Structure and Sharing Granularity 

A DSM system can be thought of a large scale replicated collection of data abstracted globally, 
that distributed processes are creating, updating and consuming constantly. The structure of a DSM 
system can be divided into the following categories, depending on how their internal data is structured [2]. 

Byte oriented DSM systems are accessed as regular memory via unstructured read and write 
primitives that are operating on a memory location. Such systems are data representation independent 
and typically supported by the kernel of the distributed operating system. One of such systems is Ivy [89]. 

Structured and object-oriented DSM systems provide a data or object oriented view and operate 
at the structured data or object level. Their content can be changed only by manipulating these 
abstractions. Structured data was introduced in the Munin [90] system and object oriented approach was 
introduced by Orca [93] and Clouds [91]. The structure of the DSM can be defined and managed either at 
the distributed operating system level or at the middleware level. 

Immutable-data DSM systems provide a collection of read-only objects that can be changed only 
by pulling them out of the DSM domain and pushing the updated data back. This approach is typically 
implemented by a middleware layer of the DSM such as Linda [66], JavaSpaces [67], TSpaces [68]. 
Locating the data in the space is done by associative lookup means following the tupple concept 
introduced by Linda. Interestingly, programming immutable-data abstractions require a programming 
mind shift, which according to its initiators could support any computational model [69]. 
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Independent on the data structure, one common problem is defining the size of the shared data 
unit. This becomes more important in the context of wide data replication where any operation can 
potentially transport a significant amount of data and thus lead to severe performance penalties. In case 
of paged based systems, the exchange unit is the page size. Research has shown for page based 
systems that keeping page size smaller than a regular 4Kb page size does not necessarily improve the 
performance [89]. It is clear that a large data update would benefit from a larger page size, but updating a 
single bit in one page requires sending the entire content of that page to be updated at the other 
machines. In practice it is common that a shared page size is determined based on the physical pages 
defined in the operating system. Systems like Munin [90] allow updating parts of their pages and avoiding 
copying the entire page. Having larger data sharing units or pages increases the chances of false sharing 
and trashing. These issues are discussed in the next section. 

2.1.2 Coherence Protocols 

As data is replicated and multiple copies of the same data exist in a DSM system, there is the 
need for a synchronization and notification protocol to keep the data consistent between machines. Two 
major approaches have been imposed on propagating updates: write-update and write-invalidate. 

The write-update protocol consists of sending multicast update messages to other replicas which 
are supposed to update their data. This protocol ensures that each replica data holder has the most 
recent data available and read operations can precede locally without any delay. The algorithm relays on 
the ordering of the update events. Depending on the delivery order of the multicast messages, different 
behaviors can be expected from the system. One of the problems is that the multicast protocols are 
expensive to implement in software [2] and reliable systems use hardware solutions like the Amoeba 
multicast protocol [94]. In case of page based DSMs this protocol is practical to be implemented only if 
the writes can be buffered. An improvement of the write-update protocol, although the idea is the same, 
was applied in the Munin [90] system and consisted in passing updates incrementally so that not the 
entire page was updated, but only the part that had been changed. Such a case favors multiple writer 
protocols where each writer is operating on independent pieces of data. 

The write-invalidate protocol implies that when data is written by a process, all the copies are 
sent an invalidate message. Any process trying to read data that has been invalidated, has to retrieve the 
latest data from the DSM. Data that is not invalid can be read without any delay. Due to this fact, read-
only data can be very easy replicated across the system. One problem of the write-invalidate protocol is 
due to trashing. This happens if one process is repeatedly writing data while another is reading the same 
data content. This producer-consumer pattern leads to frequent page copying from one process to 
another. In such a case the write-update protocol would be more efficient. Such a situation can be found 
in the Munin [90] systems, where data is proactively sent to the consumer when it is altered by the client, 
before the consumer requests it. It can be considered that an application might take advantage of one 
protocol for some data and the other protocol for some other data. Choosing the coherence protocols has 
been enforced at both system and application level. Trashing could be avoided at the application level, by 
properly organizing shared data and minimize copying penalties. Some systems like Munin [90] provide 
special constructs that allow passing additional information to the system in order to improve 
performance. Trashing could be also caused by false sharing. False sharing occurs when two or more 
shared variables are located in the same shared unit and are accessed by different processors. Although 
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there are not related, the whole page has to be synchronized to both processes as if they are accessing 
the same variable. 

Write-invalidate has been implemented by designating an owner for each shared unit such as a 
page and maintaining a copy set of machines that have copies of the replicated data. When a process 
attempts to read or write a page for which it has no access permissions, the page is copied from its 
owner. If the requestor is a writer it becomes the owner of the page and the copy set is invalidated. The 
copy set is replaced by the new owner. This algorithm is known as the shrewd algorithm and was 
presented by Kessler and Livny in 1989 [95].  

The above algorithm does not handle the problem of locating the owner of a page and 
maintaining the copy set for each page. Several algorithms have been devised to handle the copy set for 
a page. First approach is to use a centralized manager that stores all the copy sets and owners of all 
pages. Each process has to query the central manager in order to get the owner and copy set. The 
second approach, that alleviates the bottleneck of the central design, involves having multiple managers 
allocated for a given virtual address range. Based on the location that is supposed to be accessed, one of 
the managers is used as in the previous situation. A more advanced approached is the dynamic 
distributed manager. In this case the owner of a page is located by following a linked list of hints that are 
constructed as probable owners of the page. It is ensured that for n machines there are at most n-1 read 
operations from the hint chain to retrieve the correct owner [89]. 

2.1.3 Replication Algorithms 

Replication is the process of maintaining the same entity content at different locations, providing 
thus a higher availability on data requests. Transferring and copying data from one machine to another 
happens according to a protocol that is well known by all machines. Basically, a sharing unit (e.g. page) 
can be moved from one machine to another or could be replicated, leading to more copies in the system. 
Depending on these options, four possibilities appear [96]. Migration and replication is implemented either 
using operation transfer or state transfer procedures [97]. The transfer operations could be classified as 
synchronous and asynchronous for distributed systems which correspond to eager and lazy in the 
database community [98]. 

Non-replicated, non-migrating blocks strategy represents the simplest and less efficient 
approach. Any system that keeps the blocks locally is sequentially consistent because at any time there is 
a single copy of the data in the entire system. All accesses have to be serialized to the page owner which 
creates a bottleneck and leads to no parallelism potential. Locating such block is very simple as a direct 
mapping function could be statically created. 

Non-replicated, migrating blocks strategy implies that there is a single copy of the block in the 
entire system which can eventually move from one location to another. Having one single copy in the 
system, sequential consistency is achieved in this case too. Application might take advantage of this 
model to exploit a better locality for the shared data blocks. Still, the method does not support any degree 
of parallelism and it suffers from the trashing problem as data blocks move from one node to another. 
Locating the owner of the page can be implemented by either broadcasting or making use of a centralized 
or distributed server algorithm. As broadcasting does not scale well especially for wide area distributed 
systems and the centralized algorithm represents an obvious bottleneck, the only viable approach for 
locating the owner is the dynamic distributed-server algorithm. 
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Replicated, migrating blocks approach relaxes the replication constraint and alleviates the 
problem of lacking parallelism by allowing multiple copies of the data at the same time. This is a common 
approach for most DSM systems. Based on this general approach several layers of replication domains 
could be constructed, depending of the architecture of the system. Data changes are handled via the 
write-update or write-invalidate protocols. Locating the owner of a page can be implemented by 
broadcasting, fixed or dynamic distributed-server algorithm. 

Replicated, non-migrating blocks refers to a system which allows multiple copies of the data, but 
their location never changes. This model can provide sequential consistencies if, for example all write 
operations are sequenced by a global sequencer.  

All DSM systems that have replicated and migrated data have the problem to replace eventual 
pages if the local memory usage reaches an upper limit. This is a common problem in all caching 
systems. DSM systems apply basically two techniques: usage based and space based [96]. Usage based 
approaches measure the frequency pages are used. They apply replacement algorithms such as LRU 
(least recently used), FIFO (First-In-First-Out) or randomly. Space based replacement involve replacing 
data based on its location and not its usage pattern. The later approach is not found too often in DSM 
systems. 

2.1.4 Replication Decisions 

Some of the fundamental questions related to replication decisions are when, what and where to 
replicate. Some systems are taking a fixed static decision, but others (mostly middleware based 
solutions) take dynamic decisions based on system monitoring. The decision to replicate or not to 
replicate can be seen as a system assessment, where the following factors are considered: read/write 
ratio and statistics, communication path latency, response time, bandwidth and shared data/object size. 

In general, replication tries to take advantage of temporal, geographical or spatial locality metrics 
based on the data sharing pattern. Such locality patterns determine when and where to replicate in order 
to improve a set of locality factors. As previously said, replica placement and access pattern identification 
can be evaluated through system observation by monitoring for example the data access response time 
and bandwidth consumption. Besides the replication strategies highlighted in 2.1.3, the location to 
replicate is a factor which can influence the performance of the overall system. For example, a data item 
could be replicated at each endpoint where it is required. Another decision is to replicate it only to the 
client which has the highest request rate, remaining that other clients request the data from that client. 
Other approach would be to replicate the data among the path from the client to the data owner, creating 
thus a chain of replicas. Depending on the type of the running applications, these replication decisions 
could play a decisive role in the overall behavior.  

2.2 Consistency Models 

The consistency model defines the system’s responses to read and write operations on 
distributed shared data. In other words, the consistency model represents a contract between the running 
software and the memory which guarantees that if the software complies with certain rules, the DSM 
behaves as stated in the specification. One example described in [2] illustrates a system that maintains 
information about the CPU load in a distributed environment. As such information is updated quite 
frequently and becomes inaccurate very fast, there is no point to keep an up to date value of the CPU 
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loads. Typically users expect a strong consistency behavior similar to a local system, where each read 
returns the latest value written to that location. An isolated system that violates that expectation is 
immediately suspected as malfunctioning from the memory correctness point of view. However, 
distributed applications are operating on distributed data and do not have an accurate global clock, 
meaning that strict global ordering is not possible. Due to the high latency and low bandwidth, update 
operations from several machines to another might arrive in different order that they have been issued in 
respect to the absolute clock.  

The consistency model has to deliver a clear answer regarding the value read by a process from 
the shared memory space. Basically, it aims to identify the write operation which has written the value 
returned by a given read operation. In other words, it specifies what shall be the returned value of a read 
operation, assuming that a series of write operations have been previously performed on different 
processes. 

A hypothetical distributed system which provides absolute time synchronization could exhibit the 
strongest consistency model called atomic consistency or strict consistency [2]. Such system is said to be 
strict consistent if the value of any read operation returns the value written by the most recent write. As in 
real life distributed system there is no general agreement of what the most recent value is, such model 
requires the existence of an absolute clock which does not physically exist in distributed systems yet. Due 
to this strict requirement, atomic consistency cannot be provided in practice. To define more precisely the 
atomic consistency, we make use of the notion of linearizability by the following definition: 

Definition 2.1: A replicated shared object is linearizable (and having atomic consistency) if for any 
execution the following conditions are satisfied: 

1. The interleaved sequence of operations meets the specification of a single correct copy of 
objects. 

2. The order of operations in the interleaving is consistent with the real times at which the 
operations occur in the actual execution. 

In practical terms, the definition above translates as following: any read to a memory location x, 
R(x), returns the value stored by the most recent write operation to x, W(x). 

2.2.1 Generic Consistency Models 

The strongest consistency model used in distributed systems is the sequential consistency  
which was introduced by Lamport in 1979 [99] and relaxes the ideal atomic consistency model. In such a 
system all processes see the same order of all memory accesses. Lamport’s definition can be rephrased 
as following: 

Definition 2.2: A system is sequentially consistent if for any execution the following conditions are met: 
1. The interleaved sequence of operations is such that if Read(x)a occurs in the sequence, then 

either the last write operation that occurs before it in the interleaved sequence is Write(x)a, or no 
write operation occurs before it and a is the initial value of x. 

2. The order of operations in the interleaving is consistent with the program order in which each 
individual client executed them. 

Sequential consistency can be easily implemented if a global operation ordering could be 
ensured. Having a single entry point to handle all read and write requests would provide a global ordering 
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mechanism, but such solution is quite inefficient and exposes the single point of failure. It is enough to 
ensure that no memory operation is started until all previous memory operations have completed. 

The causal consistency  [100] relaxes the previous model more by specifying that all processes 
see only those memory operations in the same order that are causally related. Any other types of 
accesses can be seen in any order. They define the causally related variables as the variables that 
influence their values in any way. A typical example is computing a variable by the value of another one. 
Implementing such a model requires constructing and dynamically maintaining a memory dependency 
graph. Based on [100], we adopt the following definition for a causal consistent system: 

Definition 2.3: A system is causally consistent, if writes that are potentially related must be seen by all 
processors in the same order. Concurrent writes may be seen in a different order on different machines. 

Lipton and Sandberg proposed the pipelined random-access memory consistency (PRAM)  
[101] in 1988. This model relaxes the previous constraints by allowing the write operations of one process 
to be seen by the others in the same order as they are issued. All the write operations issued by the other 
processes are seen in different orders. One of the biggest implications is that processes do not agree 
anymore on the operation ordering as in sequential consistency. Lipton’s model can be defined as 
following: 

Definition 2.4: A system is PRAM consistent, if writes done by a single process are received by all other 
processes in the order in which they were issued, but writes from different processes may be seen in a 
different order by different processes. 

A further extension was proposed by Goodman in 1989 [102] as the processor consistency  
model. Processor consistency basically states that processes see the same write operation ordering for 
the same location they are operating on. 

2.2.2 Synchronized Consistency Models 

Synchronized consistency models are based on the observation that distributed applications don’t 
need to see all the changes done by other processes, but only in some isolated points they require a 
consistent view of a part of the distributed memory space. This observation implies that better 
performance can be achieved if memory accesses are organized in groups. These classes of weaker 
consistency models relax the constraints further and obey the semantics of stronger consistency models 
such as sequential consistency in some particular conditions. These models make use of synchronization 
operations which give information to the system whether to propagate or not data and to allow or forbid 
other processes to access the protected data. Sections outside of the synchronization area are left 
inconsistent, assuming that the application does not rely on the accuracy of the data in those execution 
contexts. Dubois et al. proposed in 1988 the weak consistency  model [103]. This model introduces the 
concept of synchronization variables. These variables are used to mark code blocks of memory 
synchronization. We can define a weakly consistent system as following: 

Definition 2.5:  A system is said be weak consistent if the following conditions are met: 
1. All accesses to synchronization variables are sequential consistent. 
2. All previous write operations must be completed everywhere before an access to a 

synchronization variable is allowed. 
3. All previous accesses to synchronization variables must be completed before access to a non 

synchronized variable is allowed. 
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All the previous models imply that the entire DSM content is synchronized at the stage where a 
synchronization point occurs. At that point, all individual changes made by one processing node are sent 
to other nodes and all changes made by all other nodes are sent to the node which is about to 
synchronize. The idea to separate the above two operations led Gharachorloo to propose the release 
consistency  model in 1990 [104]. The release consistency makes clear distinction between entering and 
leaving a critical section, by defining acquire and release synchronization variables. Release consistency 
might also be realized using the barrier concept. A barrier is a synchronization point that blocks all 
process execution until all the processes arrive at the same execution point. Acquire could be considered 
as the barrier arrival and release as the barrier exit point. Going back to the idea of release consistency, 
propagating the changes made by one process to other nodes need to occur when the process leaves a 
critical section. Changes made by other processes have to be propagated at the time the critical section 
is entered. Based on Gharachorloo’s proposal, the following definition applies: 

Definition 2.6:   A system is said to be release consistent if the following conditions are satisfied: 
1. All accesses to acquire and release synchronization variables obey processor consistency 

semantics. 
2. All previous acquires performed by a process must be completed successfully before the process 

is allowed to perform a data access operation on the memory. 
3. All previous data access operations performed by a process must be completed successfully 

before a release access done by the process is allowed.  

Gharachorloo proved that properly labeled release consistency programs could achieve 
sequential consistency. Thus, it is the application’s responsibility to properly organize its memory 
accesses depending on the consistency level to be achieved. The release consistency model has been 
further improved by Keleher in 1992, leading to the lazy release consistency  model [105]. The novelty of 
this model is that it delays updating the changed variables from a critical section until some process is 
requesting the data. In release consistency, during the release operation all the modified variables are 
sent to all other processes, whereas in lazy consistency, these are sent on demand, when a process 
acquires access to synchronization variables. It has been proved that this approach generates less traffic 
on the communication system and offers better performance.  

A more relaxed consistency model, proposed in 1993 by Bershad, is the entry consistency  
model [106]. This model links every shared variable to a synchronization object, thus when a process 
acquires a lock it is guaranteed to get the latest value of the variables bound to it. Write handling is done 
by defining a write lock, allowing that only that particular process could write the variable during the 
critical section. The model is defined as following: 

Definition 2.7: A system is said to exhibit entry consistency if the following conditions are met: 
1. An acquire operation of a synchronization variable is not allowed to perform with respect to a 

process until all updates to the guarded shared data have been performed with respect to that 
process. 

2. Before an exclusive mode access to a synchronized variable by a process is allowed to perform 
with respect to that process, no other process may hold the synchronization variable, not even in 
nonexclusive mode. 

3. After an exclusive mode access to a synchronization variable has been performed, any other 
process’ next nonexclusive mode access to that synchronization variable may not be performed 
until it has performed with respect to that variable’s owner. 
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All the above relaxed approaches put some burden on the programmer to define the correct 
synchronization variables and critical sections. The scope consistency  model [107] is an attempt to 
automate the association between shared variables and synchronization objects. The core idea is to use 
the variable local scope in order to make automatic associations between shared variables and 
synchronization objects. Although the association is implicit, the programmer has to manage the proper 
scope by organizing variables in nested constructs.  

Several other researchers have followed this direction, addressing particular aspects of these 
models, but no major improvements have been made. One of the latest novelties in consistency models 
is view consistency [108] which defines disjoint views on the DSM space. Views are accessed using 
acquire and release calls, pretty similar to the entry consistency model. Similar to the entry consistency 
model, there is a data-synchronization variable association, but in case of the view consistency, it 
happens when the view is created. Although the authors of view consistency claim that the model focuses 
on the data and operates on the data view without locking the data explicitly, one cannot think only in 
terms of views without taking into account which kind of data the view consists of. Thus, a certain 
connection between the abstract view and the data is always present in the programmer’s mind. The 
implication of this observation is that view consistency exposes another interface of the entry consistency 
model with a main difference in shared data creation and protection (acquire/release operations). 

2.3 A Programmer’s View 

Similar to message passing constructs, DSM provides another kind of abstraction layer that 
exposes other interfaces and concepts to programmers. At the lowest architectural layer, a DSM system 
has to send and receive messages in order to communicate to other processes. One major issue in 
message passing is that message passing can happen only if all the communication peers are active at 
the same time. The message passing model involves marshaling and un-marshaling data at each 
process end-point. Besides marshaling, message passing requires that data is packed and unpacked in 
messages at each end-point. On the other side, in DSM systems, shared variables do not need to be 
marshaled, except for different architectures. Thus, DSM systems tend to be more homogeneous than 
their counterpart. DSM programming seems to shield more the programmer from the underlying 
messaging architecture, providing thus the ability to handle higher level abstractions [96]. 

Different abstractions have different impacts on programmers. While message passing makes 
programmers aware of the potential cost of a message passing call, DSM calls are most of the time 
transparent. Depending on the implementation, proper additional constructs have to be used in the 
source code to indicate special handling of DSM data. If this small but effective information detail is 
overlooked, significant performance degradation can easily occur. For example, using weaker 
consistency models requires programmers to annotate their source code with special constructs that 
define the consistency protocols for those variables. For example, in the Munin system, a programmer 
can use seven types of variables: read-only, migratory, write-shared, producer-consumer, result, 
reduction and conventional. Depending on these constructs, different synchronization algorithms are 
applied allowing better performance achievements. This means that the consistency model affects 
programmability as it is used by programmers to reason about their programmed interactions. 

Efficiency and security are two characteristics of distributed systems that are enforced in most 
systems. Message passing offers isolated communication between processes as their address spaces 
are distinct. On the other side DSM provides a shared environment where data partitioning and access 
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regulation have to be enforced additionally, otherwise any process can read any piece of shared 
information. In case of message passing systems, security can be handled only distributed, to each entity 
taking part of the communication flow. On the other side, due to DSM system’s shared environment, 
security can be handled in a single place, namely the data access component, which is independent of 
the number of shared data clients. 

Efficiency has been addressed for a long time in DSM. Experiments in small scale systems  
have proved that in many cases these systems can perform close to their message passing equivalents 
on the same hardware [109], [110]. However, there are plenty of applications which exhibit poor 
performance when a DSM implementation is being used. Many factors are influencing their performance, 
most of them being due to the shared data structure, data interaction pattern and application deployment. 
The consistency model plays also a great role, but no general valid comments can be made in this 
direction. One application might have very good performance using one consistency model and poor 
results using another one. Depending on the application type, a consistency model which offers good 
parallelism should provide good overall performance as well. One major challenge of this work is to 
provide good performance for certain distributed applications deployed in large scale shared data 
systems, by making use of relaxed consistency models.  
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3 A Model for Distributed Shared Objects on the Gri d 

3.1 Considerations 

Grid applications are wide area distributed applications that are using the grid infrastructure as an 
execution environment during their life cycle. Some of the grid applications are simply running on the grid 
without any knowledge of the running environment. Such applications are simple or classical applications, 
mostly batch or job based that are taking advantage of distributed and parallel environments. Most of 
these fall in the category of legacy or resource hungry applications. Other applications are more evolved 
and are making use of the grid infrastructure and services, thus they are grid-aware applications. Until 
recently, grid applications have been monolithic, consisting mostly of compute intensive and batch 
aggregated code. Developing grid-aware applications is not an easy task as grid computing differs from 
conventional distributed computing in several aspects. First, there is a different scale factor that is 
continuously changing due to dynamically joining and leaving machines in different clusters. Second, 
grids have a different organization and structure which leads to different administration policies. Third, 
grid applications have different focus, being more performance and throughput oriented than simply 
running a certain code. Last, but not least, we can witness innovative applications every year in this 
domain, that are basically multi-disciplinary applications which aggregate resources from new members 
of virtual organizations. 

In contrast to traditional distributed and parallel computing where computing resources are easily 
identified and most of the times have predefined locations (e.g. clusters), grid systems exhibit by 
definition another scale dimension. One cannot imagine a fixed grid, but rather a distributed system 
where machines are dynamically changing their membership and new machines are joining the 
infrastructure continuously. As an example, research grid systems have been initially located at some 
university centers where different departments have been joined together to create one of the first grids. 
As a next step, universities from different cities have joined the research grid and later on the grid has 
spanned across a continent or even across continents. Such a large scale distribution cannot be 
witnessed in any cluster or traditional distributed system. This kind of wide area distribution leads 
naturally to different administration and security policies. Most of the grid members have their own 
policies that must be preserved when putting their resources for the common use. Fortunately, grid 
systems address the problem of security as a core built-in feature, but it still has to be applied which 
implies an inherent managing and runtime verification overhead. 

Grid systems expose several constraints and special conditions. For better understanding, one 
can think of a grid like a multi-level hierarchical structure that can be modeled as a non directed graph. 
Each node represents a machine or a group of machines. Typically, a group of machines is a cluster or 
LAN where each machine can communicate with another one within the same group with the same 
known and upper bound communication latency. Thus we consider together all machine groups and 
depict them as a single group node as shown in Figure 10. Such hierarchical structure is constantly 
getting deeper (more levels) and wider (more groups) during the evolution of a grid system. A unique 
characteristic is the unpredictable layering as a result of unpredictable joining and leaving groups, plus 
changes in physical communication channels. For example, a certain group is connected over the air 
using wireless LAN or via Bluetooth to different hosts, thus it might appear in different layers at different 
times. Besides the unpredictable layering, another characteristic of the model is the unknown bandwidth 
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and latency of each communication line between two arbitrary groups. To simplify the discussion, we omit 
the failure model and consider that there is an upper bound latency and a lower bound bandwidth. 

 

Figure 10: Grid Layering 

As interactions happen between components from different layers and groups, which are typically 
connected by large latency communication channels, we consider that highly synchronous operations are 
not desirable in these circumstances due to performance issues. Such operations might take place 
locally, inside a group like {D1, D2, D3, D4} for example, but should be limited or simply restricted 
between any components that communicate over a large latency path. If for example, some distributed 
state must be consistently maintained between different high latency layers, such guarantees would be 
difficult to maintain using synchronous communication. In such a structure, typically the identity of 
D1…Dn nodes is known between one another, but not to external nodes like G, H or I. A natural 
consequence of high latencies is bigger communication delays. Two approaches that we are following in 
order to overcome the problem of communication delay from different perspective consists in 
reconstructing the problem and partition into acceptable communication groups with known latencies and 
providing useful programming information so that the run-time system can take advantage of semantic 
information (e.g. meta-information) and apply dynamic optimizations. Both ideas are not new, but to our 
knowledge they have not been applied together on a grid system before. More, the second idea has not 
been applied in the context of grid programming and grid scale distributed shared data. Network 
partitioning is an approach followed by MPI implementations and hierarchical distributed algorithms to 
optimize communication according to the network topology information and providing meta-information is 
a well known approach in many software engineering domains like formal verification and testing.  

Having seen that grid systems exhibit a series of constraints and conditions that are hard to cope 
with, one can ask what the reasons are for programming grid applications. The reasons stem from the 
nature of the application. Applications might need to exploit their distributed and parallel nature, by 
decomposing into smaller entities that are distributed on the grid. Other applications would simply want to 
decrease the processing time, using the grid as an execution vehicle for their huge set of operations. 
Some other reason is the fact that an application cannot be run on the architecture it resides, thus it 
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makes sense to execute it remotely on a grid, that provides the environment (e.g. parallel architecture) 
and necessary components and services to run the application successfully. Last but not least, the 
ultimate reason is to use the grid service oriented architecture at its best, by exploring the connection 
between application components and required grid resources. However, to support an easy grid 
application process, one needs a grid programming model that simplifies application development. Such 
a model should contain at least a high level expressive communication abstraction, flexible data sharing 
abstractions that can be efficiently implemented on the wide scale grid architecture. There is still debate if 
the support should be part of the programming language or at the run-time system.  

3.2 System Model 

Most of the currently available grid programming models rely on traditional or foreign 
programming models that are adopted via a technology porting process. Here we include MPI like 
libraries like MPICH-G2, file based distributed data services based on GridFTP and higher level data 
access services like OGSA-DAI. Services and high level abstractions for programming shared data 
structures on the grid are almost not present on the grid programming model landscape. Thus, our idea 
is to propose a grid service layer for shared data programming whic h provides a distributed 
shared memory system and its corresponding programming model adapted f or the grid . Some of 
the core reasons for considering such a model stem from the drawbacks of message passing solutions 
that put an additional burden on the programmer to decompose the computation handle load balancing 
and explicit communication orchestration and the lack of automatic data layout and optimization support. 

Although many distributed shared systems have been developed in the last two decades, most of 
them are limited on a certain number of nodes and work best in a fast interconnection network. Such 
systems do not qualify for the grid as they do not fulfill the scalability and wide range deployment 
requirements. Blindly applying such model on the grid will most probably fail to provide the expected 
behavior and reasonable performance. Distributed shared data items must be widely shared and the 
problem of managing the consistency of mutable data on wide area systems is raised.  

Some of the previous attempts in designing DSM for the grid have used logical mappings over 
one single large machine group. One concrete example is the JUXMEM [83] approach, where peer-to-
peer groups have been spawned across the grid. Even the authors of JUXMEM recognized that the wide 
distribution of peers in the overlay layer is problematic and current overlay implementations such as JXTA 
[54] have serious performance issues in largely distributed environments. Thus, we argue that another 
split is necessary, which clearly identifies the connection points into the entire grid universe. We see this 
mapping as part of the system deployment, instead of relying on a predefined mapping. 

As suggested in previous sections, in order to address thousands of nodes, we decompose the 
system into a federation of clusters called universes. The logical representation of a universe is 
homogeneous and communication latency in a universe is typically small and bound to a higher known 
margin. The physical entities that form a universe could be heterogeneous (e.g. machines with different 
resources and operating systems). Communication outside the universe, which occurs between 
universes, is unknown, but still it has an upper limit. Following, we give a definition of the universe and its 
building blocks. 
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Definition 3.1:   A Node is a physical stand alone execution environment on a networked machine which 
can both execute an arbitrary number of programs and which can communicate to other known nodes 
through an agreed communication protocol. 

Definition 3.2:   A Universe Node is a logical environment that belongs to a physical node that is able to 
accommodate a number of arbitrary data items where following conditions apply: 

1. Every universe node n has a fixed data storage capacity denoted as C(n). 

2. All accommodated data items are available until the node is alive. 

Definition 3.3:   A Universe is an execution and data storage environment consisting of a collection of 
interconnected nodes and a subset of their universe nodes, where the following rules apply: 

1. For any two nodes within a universe, there is a direct communication link between them.  

2. Every communication link within a universe has a known and constant latency and bandwidth 
which are constant during a certain time interval t. 

Definition 3.4:   A Grid Universe is an execution and data storage environment consisting of a collection 
of several Universes where the following rules apply: 

1. For any two universes, there is at least one connecting communication path between them. 

2. Every direct connecting link between any two universes has known upper and lower bound 
latency and bandwidth which are constant in a given time interval t. 

Definition 3.5:   A Grid Application is a collection of one or more processes and data where the following 
rules apply: 

1. Processes are distributed across a set of nodes  

2. Each universe node is owned exclusively by the application. 

A Universe is a logical collection of machine nodes which provides a hosting environment for 
distributed objects. Nodes are homogeneous and have a data storage capacity in memory and code 
execution capabilities. Each node can hold a certain number of objects so that the sum of all object 
weights held by the node shall not exceed the node’s capacity. All existing universes form together the 
Grid Universe. Each Universe is a continuously evolving entity together with its connections to the other 
universes. A Universe groups together more physical machines which share the same communication 
paths, thus the intercommunication channel in a Universe is homogeneous and has known and constant 
characteristics within a prescribed time frame. Communication between universes is unpredictable, 
unknown and dynamic. As an example of a concrete universe, one can consider a physical cluster or a 
LAN and a grid universe as several interconnected clusters. The universe abstraction is a dedicated 
shared grid data environment that corresponds to one application. If we take for example two different 
applications, each would access its own grid universe without any interaction between the two universes 
at the logical level. Of course, at the physical level, there might be overlaps between them as some nodes 
from one universe might be mapped on same machines from the second universe.  

3.3 Basic Programming Model 

Following previous considerations, we propose a basic programming model, based on the 
concept of distributed shared data, that serves as a starting point for analyzing and defining the complete 
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grid shared data model. The model we propose is object oriented which provides flexible interfaces for 
data encapsulation. An object oriented model is a natural and convenient way to abstract data sharing 
objects and separate the interface from the implementation, supporting the idea of objects residing in 
architectural different run-time systems like nodes in universes. In addition, security policies can be easier 
enforced and integrated to an object than to a flat data structure. The model revolves around the concept 
of the Universe, which has been introduced in the previous section. 

The Grid Universe acts as a container for grid objects and provides means to create, delete and 
locate grid objects based on a unique object identifier. The users do not operate directly on objects, but 
rather on object references. A grid object reference is a handle to a concrete grid object that provides the 
same interface as the object provides. Following, we define both the grid object and the grid object 
reference.  

Definition 3.6:   A Grid Object is an object hosted by the Grid Universe with the following properties: 

1. Each Grid Object has a globally unique and location independent identifier called GID. 

2. Each Grid Object has an explicitly associated and unique identifier called OID. 

3. Each Grid Object can be part of only one Universe at a time. 

4. Each Grid Object o has a weight associated denoted as W(o), which refers to its memory 
space demand. 

The Grid Object has two identifiers associated to. One is the GID which is always associated by 
the system and cannot be given by the object user. The second is the OID which is always given by the 
object creator and is intended to serve as a human friendly identifier. The OID can be used later to lookup 
a certain grid object.  

Definition 3.7:  A Grid Object Reference is a handle to a grid object, that provides the same interface as 
the grid object and which satisfies the following conditions: If Gr1 and Gr2 are references to the same 
object Go, then GID(Gr1 )= GID(Gr2) = GID(Go) and OID(Gr1) = OID(Gr2) = OID(Go). 

The basic Grid Object that we introduced above serves as the basic building block for handling 
data objects on the grid. As the definition does not imply anything about the payload and object’s 
functionality, we define specialized objects based on the grid object definition.  

Definition 3.8:  A specialized grid object is a grid object that extends the interface of the grid object by 
providing additional methods and data.  

Basically, the specialized objects carry data and provide interfaces to execute certain operations 
on the object. The specialization can be seen as either through inheritance following the terms of object 
oriented concepts, when a specialized object extends the basic object through additional methods and 
members. An alternative is to define the state of the object as a generic type and let the object store 
external data. The disadvantage of this approach is that the object state type is fixed and coarse grained 
which provides a non-intrusive view on the object internals. Generally speaking, the objects we 
considered are passive objects. Their specialized methods are invoked within an execution context 
provided by the running environment, thus processes and grid objects are considered orthogonal. 

As presented earlier in this chapter, in order to decrease access time to grid objects from different 
universes, a common technique used in distributed computing is data replication for performance. If some 
conditions are satisfied, a grid object would be replicated to other universes, provided that object state 
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can be transferred from one process to another across a communication path. Following, we introduce 
the notion of replicated grid objects: 

Definition 3.9:   A Grid Object Replica Gr of a grid object Go is a grid object copy of Go, with the same 
interface and data, hosted by the Grid Universe with the following properties: 

1. GID(Gr) != GID(Go) 

2. OID(Gr) = OID(Go) 

 

Figure 11: Grid Object Reference Handling 

As a consequence of the grid object replica definition, in conjunction with the grid object 
reference, if one uses a grid object Go that has two replicas Gr1 and Gr2, then for any two references 
Ref1 and Ref2 pointing to either Go, Gr1 or Gr2, OID(Ref1) = OID(Ref2), but GID(Ref1) != GID(Ref2). In 
other words, a reference points always to the correct object, but the object could be the primordial object 
or any of its replicas, as replicas might exist within the same universe where the original object lives or 
any other universe. There is no guarantee that a reference points always to the primordial object, but it is 
assured that it points to the object with the given identifier (OID). 

 

Figure 12: Grid Universe Abstractions 

The logical relationship between the universe, objects and object references is depicted in Figure 
12. The Grid Universe contains a collection of objects that are living in multiple universes. When an object 
is created, a reference is returned to the user.  Thus, in order to invoke a grid object method, it is 
necessary that the calling process binds the desired object to an object reference. The reference can be 
used to locate any replica of the object designated by the identifier of the reference pointing object. One 
can consider the grid universe as a collection of distributed universes where objects are living. Some 
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object replicas might exist within the same universe or might exist in different universes. If there is no 
synchronization between object states, those replica objects can evolve in parallel. At synchronization 
points the state is synchronized between the object replicas. 

The semantics of GridUniverse’s methods is described next, considering that one defines a 
specialization of a concrete grid object and its reference as MyGridObject and MyGridObjectRef. 

• GridObjectRef GridUniverse::CreateGridObject(GridObject obj)  – creates a concrete grid 
object on the GridUniverse based on the given GridObject obj. In case of success it returns a 
GridObjectRef, otherwise null.  

MyGridObject mgo = new MyGridObject() 

mgo.Initialize() 

...  

MyGridObjectRef mgr = (MyGridObjectRef) GridUnivers e.CreateGridObject(mgo)  

• GridObjectRef GridUniverse::FindGridObject(OID oid)  – returns a grid reference to a grid 
object represented by the provided identifier id. In case there is no grid object with the given 
identifier, or the operation failed, the method returns null. In case of replicated objects, the 
returned reference might point to any replicated object or the primordial object. 

OID oid = GetTheId() // the method retrieves an obj ect id (e.g. via message passing) 

... 

MyGridObjectRef mgr = (MyGridObjectRef) GridUnivers e.FindGridObject(oid) 

if (mgr != null){ 

 ... 

} 

• Boolean GridUniverse::DeleteGridObject(OID oid)  – removes the given grid object from the 
universe, including all its replicas. Returns true on success and false if the given object does not 
exist or the operation failed. 

OID oid = GetTheId() // the method retrieves an obj ect id (e.g. via message passing) 

...  

Boolean ok = GridUniverse.DeleteGridObject(oid) 

In the simple grid model presented above, clients operate on data entities that are always 
referred via the grid object reference. A grid object reference is a handle to the storage locations of the 
grid shared data. Such references can be passed between processes via standard communication 
mechanisms or embedded into a grid object as transport data.  

3.4 Motivating Scenarios 

Different grid applications have different data sharing requirements and patterns. In this section 
we present several grid application scenarios, where distributed shared data is used in different ways. 
Based on the use cases we aim to define a grid shared data programming model and the consistency 
model designed for the grid shared data service layer.  
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To illustrate some scenarios, we consider that the Grid Universe provides synchronization 
mechanism by making use of synchronization variables following the critical region concept, in the 
following manner: 

• Acquire(GridObjectRef) – synchronizes all grid objects that are pointed by the ref grid 
object reference and enters a critical region where one can operate exclusively on a 
reference 

• Release(GridObjectRef) – marks the end of the critical section and releases the 
reference from being exclusively owned by the current owner 

3.4.1 Distributed Order Placement 

Problem : Order systems consist of a collection of products and orders grouped in an order catalog. 
Products are continuously added by warehouses and delivered to the customers according to the orders 
they made. Each order contains several products. Customers create orders by selecting one or more 
products and adding them to the order. At a given point in time a product’s state such as the price is 
updated by the company. This should be reflected in each submitted order that contain the given product, 
but shall not propagate to already sent orders. Similarly, a product could be removed from the market. 
This fact should be also reflected in the each pending order. 

Challenge : The system must guarantee the correct consistency as specified in the system model. 

Approach : Orders and products are modeled by Order and Product abstractions represented by objects. 
A catalog contains all the orders placed into the distributed system. An order object aggregates several 
products. When processing the order, product information is synchronized and it is verified that the 
product is valid by checking if the corresponding product reference is valid. 

Pseudo-code: 

Process1:  

 OrderRef order = GridUniverse.CreateGridObject(new  Order(“100”)) 

 GridUniverse.Acquire(order) 

 ProductRef p1 = GridUniverse.FindGridObject(OID(“P roduct1”)) 

 order.addProduct(p1) 

 ProductRef p2 = GridUniverse.FindGridObject(OID(“P roduct2”)) 

   order.addProduct(p2) 

 ProductRef p3 = GridUniverse.FindGridObject(OID(“P roduct3”)) 

 order.addProduct(p3) 

 GridUniverse.Release(order) 

 

Process2:  

 OrderRef order = GridUniverse. FindGridObject (OID (“100”)) // get order 100 

 // No other process changes the order 

 GridUniverse.Acquire(order) 

   For each productRef in order 

   GridUniverse.Acquire(productRef) 

   //... Process product -> Updated product data va lues 
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   GridUniverse.Release(productRef)  

 Endfor 

 GridUniverse.Release(order) 

3.4.2 Command and Control 

Problem : Given a network of sensors, each sensor is able to execute specific commands and return 
results. The sensors are distributed on a wide scale in a grid. There is a corresponding process running 
for each sensor which knows the communication protocol with its assigned sensor. A sensor process 
reads through a global reference the commands and puts the result back to a location referenced by 
another global reference. Each sensor is able to process only one command at a given time. The global 
references for both commands and results are globally known. Clients want to get data out of the 
sensors. The client machine would write the necessary commands for each of the sensors interested in. 
The results are collected and assembled by the client process. The client must make sure all the 
processes are free and no processing is taking place (no command is present in the referenced 
command data). 

Challenge : The system must provide means to lock on multiple resources and avoid deadlock situations. 

Approach : We make the following considerations: 

 S1,…Sn – sensors 1..n 

 RefCi – a shared reference for the sensor i where the command has to be written 

 RefRi – a shared reference for the sensor i where the result of the command is written 

Pseudo-code: 

Client Process1  – interested in sensors 1 and 2 

Wait until RefC1 is empty, RefC2 is empty 

GridUniverse.Acquire(RefC1) 

GridUniverse.Acquire(RefC2) 

// write command for sensor 1 

WriteCommand(RefC1) 

// write command for sensor 2 

WriteCommand(RefC2) 

// release references 

GridUniverse.Release(RefC2) 

GridUniverse.Release(RefC1) 

 

Client Process 2  – interested in sensors 1 and 3 

Wait until RefC1 is empty, RefC3 is empty 

GridUniverse.Acquire(RefC1) 

GridUniverse.Acquire(RefC3) 

// write command for sensor 1 

WriteCommand(RefC1) 

// write command for sensor 3 

WriteCommand(RefC3) 
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// release references 

GridUniverse.Release(RefC3) 

GridUniverse.Release(RefC1) 

 

Sensor process i  

While (true) 

 Wait until RefCi is not empty 

 GridUniverse.Acquire(RefCi) 

 // read command 

 Command = ReadCommand(RefCi) 

 // process command via the sensor communication pr otocol 

 Result = ProcessCommand(Comand) 

 // release sensor data 

 GridUniverse.Release(RefCi) 

 // Write result 

 GridUniverse.Acquire(RefRi) 

 RefRi.SetData(Result)  

 GridUniverse.Release(RefRi) 

End While 

3.4.3 Environmental Data Repository 

Problem: A data set (contained in a database for example) is distributed over the grid as distributed 
shared data. The data represents environmental information like temperature, wind conditions, humidity 
etc. Grid nodes perform operations on the grid data and supply results. Operations are normally triggered 
by grid clients. Requests are serialized into a queue. One operation might imply reading multiple data 
(e.g. to determine a specific condition one must take into account condition from location A and B). This 
means that environment conditions A might be required in parallel by different processing grid nodes. 
New information appears from time to time that needs to be updated. If no environmental data updates 
occur, the reading speed shall not be affected. 

Challenge : If there are no changes in the environmental data, parallel processes must not unnecessarily 
be blocked. 

Approach :  We consider are two types of locks: reading locks, that allow parallel read accesses and 
writing locks. If a write lock is enabled all reading locks are blocked. Multiple read locks have no blocking 
effect without a write lock. 

Pseudo-code: 

Client Process:  

 CommandRef = GridUniverse.CreateGridObject(command ) 

 QueueRef = GridUniverse.FindGridObject(“CommandQue ue”) 

 GridUniverse.Acquire(QueueRef) 

   QueueRef.addCommand(CommandRef) 

 GridUniverse.Release(QueueRef) 
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Processing process:  

 // get first command from the queue  

   QueueRef = GridUniverse.FindGridObject(OID(“Comm andQueue”)) 

 GridUniverse.Acquire(QueueRef) 

   CommandRef = QueueRef.First 

 CommandData = CommandRef.GetData 

 GridUniverse.DeleteGridObject(CommandRef) 

   GridUniverse.Release(QueueRef) 

 

 // process command 

 For each EnvDataRef in CommandData 

  GridUniverse.AcquireRead(EnvDataRef) // read lock  

  // Process data   

  GridUniverse.Release(EnvDataRef) 

 End For 

  

Environment Data Sync process:  

// request write access to the environmental data s torage i 

EnvDataRef = GridUniverse.FindGridObject(“Environme ntDataI”) 

GridUniverse.AcquireWrite(EnvDataRef) // write lock  

// update data   

GridUniverse.Release(EnvDataRef) 

3.4.4 Parallel Genetic Algorithm 

Problem: Optimization problems with multiple contradictory constraints for which there is no known 
deterministic algorithm are suitable for a genetic approach. Speedup could be achieved by applying a 
parallel version of the sequential genetic algorithm. 

Challenge : Some processes are working on shared data (disjoint populations) that are not supposed to 
be used by other processes at the same time. During some phases references are accessed only from 
the same process. Later on, data can be exchanged between processes and the cycle continues. 

Approach: Following the classical genetic algorithm approach, a given number of random possible 
solutions are generated. Solutions are grouped into populations. Each population evolves independently 
and from time to time solutions migrate from one population to another in a random fashion. After a given 
number of steps the best solution is retrieved.  

The following notations apply: 

Pj – Population j 

Si(Pj) – Solution i in population j 

RefS(Si, Pj) – a reference to solution i, in population j 

N – the size of a population (constant) 

M – total number of populations 
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Initially one process generates Si(Pj) where i=0, n-1 and j=0, m. Thus the total number of 
solutions is n*m which evolve on m populations hosted on m processing units. 

Pseudo-code: 

Worker Process:  

// a worker processes a population 

For(i=0, i < totalsteps) 

 // apply evolution within the population 

 For (int k=0; k < random(N / 20,  N/ 10) 

     // get 2 random population members 

       RefS1(Si, P) = GetRandomReference(CurrentPop ulation) 

     RefS2(Sj, P) = GetRandomReference(CurrentPopul ation) 

   // No locking/synchronization is necessary since  solutions  

   // are accessed by the same process 

       // apply crossover 

   Crossover(RefS1, RefS2) 

   // apply mutation 

      Mutation(RefS1, RefS2) 

 EndFor 

 // Must ensure that the other population is after crossover/mutation phase 

 Wait for all processes to reach this point  

 // exchange x references with population k  

 For(i=0,i<10) 

  RefS1(Si, P) = GetRandomReference(CurrentPopulati on) 

  RefS2(Sj, Pk) = GetReference(RandomPopulation) 

  

  // aquire both references 

  GridUniverse.Acquire(RefS1) 

  GridUniverse.Acquire(RefS2) 

  // modify their population membership (exchange s olutions) 

  RefS1.SetPopulation(k) 

  RefS2.SetPopulation(currentPopulation) 

  GridUniverse.Release(RefS1) 

  GridUniverse.Release(RefS2) 

 EndFor  

EndFor  

3.4.5 Distributed Builder  

Problem: Multiple independent processes are working in an assembly line fashion, by operating on one 
data object one at a time. The processes are either operating on the same part of the object or on disjoint 
parts. 

Challenge : A grid shared object membership is continuously transferred between calling processes. 
Other objects can be manipulated in parallel by multiple processes. Processes must synchronize 
themselves at some points.  
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Approach: The client writes an object to be built into the grid universe. Builder processes are waiting for 
an object that they know how to build. In other words, each builder waits until there are objects in a given 
state. The object is retrieved and the corresponding phase is completed. Next, the object is taken by the 
next builder until the object is completely built. 

Pseudo-code: 

Master Process:  

 // generate a product to be built 

 // mark object as “migratory” 

 Pr = GridUniverse.CreateGridObject(new Product(sta te1)) 

 WaitFor(signal) // wait for the end of build proce ss 

 GridUniverse.Acquire(Pr) 

 //...get the data 

 GridUniverse.Release(Pr) 

End 

 

Builder Process i:  

 While(true) 

  ProductRef = GridUniverse.FindGridObject(statei) 

  // No need to synchronize if non-conflicting part  is written 

  BuildPart(ProductRef) 

  If (LastBuilder) 

   SetSignal(signal) // signal the end of computati on 

 EndWhile 

End 

3.5 Consistency Model 

The memory consistency model represents a contract that the grid shared service has to satisfy 
at any time. It states what the value of a certain object is, among a set of wide replicated distributed 
objects, if certain conditions are satisfied. Choosing a specific consistency model has several impacts on 
the overall system. First, it regulates a certain degree of overlapped operations so that different 
processes are not blocked if they operate on the same data. At the same time the synchronization model 
is defined implicitly by the consistency model. Second, different consistency models imply different 
underlying operations which generate at the end different communication traffic patterns and volumes. 
Last but not least, consistency models have a visible impact at the programming level, meaning that 
different consistency models have to be expressed differently at the API level. Such a restriction limits the 
adaptability at the consistency level and as a result we have to adopt the most suitable consistency model 
for grid systems. 

 Based on the scenarios presented in the previous section, we consider as the most promising 
consistency model the entry consistency model [106], which is also the least restrictive model (or the 
most relaxed). In this model, synchronization happens between clearly defined operations: acquire and 
release. The drawback is that it requires additional programming effort to specify synchronization points. 
The rationale for this choice is that the entry consistency protocol assures data synchronization at entry 
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point in the synchronization code, avoiding thus the penalty of update protocols that generate a higher 
communication traffic pattern in a large scale environment. 

 Considering the grid universe model introduced in section 3.2, in order to illustrate the impact of 
the consistency model on the programming interface, we assume that a grid object is able to store some 
data which is accessed through some methods. In its raw form , entry consistency requires that each 
shared object be associated with a synchronization variable such as a lock, which is defined as following: 

Definition 3.10: A lock is a synchronization object that defines the boundary of a critical region and has 
the following properties: 

1. It is identified by a unique name. 

2. Can be associated with one or more objects. 

3. It defines the scope where the protected variables can be accessed by supplying an interface 
with the following operations: Acquire, AcquireExclusive and Release 

The following code sample shows how locks are used together with grid objects. As one can 
immediately notice, programming with entry consistency adds the requirement of an explicit binding 
between locks and the variables to be protected. This way, programming is more complicated and error 
prone as explicit locking and unlocking must be handled in pairs by the programmer. The advantage 
stems from the shared space separation and thus the possibility for a higher code execution parallelism, 
since multiple critical sections can operate on disjoint shared objects, allowing thus code to be executed 
simultaneously. 

Pseudo-code: 

Process1:  

GridObjectRef g = GridUniverse.FindObject(OID(“13”) ) 

Lock l(“Lock100”) // Creates a lock 

l.Bind(g)    // Associates the lock with the object  referred by g 

l.AcquireExclusive() 

// here we can update the object’s state 

l.Release() 

 

Process2:  

GridObjectRef g = GridUniverse.FindObject(OID(“13”) ) 

Lock l(“Lock100”) 

l.Bind(g) 

l.Acquire() 

// here we can read safely the object’s state 

l.Release() 

 The entry consistency makes clear distinction between lock types, providing exclusive locking for 
state updates and regular locking for reading the object state.  Semantics and operation sequences obey 
the entry consistency model which is defined as following in [111]: 

 Definition 3.11: A system is said to be entry consistent if the following conditions are met: 
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1. An acquire access of a lock is not allowed to perform with respect to a process, until all 
updates to the guarded shared data have been performed with respect to that process 

2. Before an exclusive mode access to a lock by a process is allowed to perform with respect to 
that process, no other process may hold the lock, not even in non-exclusive mode 

3. After an exclusive mode access to a lock has been performed, any other process’ next non-
exclusive mode access to that lock may not be performed until it has performed in respect to 
that lock’s owner. 

The above definition can be reformulated more informally as following. When a process invokes a 
lock’s acquire operation, the call may not execute immediately until all the protected objects by that lock 
have been brought up to date. Second, before modifying a shared object, a process must enter a critical 
section in exclusive mode to assure that no other process might update the same data. Third, if a process 
tries to enter a critical section in non-exclusive mode, it has to check with the owner of the lock to retrieve 
the most recent copies of the shared objects. 

Considering the fact that the protected grid data are objects and processes have to use the same 
locking variable in order to synchronize a certain object, a simplified model can be devised based on the 
previously introduced model as described in Figure 13, leading to clearer interaction as given in the next 
code snippet. A minor extension has been made by introducing the timeout value for both acquire 
operations. The semantics is that if the object cannot be acquired within the prescribed timeout, the 
acquire operation fails and the object is not acquired. If no timeout value is specified, a default value is 
taken. 

 

Figure 13: Grid Object Synchronization 

The effect of this proposal is of an implicit one-to-one mapping between a synchronization object 
and the corresponding lock, leading to an object locking model. The semantics of acquire and release 
operations remain unchanged as introduced above, with the remark that the lock is the same entity as the 
grid object reference. This model is similar to the view-based consistency model [108] where the data 
associated to a view is one object. In the original proposal of the view-based consistency, the view data is 
unstructured. However, using the object oriented model, one can associate several objects to a view by 
applying object composition. Although some similarities exist to the view-based consistency model, we 
stick to the entry-consistency and object oriented definition of our model. 

Pseudo-code: 

Process1:  

OID oid(“13”) 

GridObjectRef g = GridUniverse.FindObject(oid) 

g.AcquireExclusive() 

// here we can update the object’s state 

g.Release() 

 

BUPT



A Grid Service Layer for Shared Data Programming  

 
 

 49 / 207 
 

Process2:  

OID oid(“13”) 

GridObjectRef g = GridUniverse.FindObject(oid) 

g.Acquire() 

// here we can read safely the object’s state 

g.Release() 

The consistency model specifies only the correct response of the system at the client inquiry. The 
system can be optimized by trying to maximize parallel operations. The consistency model regulates the 
object state synchronization, but it does not specify how the synchronization is achieved. Additionally, 
there might be grid objects that have a particular usage pattern that might allow us to apply further 
optimizations. For example, it could be that one object is accessed only by a process for a determined 
period. As no other processes are accessing the same object at a certain stage, one can imagine only 
one object in the entire universe where the object state need not propagate to the entire system. 
Generally speaking, the system needs to be told which operations can be performed in parallel. For 
example a reader-writer interaction can be relaxed in case the write protocol is write-shared and 
individual parts of the shared object can be modified concurrently. Another optimization beyond the scope 
of the consistency model is by exploiting a synchronization pattern such as “in advance” or “delayed” 
synchronization. This means that the grid universe simply anticipates that some object will be required by 
some processes in the future and could perform thus data copying in advance. At the other pole, some 
data might not be needed so often, thus their synchronization can be delayed until they are required. Last 
but not least, the information flow for the consistency protocol can be tuned, so that operations are 
grouped as much as possible leading to bulk communications rather than isolated and sporadic 
interactions. 

3.6 Specialized Objects 

As presented in section 3.2, we tackle the problem of grid shared data in two distinct dimensions. 
First, we have introduced the consistency model in section 3.5 as the base for object state 
synchronization and correctness. Second, we follow the object usage pattern, in the idea of 
communication and object replication optimizations. Here we address type specific coherence based on 
the observation that different classes of objects are accessed in different ways and the access pattern 
might be changing during the process lifetime. Building blocks of this model start by understanding the 
grid data sharing use cases and synchronization patterns. Based on the use cases presented in section 
3.4 we aim to abstract mechanisms for type based coherence, based on user provided information. 
Together with the consistency model, the type based coherence model we devise in this section aims to 
be the base for the grid data sharing concept of this research. 

 

Figure 14: Grid Object Interface 

Every parallel programming model has to define abstractions and concepts for object 
synchronization, which besides the consistency model implies mutual exclusion concepts and conditional 
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synchronization. The programming model we aim to define introduces different types of grid shared 
objects and synchronization mechanism in order to give the run-time system useful information to allow a 
higher concurrency degree and to minimize wide area communication overhead. We consider next the 
following grid object types and their semantics, following the specialization chain. To illustrate the creation 
of different object types, we consider that each GridObject is bound to a type at creation time, as 
illustrated in Figure 14. 

3.6.1 Read-Only Objects 

Read-Only objects are immutable grid objects that are created by one process and their value is 
bound to the value at the time of creation. These kinds of object do not require any synchronization 
mechanisms as the state is not changing after the object is added to the grid universe. Such kind of 
objects can benefit of a high replication rate. 

Definition 3.12: A read-only object is a grid object accessible via its corresponding reference with the 
following properties: 

1. The value of the object is bound to the creation time value. 

2. Object value changes are not propagated among object replicas.  

Interface semantics: A read-only object’s Acquire, AcquireExclusive and Release operations have do-
nothing semantics as they don’t require any synchronization. 

Rationale:  The object specification carries only behavioral semantics and does not specify any concrete 
synchronization interface. The system can exploit through replication the fact that read-only objects are 
not supposed to be updated. Thus, any read operation from other universe than the one where the object 
lives may trigger the object to replicate into the calling universe. This kind of specification is very useful 
for algorithms which operate on large input data that is consulted very often. Read-only objects can be 
realized based on regular grid objects introduced in section 3.3. This kind of objects can be used for 
example in the matrix multiplication case. 

Pseudo-code: 

Process1:  

MyObject x = new MyObject(READONLY, OID(“13”), 100)  // initial value is 100 

GridObjectRef p = GridUniverse.CreateObject(x); 

a = p.GetValue()  // a = 100 

x.SetValue(200) 

a = x.GetValue()  // a = 200 

b = p.GetValue()  // b = 100 

 

Process2:  (Runs after Process 1 created the object “13”) 

GridObjectRef g = GridUniverse.FindObject(OID(“13”) ) 

b = g.GetValue()  // no need for acquire; b = 100 

g.SetValue(150)   // Programming error! Local varia ble shall be used instead 

b = g.GetValue()  // b = 150 

GridObjectRef g1 = GridUniverse.FindObject(OID(“13” )) 

b1 = g1.GetValue()  // 150 or 100. Depends on which  replica g1 points to 
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3.6.2 Private Objects 

Private objects are objects that belong to a certain fixed location, namely a fixed node. During a 
computation, sometimes a grid object is only needed by the node where it belongs to and no other 
process from the same universe or other universes require that object. Their purpose is to apply local 
optimizations for frequent local interactions or to mark that the object is fixed. As private objects are 
accessed typically only locally, they do not have grid scope locking mechanisms as they are not 
replicated and are typically accessed by only one process. Such an object can be thought of as simply a 
local data carrier. The following definition applies: 

Definition 3.13: A private object is a grid object accessible via its corresponding reference with the 
following properties: 

1. It is bound to a fixed node. 

2. Only one copy of the object exists at any time in the Grid Universe. 

Interface semantics: A private object’s Acquire, AcquireExclusive and Release have the same 
semantics as the ones of the generic GridObject. 

Rationale:  Although they are shared objects, they are typically accessed by one or more local processes. 
Some algorithms can benefit out of this sharing pattern if they exhibit a waveform processing pattern. 
Such condition happens if they are processing elements of a structure and after the element is 
processed, it is only used by the local processes and no other external process. Thus, the reason of this 
object type is to reduce the synchronization overhead by reducing the scope of object monitoring and 
provide an optimized local lock mechanism.  

Discussion:  The implications of the above definition are that a grid object can be transformed into a 
private object which behaves as a unique object with a central synchronization mechanism within the 
object itself. If the object had replicas at the time of the transformation, the replicas are removed from the 
grid universe. Normally, an application does not create such object type, but it changes the type of an 
existing grid object. Private objects can be based on regular grid objects introduced in section 3.3.  

Pseudo-code: 

Process1:  

MyObject x = new MyObject(PRIVATE, OID(“13”)) 

GridObjectRef p = GridUniverse.CreateObject(x) 

p.AcquireExclusive() // local scope locking 

p.SetValue(1oo) 

p.Release() 

… 

Process2  (deployed on the same node as Process1): 

GridObjectRef g = GridUniverse.FindObject(OID(“13”) ) 

g.Acquire()   // local scope locking 

y = g.GetValue() 

g.Release() 

g.AcquireExclusive() 

g.SetValue(15)   // local scope locking 

g.Release() 
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3.6.3 Migratory Objects 

Migratory objects represent grid objects that are accessed in phases by multiple processes. In 
every phase, a single process is taking exclusive ownership of the object. After the object is used by one 
process, another process takes its turn and applies another state modification. Migratory objects carry 
only the semantics of the object type and take advantage of the exclusive acquire operation to trigger a 
migration of the object to a new location for the new access. 

Definition 3.14: A migratory object is a grid object accessible via its corresponding reference with the 
following properties: 

1. The object is accessed by multiple processes in phases, one process at a time. 

2. For any migratory object, there is no replicated object in the grid universe.  

Interface semantics: A migratory object’s Acquire, AcquireExclusive and Release operations have the 
same semantics as the ones of the generic GridObject, with the following difference: AcquireExclusive 
triggers the object to migrate to the universe or universe node where the calling process resides. 

Rationale:  The object specification carries behavioral semantics and shares the same interface with the 
basic grid object. Migratory objects are not replicated, but are migrated whenever a different process than 
the one that holds the object is calling the AcquireExclusive method. Migratory objects can be used in 
case of the parallel genetic algorithm. 

Discussion:  The consequences of the migratory object definition relate to the replication protocol and 
object usage. These kinds of object are never replicated and only one process is using them at any time, 
thus no concurrency issues can be exploited, but only locality Similar to private objects, they are 
supposed to be used only by one process at a time. The difference is that whereas private objects are 
fixed (they don’t change their location), migratory objects can move between nodes or between 
universes. In terms of object usage, any process that is interested in reading such an object’s data is 
simply using the normal Acquire operation for a read lock. Different to private objects, all locks are 
performed remotely, at the object scope, at the location where the object is located. 

Pseudo-code: 

Process1:  

MyObject o = new MyObject(MIGRATORY, OID(“13”)) 

GridObjectRef p = GridUniverse.CreateObject(o) 

p.AcquireExclusive() // signal that the object is t o be used on this node 

p.SetValue(10) 

p.Release()    // release the object 

 

Process2:  

GridObjectRef p = GridUniverse. FindObject(OID(“13” )) 

p.Acquire()   // the object is simply read, no migr ation happens 

x = p.GetValue(); // x = 10 

p.Release() 

 

Process3:  

GridObjectRef p = GridUniverse. FindObject(OID(“13” )) 
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p.AcquireExclusive()   // the object is requested t o migrate where Process3 resides 

p.SetValue(20);  

p.Release() 

3.6.4 Producer-Consumer Objects 

Producer-Consumer objects are grid shared objects written by only one process called producer 
process and read by multiple other processes called consumer processes.  

Definition 3.15: A producer-consumer object is a grid object accessible via its corresponding reference 
with the following properties: 

1. The object’s state is written by only one process.  

2. The object’s state is read by multiple other processes.  

Interface semantics: A producer-consumer object’s Acquire, AcquireExclusive and Release operations 
have the same semantics as the ones of the generic GridObject. 

Rationale:  The object specification carries behavioral semantics and shares the same interface with the 
basic grid object. The runtime system can take advantage of their semantics and can perform eager 
object synchronization. This implies that after a write operation that releases the object, the object’s state 
might be synchronized in advance so that all other reader processes do not require another internal state 
synchronization. Thus, the possible optimizations in this case would be object replication for read 
operations and eager updates to all replicas at release time. In the best case scenario, consumers do not 
need to wait until the state is replicated across universes. Producer-consumer objects can be based on 
regular grid objects introduced in section 3.3.  

Pseudo-code: 

Process1:  

MyObject o = new MyObject(PRODUCERCONSUMER, OID(“13 ”)) 

GridObjectRef p = GridUniverse.CreateObject(o) 

x = 10 

While (true){ 

 p.AcquireExclusive() // AcquireExclusive signals t he producer process 

 p.SetValue(x) 

 p.Release() 

 x = ComputeSomething() 

} 

 

Process2:  

GridObjectRef p = GridUniverse. FindObject(OID(“13” )) 

While (true){ 

 p.Acquire()    // consumer 

 x = p.GetValue() 

 p.Release() 

} 
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Process3:  

GridObjectRef p = GridUniverse. FindObject(OID(“13” )) 

while (true){ 

 p.Acquire()   // consumer 

 x = p.GetValue() 

 p.Release() 

} 

3.6.5 Read-Mostly Objects 

Read-mostly objects are those grid objects that are mostly read than written, leading to a high 
read/write ratio. In case of these objects, it is desirable to have more replicas that can be updated after 
each write operation requested by a process. This kind of objects is similar to producer-consumer objects, 
with the difference that there might be more than one writer as in the producer-consumer case. 

Definition 3.16: A read-mostly object is a grid object accessible via its corresponding reference with the 
following properties: 

1. The object’s state is written by at least one process.  

2. The object’s state is read by multiple processes.  

3. The object’s read/write ratio is higher than a given threshold, thus the object is mostly read. 

Interface semantics: A read-mostly object’s Acquire, AcquireExclusive and Release operations have the 
same semantics as the ones of the generic GridObject.  

Rationale:  The object specification carries behavioral semantics and shares the same interface with the 
basic grid object. The runtime system can take advantage of their semantics and can perform a proactive 
and eager replication protocol to achieve shorter synchronization timings. Such objects can be used in 
the use case of the keep-alive communication. 

3.6.6 Result Objects 

Result objects are objects that are constructed through a builder process, where many processes 
are writing separate and non-conflicting parts and one process is reading the final result upon completion. 
Once written, they are only used by one process that collects the result. 

Definition 3.17: A result object is a grid object accessible via its corresponding reference with the 
property that object’s state can be decomposed into distinct, non-conflicting parts. 

 

Figure 15: Grid Result Object Interface 
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Interface semantics: A result object’s Acquire, AcquireExclusive and Release operations have the same 
syntax as the ones of the generic GridObject, with the following semantic differences: 

1. AcquireExclusive shall be used when processes are writing non-conflicting parts of the object 

2. Acquire performs object state composition (object state is synchronized when Acquire is 
issued) 

3. Additional methods are provided in order to manipulate its parts: GetPart to return the object 
part from a given index, SetPart to set an object’s part to a given index and GetPartCount to 
return the number of the object’s parts. 

Rationale:  The object specification carries both behavioral semantics and specific interface description. 
The benefit is that such objects can relax the synchronization constraints when object’s state is updated, 
if the object can be decomposed in disjoint parts. Writing any of these parts does not require any specific 
synchronization and can run in parallel. When the object state is collected by the “reader” process, the 
state is synchronized by following a global merge procedure. The Acquire operation can be also used to 
indicate the state when inconsistencies are not tolerated by the running process. Result objects can be 
applied to the distributed builder use case. 

Discussion:  The implications of the above definition are no locking mechanism is used when processes 
are writing non-conflicting parts of the result object. Whenever object parts are written, AcquireExclusive 
shall used to signal that a part of the object has been modified. Whenever object state is needed, Acquire 
shall be issued so that the state of the object distributed among the universes shall be assembled. 

Pseudo-code: 

Process1:  

MyObject o = new MyObject(RESULT, OID(“13”)) 

GridObjectRef p = GridUniverse.CreateObject(o) 

p.AcquireExclusive() 

Part p1 = p.GetPart(1) // retrieve one part 

p1.SetData(…)     // update the part 

p.Release() 

 

Process2:  

GridObjectRef p = GridUniverse. FindObject(OID(“13” )) 

p.AcquireExclusive() 

Part p2 = p.GetPart(2) // retrieve one part 

P2.SetData(…)     // update the part 

p.Release() 

 

Process3:  

GridObjectRef p = GridUniverse. FindObject(OID(“13” )) 

p.AcquireExclusive() 

Part p3 = p.GetPart(3) // retrieve one part 

P3.SetData(…)     // update the part 

p.Release() 
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Process4:  

GridObjectRef p = GridUniverse.FindObject(OID(“13”) ) 

p.Acquire()       // object state is put together 

for i=1 to 3 

 Part part = p.GetPart(i) // retrive the correct pa rt value 

end for 

p.Release() 

3.6.7 Write-Mostly Objects 

Write-mostly objects are grid objects that are frequently modified between synchronization points. 
As the read/write ratio is low, such objects do not benefit from a higher replication rate, thus a lazy 
synchronization protocol would probably work best. This kind of objects are similar to result objects, with 
the difference that the object state cannot be decomposed in independent parts, thus the entire object 
state must be kept synchronized between synchronization points. 

Definition 3.18: A write-mostly object is a grid object accessible via its corresponding reference with the 
following properties: 

1. The object’s state is read by at least one process  

2. The object’s state is written by multiple processes  

3. The object’s read/write ration is lower than a given threshold, thus the object is mostly written 

Interface semantics: A write-mostly object’s Acquire, AcquireExclusive and Release operations have the 
same semantics as the ones of the generic GridObject.  

Rationale:  The object specification carries behavioral semantics and shares the same interface with the 
basic grid object. The runtime system can take advantage of their semantics and can perform a lazy 
synchronization protocol and bulk updates in order to avoid frequent communication due to the high 
write/read ratio. At the same time, replication factor of this kind of object shall be kept low. 

3.6.8 Generic Objects 

Generic objects are those that do not fall in any of the above categories. They follow the generic 
interface introduced in section 3.3 without any semantic information, thus no additional optimization is 
applied to this kind of objects. The consistency model of these objects falls in the system consistency 
model which is entry consistency. 

3.7 Cost Model 

As introduced in section 3.2, we consider the grid universe as a multilevel collection of universes 
which behave in a predefined determined manner. In a universe we can perform any operation in a small 
amount of time due to the fast communication paths between its nodes. However, inside a universe we 
cannot know the time distribution of node availability. As a result, special care has to be taken so that 
internal operations inside a universe do not suffer from potential node failures. Moving to the next level, in 
case of the connection between universes, we consider that the connection is dynamic and unreliable. In 
other words, one cannot assure that a certain connection holds for a predefined period of time or what 
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quality of service (e.g. bandwidth and latency) it offers. Figure 16 shows a more detailed view on the grid 
universe organization and the relationship between universes. 

By assigning to each universe a node in a graph and drawing an edge between each node which 
share a physical connection we obtain the grid universe graph. The cost of each edge denotes the cost of 
the communication flow between two universes.  

We consider that within a universe Ui there communication channel has a cost δi. The 
communication cost within Ui is given as a vector V, where for each i, V[i] = δi. Communication between 
two universes Ui and Uj has a cost φij. If there is no direct communication link in cases where the 
universes do not share a physical direct connection, the communication cost C(LGi, LGj) is given as the 
sum of all communication connection between universes which form a path from Ui to Uj. This model 
does not reflect the real life situation too accurate as a result of the possibility of different packet routing 
paths, but gives enough information to assess the communication costs. 

 

Figure 16: An Example of Possible Grid Universe Organization 

We consider that at some universe Ui there is a process running, P on one node, which is 
operating on a grid shared data object O which happens to live at universe Uj. In case the object O does 
not migrate, we have a constant cost as the sum of all φmn, where (m,n) is an edge in the grid universe 
graph. In case object O is replicated to Ui, the cost decreases to Max(δi).  

It is worth to note that the model is very dependent on the requests that the grid universe has to 
fulfill. Any grid object operation that occurs on a universe might cause a change in the subsequent access 
costs. On the other hand, evaluating the access costs from the point of view of a single running process is 
not relevant, as the grid is a collaborative environment where interactions are happening on wide remote 
areas. Thus, our model has to be refined in order to capture the state of the entire system, rather than of 
an individual process. In order to restrict the frame of the operation span across the grid, we define an 
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observation window ∆ which denotes a time frame where the system is observed. We assume that within 
this window, all communication channels are fixed and not changing, thus all vectors V and the cost 
matrix is constant. 

 

Figure 17: Grid Universe Observation 

Under the mentioned conditions, we consider that n independent processes Pi (processes which 
have different codes) are spawned across the grid. Each process runs on its own grid context, potentially 
in distinct universes, but all are working together on a common goal. At each step each process is 
executing code and from time to time each process is accessing several grid shared objects, one at a 
time. Each grid shared object access has a cost ci, where i denote the access number. If we log all 
accesses by each process we obtain a sequence of access costs, for the period ∆ as following: 

Access(Pi) = {ci | ci is access cost i with 0 < i < n and time(n) < ∆} 

We expect that such logging information can provide useful information for a better replication 
protocol and better locality of references in the grid universe. Also, such information can be used for 
offline system analysis. Logging has to be done at object level, capturing information like object id, 
process id, access type (read/write/synchronization), access time and cost. The most promising 
information we expect is to assess the programmer’s decision towards the shared grid object types and to 
help improve their decisions towards certain object types. Such information might be used the change the 
type of the objects dynamically to improve the cost pattern and provide better runtime performance. We 
plan to approach this information as one of the next steps towards better grid shared data services. 
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4 Overall System Design 

4.1 Assumptions 

In order to address different system architecture solutions we make some assumptions to define 
the design boundaries of the proposed system and programming model realization. These considerations 
focus on the system separation, universe mapping to physical resources, universe structure, 
communication mechanisms, execution environment and replication policies. 

Logical and physical universe mapping.  A universe consists of a logical group of nodes that 
are mapped to physically interconnected machines that share for example the same physical connection 
such as a LAN. We always operate at the logical level and imply a clear distinction between the physical 
and logical nodes. During the deployment of the system, a mapping is required so that physical universes 
are defined across LANs or clusters. A good deployment tries to construct universes out of low latency 
interconnected machines residing in physical proximity of the same network. If this deployment guideline 
is not followed and large latency connections are present within a universe, the overall system 
performance could be negatively impacted. A sample of physical universe mapping is illustrated in Figure 
18, where three networks are connected to each other and the forth is having just one connection point. 
Such a deployment can be seen at universities where several departments are interconnected via a VPN 
and an external entity is connected to one of the gateways through a secure connection. 

Universe communication. The communication scheme can be divided into communication 
inside (between nodes) or outside (between universes) a universe. We assume that all nodes within a 
universe can communicate to each other in either point-to-point or multipoint mode. Communication 
between any two nodes that belong to two different universes (communication outside a universe) is done 
using point-to-point mode only. We believe that it is not efficient to use multicasting protocols across 
universes because of the large communication latencies. If, for example, multicasting can be supported 
efficiently in two distinct universes or they have similar latencies, the universes can be merged under one 
single universe. One real-life issue to consider is the case where universes are mapped to two physical 
networks that use network translation (NAT) which prohibits a low level point-to-point connection such as 
via TCP/IP. This limitation can be overcome by either using a proxy in every universe and route requests 
to each universe proxy for dispatching or providing higher level point-to-point communication interfaces 
that do not have such limitation such as a web service interface (higher level proxy pattern). Although this 
situation can occur and several solutions are known, it has been not considered explicitly. 

Synchronous and asynchronous operations. We assume that nodes can communicate to one 
another through object oriented interfaces by invoking methods from one another via some of their public 
interfaces. Method invocation can be done in both synchronous and asynchronous way. For example, 
node N1 from universe U1 can invoke an asynchronous method on another node N2 from universe U2. 
The response shall be received by N1 within a timeout value and shall carry the data produced by the 
execution of the request. The execution semantics is “maybe once”, meaning that method invocation can 
fail. This execution semantics is specified by most of remote method invocation protocols such as RMI. 
We assume that group communication is also possible via object oriented interfaces and a node can 
invoke a method on objects from multiple nodes. The caller is able to wait for receiving all responses or 
just one of them (the first received reply). Thus, we assume that a node has the ability to perform simple 
and group communication with other nodes from the grid universe, through single or group method 
invocation. 
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Figure 18: Physical Universe Mapping Sample 

Universe discovery. By universe discovery we understand the operations carried out so that a 
universe knows of the existence of other universes. Within a universe, node discovery activities are 
required in order to dynamically join and remove nodes from a universe. The problem of universe and 
node discovery is described in each concrete solution. 

Execution and volatility. We consider that the grid execution layer is responsible for spawning 
the application’s code (possible several executables) across universes and their nodes. The grid universe 
provides the distributed environment to create and maintain shared data until the data is deleted explicitly 
by the application or the node dies. We don’t aim to build a long term data persistence layer on the grid 
scope. The persistence level is in our case determined by the life time of each node that is holding certain 
grid shared data. 

No faults. During a certain time interval it is always possible that some machines are turned off 
or simply experience some kind of faults that limits their proper functionality. Such a fault could be simply 
an exception in a communication module or a process crash. These kinds of faults can occur at any time 
in any universe, thus we can consider them as Byzantine events. In the design we do not consider 
explicitly such conditions, thus we don’t take the fault tolerance aspect into consideration. For example if 
a grid shared object is created on one node and is never replicated to other nodes, in case of the node 
crashes, the data is lost. If the object has been replicated to another node and the replicated data is 
outdated (no synchronization has been performed yet) and the first node crashes, the system would 
contain the outdated copy of the shared data. 
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4.2 Replication Handling 

We intend to use replication as the primary mechanism for performance improvement and not for 
fault tolerance. When data is created on the grid, we choose the closest node to the node who issued the 
“create shared data” request and which has enough capacity left to accommodate the grid shared object. 
The same node who issued the command can be chosen if it has enough capacity available. Upon data 
request during application execution, the grid shared data might be replicated to other nodes from the 
same or different universes in order to reduce access time due to large latencies. The system decides at 
run-time to replicate the data based on its specified replication policies. The replication policy follows a 
system definition of a rule based specification. This means that the same replication rules are considered 
for all the applications running on the grid. As the rule based replication policy definition is provided from 
the outside of the system (e.g. deployment information), it can be fine tuned differently to individual 
systems.  

We define a function ShallReplicate  that evaluates if a grid shared data object shall be replicated 
from node to another or from one universe to another universe. The function iterates through all 
configured replication rules and returns true if replication shall take place or false if the indicated object 
shall not be replicated. We consider some system predefined replication rules and these can be extended 
as required by the application deployment policies. We define next a small set of replication rules based 
on object types and system status information. 

/** Evaluates system defined replication rules and indicates if replication shall be performed or 
not. 
@param  sourceUID Universe replication source, wher e data to be replicated is located. 
@param  sourceNID Node replication source, where da ta to be replicated is located. 
@param  targetUID Universe replication destination,  where data shall be replicated to. 
@param  targetNID Node replication destination, whe re data shall be replicated to. 
@param  ref  Reference to the grid object that shal l be replicated. 
@return   Returns true if replication shall take pl ace, or false if no replication 
shall be performed. 
*/ 
ShallReplicate(Universe sourceUID, Node sourceNID, Universe targetUID, Node targetNID, 
GridObjectRef ref )  
 for  each  rule in  RuleTable 
  if  (Evaluate(rule, sourceUID, sourceNID, targetUID, t argetNID, ref) = true ) 
   return  true 
 end for 

return  false 

Replication primitives. As we introduced previously the idea of replication rules, we introduce 
some basic primitives that are used in the definition of the replication rules. We don’t aim to present the 
complete possibilities of system built-in rules, but rather to illustrate how replication is performed in the 
system. The concrete replication rules will be presented when a concrete model is simulated and 
analyzed. As replication decisions are very important, we expect that depending on the chosen replication 
rules, different behavior shall be observed in the overall system as well as different performance figures. 

/** Returns the type of the object referred by the grid object reference 
 @param  ref Reference to the grid object that shal l be identified. 
 @return  Returns the object type as following: REA DONLY, PRIVATE,  
   MIGRATORY, PC, READMOSTLY, RESULT, WRITEMOSTLY, GENERIC 
*/ 
Type(GridObjectRef ref) 
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/** Returns the size granularity of the object refe rred by the grid object reference 
 @param  ref Reference to the grid object that shal l be weighted. 
 @return  Returns the object type as following: SMA LL, MEDIUM, LARGE. 
*/ 
Size(GridObjectRef ref) 
 
/** Returns the total object count from a given uni verse. 
 @param  u Grid universe. 
 @return  Returns the total object count. 
*/ 
Count(Universe u) 
 
/** Returns the total object count from a given uni verse with a given object type. 
 @param  u Grid universe. 
 @param  oid Object identifier 
 @return  Returns the total object count. 
*/ 
Count(Universe u, OID oid) 

One observation about replication rules is that for any object identifier oid and any node n, 
Count(oid, n) <= 1,  meaning that on any node, there is at most one instance of any object. As a result, a 
grid shared object cannot be replicated to a node where one of its replicas already exists. We consider 
other status information that might be used during the replication rule definitions, some of these are being 
suggested as following: 

/** Returns the total acquire hits issued from a un iverse for a given object from another 
universe. 
 @param  source Grid universe where the grid shared  object resides. 
 @param  oid Object identifier. 
 @param  caller Grid universe from where the acquir e invocations have been issued. 
 @return  Returns the total acquire hits 
*/ 
AcquireHits(Universe source, OID oid, Universe caller) 
 
/** Returns the total acquire exclusive hits issued  from a universe for a given object from 
another universe. 
 @param  source Grid universe where the grid shared  object resides. 
 @param  oid Object identifier. 
 @param  caller Grid universe from where the acquir e invocations have been issued. 
 @return  Returns the total acquire hits 
*/ 
AcquireExclusiveHits(Universe source, OID oid, Universe caller) 
 
/** Returns the total acquire misses issued from a universe for a given object from another 
universe. 
 @param  source Grid universe where the grid shared  object resides. 
 @param  oid Object identifier. 
 @param  caller Grid universe from where the acquir e invocations have been issued. 
 @return  Returns the total acquire hits 
*/ 
AcquireMiss(Universe source, OID oid, Universe caller) 
 
/** Returns the total acquire exclusive misses issu ed from a universe for a given object from 
another universe. 
 @param  source Grid universe where the grid shared  object resides. 
 @param  oid Object identifier. 
 @param  caller Grid universe from where the acquir e invocations have been issued. 
 @return  Returns the total acquire hits 

*/ 
AcquireExclusiveMiss(Universe source, OID oid, Universe caller) 

The following table presents an example of concrete replication rules, based on some of the 
above introduced predicates and following the parameter semantics of the ShallReplicate method that 
evaluates one after another the rules within the defined rule table. Replication is performed if one of 
the rules holds true.  The second column shows the grid object type. The third column specifies the size 
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of the object among predefined values: small, medium and large, where a mapping from these 
quantificators to concrete object sizes are provided as system deployment information. 

No Grid Object Type  Size Condition Notes 
1 READONLY SMALL sourceNode != targetNode   

2 READONLY 
MEDIUM, 
LARGE 

sourceNode != targetNode && 
sourceUniverse = targetUniverse && 
Count(oid, targetUniverse) < IntraUniverseROT 

IntraUniverseROT - Intra Universe 
ReadOnly replication threshold, 
provided as system configuration 

3 READONLY 
MEDIUM, 
LARGE 

sourceNode != targetNode && 
sourceUniverse!= targetUniverse && 
Count(oid, targetUniverse) < InterUniverseROT 

InterUniverseROT - Inter Universe 
ReadOnly replication threshold, 
provided as system configuration 

4 PRIVATE N/A N/A Private objects are not replicated. 

5 MIGRATORY ALL 

sourceNode != targetNode && 
sourceUniverse != targetUniverse && 
Count(oid, targetUniverse) = 0 "One per universe" replication rule 

6 PC ALL 

sourceNode != targetNode && 
sourceUniverse != targetUniverse && 
Count(oid, targetUniverse) < PCT 

"n per universe" replication rule, 
PCT - Producer-Consumer 
Replication threshold, provided as 
system configuration 

7 READMOSTLY 
SMALL, 
MEDIUM 

sourceNode != targetNode && 
sourceUniverse = targetUniverse && 
Count(oid, targetUniverse) < IntraUniverseRMT 

IntraUniverseRMT - Intra Universe 
ReadMostly replication threshold, 
provided as system configuration 

8 READMOSTLY 
SMALL, 
MEDIUM 

sourceNode != targetNode && 
sourceUniverse != targetUniverse && 
Count(oid, targetUniverse) < InterUniverseRMT 

InterUniverseRMT - Inter Universe 
ReadMostly replication threshold, 
provided as system configuration 

9 RESULT ALL 

sourceNode != targetNode && 
sourceUniverse != targetUniverseD && 
Count(oid, targetUniverse) = 0 "One per universe" replication rule 

10 WRITEMOSTLY ALL 

sourceNode != targetNode && 
sourceUniverse != targetUniverse && 
Count(oid, targetUniverse) = 0 "One per universe" replication rule 

Table 1: Replication Rules 

4.3 Architecture Solution Landscape 

In this section we explore several solutions of the system architecture, where we focus on the 
distributed algorithms, data structures and interaction between nodes and universes.  All of the following 
solutions have in common the problem of implementing mutual exclusion efficiently across the grid. Some 
of the challenges of mutual exclusion algorithms across the grid are efficiency, scalability and resource 
consumptions (e.g. number of exchanged messages/consumed network bandwidth). There are three 
main general approaches in realizing mutual exclusion.  

The first approach consists of permission based algorithms such as Lamport [112], Ricart-
Agrawala [113], Maekawa [114], which are a class of pessimistic algorithms that work on the principle of 
consensus among participant nodes before granting access to the shared resource. A second approach 
are algorithms like Suzuki-Kazami [115], Raymond [116], Naimi-Trehel [117] where a token is passed 
among nodes and access is granted only to the token owner. Third, optimistic approaches like [118] and 
[119] work on the principle of transactions and allow resource access and perform a rollback in case of 
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any conflict. The first class of algorithms suffer from the either the problem of a single point of failure 
(centralized solutions) or a high message exchange count (broadcasts and consensus based solutions). 
The second class of algorithms require less messages (typically O(log(N)), but does not ensure fairness, 
meaning that the order of granting the critical section is not necessarily the order in which the requests 
have been issued. In other words, resource access grant is not given in the absolute or a Lamport logical 
clock order, but in the order of the token exchange. The last category of algorithms require additional 
support for reconciliation in case of conflicting accesses either by the execution run-time or even the 
programmer. A very recent project that focuses on reconciliation techniques and dependable computing 
using transactional programming is the Dedisys project [84]. 

Extensions to the basic algorithms mentioned above have been proposed over the years in [120], 
[121] where the Naimi-Trehel [117] algorithm is extended in order to reduce the number of exchanged 
messages and to provide a priority concept. To our knowledge, all of the proposed extension, except 
[122], do not consider the communication latency between nodes, thus their applicability is limited to 
homogeneous nodes such as nodes within a cluster. Similar ideas to the ones we have introduced 
namely grid universe separation and hierarchical structure have been proposed earlier in [123] and [124] 
where nodes are grouped into groups, but both proposals do not take advantage of the observation that 
different node groups are connected by larger latency connections. Another important observation is that 
type consistency was not considered in any of the previous works. 

Some of the very recent activities towards better mutual exclusion algorithms on the grid have 
been elaborated in [122] and [125], where the authors proposed a compositional approach and an 
extension to the Naimi-Trehel [117] algorithm. Both the proposed extension and the compositional 
approach could be applied to our universe structure, but there are several required extensions. It is 
important to note that all of the previously mentioned algorithms refer to the simple case of mutual 
exclusion. In our work we have to address the entry consistency protocol which requires a different view 
on mutual exclusion, because in some cases simultaneous access is allowed (e.g. reading via acquire 
requests). As a consequence, existing algorithms for realizing the mutual exclusion protocol have to be 
adapted in order to fulfill the entry consistency specification. In addition, type consistency needs to be 
addressed as well, within the same algorithm, leading to different update mechanisms depending on the 
grid object type specification. 

The architecture of the proposed grid shared data model specified in Chapter 3 requires 
addressing the following challenges: 

• Mutual exclusion algorithm selection/design on the grid scope for entry consistency 

• Shared data replication and migration policies 

• Entry consistency protocol realization 

• Specialized object handling 

Pseudo-code notations. We use the following notations in the pseudo-code that describe the 
algorithms in various solutions that we consider: 

Synchronous invocations:  

// calls the method Method() on the grid node N 

Call Method() on N 
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// calls the method Method() on the grid node withi n the list N1,N2… 

Call Method() on N1,N2,… 

 

Asynchronous invocations:  

// Sends the message identified by Msg to the grid node N and returns immediately 

Send Msg to N 

 

// Waits until a message identified by Msg is recei ved 

Wait for Msg 

 

// Waits until a message identified by Msg is recei ved from the grid node N 

Wait for Msg from N 

 

Message specification:   

Msg(A, B, C…) – A,B,C message data members for Msg 

 

Message reception:  

// Invoked method when a message Msg carrying A, B,  C is received by a node 

Receive_Msg(A, B, C) 

 

Timing invocations:  

// Performs one or more operations within the presc ribed timeout value [ms] 

Within timeout do 

 Operation1 

 Operation2 

4.3.1 Distributed Centralized Model 

A first simple and straightforward solution for the design of the grid shared data layer is the 
distributed centralized  approach where location and state information is collected and managed in one 
central location per each universe. In this model, there are n nodes in a universe and a special “primary 
node”  PN which maintains information about the system’s run-time status for the universe. A view on the 
high level architecture is presented in Figure 19 where four connected universes are depicted. We 
marked with a yellow line the communication flow between universes through the primary nodes. In this 
case the primary node has a triple role: first, it centralizes status information, it performs access 
sequencing in the second place and it facilitates all communication between nodes from different 
universes on the third place. Information and operation requests made by each node are marked with a 
green line. One can notice that each node contacts the designated primary node within the universe it 
resides. Data accesses from one process running on a node to the node where data is located are 
marked with orange arrows. 
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Figure 19: Distributed Centralized Architecture 

The rationale for considering this model is simplicity and that it is easy to understand, analyze 
and implement. One can assume that in case of some particular deployments of the grid universe the 
number of machines in each universe (and implicitly number of nodes) is limited to a few machines. 
Larger networks are also deployed, but these cases are not so common on the large scale. It can be 
assumed that the number of universes in small deployments is likely to be limited to a number from three 
to five. Considering that inside a universe communication costs are negligible and fast connections are 
most of the time available, higher communication traffic inside a universe does not have a cost on the 
network side. It is only the external communication which suffers from large latencies and traffic 
limitations.  

Mutual exclusion handling. Mutual exclusion is realized in this architecture in a distributed 
centralized way. Each primary node of every universe acts as a central point for sequencing requests to 
shared grid object for different ranges of object identifiers. Assuming that each universe is associated an 
unique identifier, UID, we define a function f, that returns the corresponding universe for a particular grid 
object identified by its OID such as f(OID) = UID. The defined function shall follow a uniform distribution, 
so that requests are fairly distributed among the primary nodes and reduce the possibility of a bottleneck. 
This situation would be true if replication was fixed, but as in our system the replication mechanism is 
dynamic, the possibility of bottlenecks cannot be ruled out. Each primary node uses three tables in order 
to maintain complete information within a universe as described in Figure 20.  
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• UniverseTable  holds all universes registered in the system. A universe is identified by a 
system unique id, UID, and the address of the primary node. When a universe is 
deployed, it contacts the primary node of another universe and registers itself. The 
registration information is then propagated to all existing universes and the 
UniverseTable content is synchronized. After each registration, all primary nodes have 
the same content of the UniverseTable. 

• NodeTable  holds the list of currently alive nodes within a universe. A node is identified 
by a system unique identifier, node identifier, NID. Each entry of the table contains the 
idenfier (NID), its address, its total capacity and the current load. 

• NodeObjectTable  contains the distribution of shared data objects across a universe. 
Each entry contains the node identifier (NID), object given and system identifiers (GID, 
OID) and status information. The dirty flag marks if the object copy is up to date or not. 
The status flag can one of the following: READY, ACQUIRE, ACQUIRE_EXCLUSIVE, 
meaning that the object identified by GID is either not held by any process (ready) or 
acquired exclusively or non-exclusively. 

 

Figure 20: Distributed/Centralized Algorithm’s Data Structures 

The operations performed in this model in oder to fulfill the GridUniverse and GridObject interface 
specifications and semantics applicable for the generic grid object are described in the following pseudo-
code. The solution realizes entry consistency specification and update mechanisms via the write 
invalidate protocol. For convenience and conciseness, the pseudo-code of the solution and logic are 
presented in Appendix A.2. In this model, all operations performed by each node on the GridUniverse and 
GridObjectRef interfaces delegate to the primary node from the universe the node belongs to. The 
primary node is fixed, its identity is known by each node within the universe and we assume that the 
primary node does not fail.  

When a primary node receives a CreateGridObject request from a node, it tries first to allocate 
the object on the node the request originates. If this is not possible (e.g. not enough space left on the 
caller node), a node within the same universe as the node is looked-up. Once identified, a copy of the 
given object is created on the target node and the primary node updates the NodeTable entries 
corresponding to the given object. If all the nodes within the universe do not have enough room to 
accommodate the object, other universes are contacted in order to satisfy the create request. After the 
object is registered to the primary node where it was created, the object is registered to the designated 
sequencer. The first registration step assures data locality property by storing universe specific 
registration information. In the presented code fragment, we try to create the object on other universes 
sequentially. It would be also possible to send a request to all other universes and delegate the object 
creation to the first reply received from another universe.  
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When an object is looked-up by a node, the primary node tries to return first a reference to an 
object within the same universe. This strategy saves large latency communications to other universes and 
provides better data locality. If there is no such object within the universe, a lookup request is sent to 
other connecting universes and the first replied reference is returned to the caller.  

When RemoveGridObject operation is called with a given identifier, the request is sent to all 
connected universes. Each universe removes the object if the object’s state is READY, meaning that the 
object is not currently used by any process. If the state is not READY, each primary node waits until the 
object is released and its state returns to READY. 

The strategy for acquire and release operations is that the operation is delegated to the primary 
node designated to regulate the access to the objects corresponding to the specific object identifier. A 
lookup function is first applied to the object identifier (OID) and the operation is delegated to the primary 
node. As a consequence to the function definition, all accesses to the replicas with the same OID are 
delegated to the same primary node. The concrete execution of acquire and release operations are 
straightforward, as the designated primary node acts as a global sequencer. 

Replication handling . Each time an object is looked-up and it is not found within the same 
universe as the callerNode, the object could be replicated to the universe the “FindGridObject” request is 
issued from. The decision to replicate or not to replicate depends on several factors. The approach taken 
in our architecture is to have a replication specification in the form of a rule-based system specified at 
deployment time and not a built-in decision. In this way it is easy to adjust replication scheme depending 
on the application requirements. However, due to the fact that locating objects happens on a much lower 
frequency than object usage, we need to supply replication hooks during acquire operations as well. In 
this way replication primitive as the number of Acquire or AcquireExclusive operations can be used at 
their best in order to support better replication decisions. Considering the general design guideline of lazy 
operations, we could make use of replication hooks in FindGridObject and Release operations.  

Preliminary assessment . This solution focuses on centralized information which is concentrated 
on each primary node. Each primary node holds information about all existing nodes and on all distributed 
objects belonging to that universe. Also, primary nodes know all other connected primary nodes in the 
grid universe. The information on existing object instances is created at the time of object creation or 
replication. Even if the object belongs to one universe, it can be that object access is regulated by a 
primary node from another universe. It is important to note that even if object existence might be 
distributed across universes (e.g. during replication), object state appears only to the designated primary 
node that is mapped to that specific object identifier. Delegation to a single primary node instance 
ensures fairness, meaning that acquire operations are performed in the order they are issued. 

Even if the concept is simple to realize, it has several drawbacks. The obvious drawback is that is 
has the single point of failure flaw. Second, the architecture is not scalable and the chance for a 
bottleneck increases with the number of nodes a primary node is mapped to. There is also a problem to 
maintain a dynamic, optimal mapping of nodes to the primary nodes which in the presented solution is 
static. Constructing such a mapping is not trivial and would require a global monitoring system which 
raises some new challenges. Third, local arbitration inside a universe is not possible. Every acquire and 
release operation results in two calls: one within the universe to contact the local primary node and 
another remote call to the designated “arbiter” node corresponding to the node identifier. This “arbiter” 
node might be a potential bottleneck especially if we consider that it might be frequently called over large 
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latency connections from other universes. An unfortunate situation is depicted in Figure 21, where the 
grid shared data is located within a universe, but the arbiter node is remote.  

 

Figure 21: Remote arbiter scenario 

In this solution every access to the universe shared data needs to be routed to the far away 
primary node. A potential alleviation to this problem might be provided by the function mapping definition 
which shall take advantage of the following observation: when a grid shared data is created we favor the 
same node or universe that issued the command, thus the mapping function to the object identifier shall 
map to the same universe where the request is issued from. Unfortunately one cannot totally control 
replication decisions and application deployment, thus it is always possible that an acquire operation is 
invoked over a large latency connection to a remote primary node. The frequency of this use cases might 
be limited by supplying a specialized location function that is tightly connected with the deployment of the 
application processes across the grid. 

In case of broken communication links where disconnected universes are formed, the 
impossibility to communicate to the designated “arbiter” primary node translates to a complete system 
malfunction. A solution to this problem would be to promote another primary node for each created 
partition, with the remark that previous acquire status information is lost. However, we do not focus on 
fault tolerance and reconciliation techniques, but assume that the universes are connected. 

4.3.2 Centralized/Naimi-Trehel Multi-Token Model 

This solution aims to alleviate the bottleneck of the previous model by exploring a natural system 
architectural split and the latency difference between the communication paths within and between 
universes.  The basic idea is to make use of two mutual exclusion algorithms in order to realize entry 
consistency specifications on the grid scope. The universe structure and node types remains unchanged 
from the previous solution, and in addition we use a centralized mutual exclusion algorithm within each 
universe and a token based algorithm between universes (namely between the primary nodes). We 
considered the Naimi-Trehel [117] token based algorithm as the most promising token based algorithm, 
due to its higher dynamic behavior and ease of adaptation in comparison to Suzuki-Kazami [115] which 
relies on multi-casting or Raymond [116]. The solution can be considered as a composition between a 
centralized algorithm and an adapted version of the Naimi-Trehel [117] token based algorithm. The 
architecture is similar to the distributed centralized model and is presented in Figure 22. 
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The idea of the original Naimi-Trehel [117] mutual exclusion algorithm is to make use of a token 
that is exchanged between processes when a process wants to acquire a resource. Initially all 
participants know the token owner. When a process that does not have the token requests it, the request 
follows a tree of probable owners, updating the new owner (the requesting process) as the requests 
follows the tree nodes. One can imagine that each node is able to get the token by following its own 
logical tree or probable owners. It is important to note from the beginning that the original algorithm 
assures mutual exclusion, but does not fulfill entry-consistency semantics as our system specification 
requires. The original Naimi-Trehel [117] algorithm is described below in pseudo code, where it handles 
simple locking functionality in contrast to the entry consistency specification that we aim to achieve. 

// For every node Ni: 
Initialization:  
 requestinig = false 
 next = 0 
 if  Self = ElectedNode then 
  token = true 
  owner = 0 
 else 
  token = false 
  owner = ElectedNode 
 end if 
 
Acquire:  
 requesting = true 
 if  owner != 0 then 
  // the node does not have the token thus the token must be requested 
  Send(Request, Ni) to owner 
  owner = 0 
  Wait for  receiving message (Token) 
 end if 
   
Release:  
 requesting = false 
 if  next != 0 then 
  Send(Token) to next 
  token = false 
  next = 0 
 end if 
 
Receive_Request(Nj):  

// Nj is the requesting node 
 if  owner = 0 then 
  // root node 
  if  requesting = true  then 
   // The node asked for acquire 
   next = Nj 
  else 
   // first request to the token since last aquire 
   // send the token directly to the requesting node 
   token = false 
   Send(Token) to Nj 
  End if 
 else 
  // non-root node, forward request 
  Send(Request, Nj) to owner 
 end if 
 owner = Nj 
 
Receive_Token(Nj):  

// receive the token from node Nj  
 token = true  
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Figure 22: Centralized/Naimi-Trehel Multi-Token Architecture 

The rationale for this model is to overcome the bottleneck of the distributed sequencer and 
reduce uncontrolled large latency calls for each acquire/release operations, by calling only the probable 
owner chain which limits the message number to O(log(n)), where n is the total number of universes, or 
primary nodes. The authors of [125] concluded that the Naimi-Trehel algorithm is a good choice as a 
token based algorithm between different distant clusters (in our view, universes), especially if the 
application pattern has a medium parallelism degree. Besides the good performance and low message 
exchange count, the dynamic behavior of this algorithm (e.g. maintaining the probable owner tree) makes 
it easy to adapt and extend. The choice of the centralized algorithm in each universe can be motivated by 
the fact that, according to [125], the algorithm running inside a cluster (a universe in our view) has a very 
low impact on the overall performance. There are several choices for the mutual exclusion algorithm 
inside universes. Besides the centralized algorithm, one can consider token based algorithms or quorum 
solutions. Considering that a universe is a dynamic and unpredictable structured environment, one needs 
to address token recovery in the first case or to manage a dynamic quorum as nodes join or leave the 
universe. In case of quorum based mutual exclusion, one needs to handle the situation where due to 
slight latency differences and unpredictable delays, the votes are not collected in a predefined time frame 
and would be sent again. Situations like this increase the complexity of the mutual exclusion algorithm 
and cannot guarantee a low message exchange count in all situations. All these problems are not raised 
in case of the centralized approach. Nodes might join and leave the universe at unpredictable times and 
the message exchange count is always O(1). In addition to simplicity of the centralized approach, we 
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hope that by centralizing information on each primary node it would be easier to apply further extensions 
that are not so easy to handle on a more complex algorithm. 

It is worth to note that the exchanged token in the Naimi-Trehel algorithm becomes a multi-token 
in our system, having one token per object identifier, like token[OID]. The bottleneck of the primary node 
can be overcome by requiring that the primary node shall be able to handle in parallel different token 
types. One mean to realize this requirement is by making use of a multithreaded primary node which 
would be able to serve requests for different types of objects in parallel (e.g. one thread per each object 
identifier type). The potential bottleneck of the centralized approach can be further reduced by a more 
radical solution where the distributed centralized pattern is applied, and divide the responsibility between 
several nodes within the universe, each node having assigned a range of object identifiers. 

Extensions to the original Naimi-Trehel. The first extension is that each primary node holds a 
request queue, where all requests towards shared objects are stored, and which are issued by nodes 
from the same universe. The primary node processes the queued requests in FIFO mode, one request at 
a time. If the token corresponding to the head of the queue is owned by the primary node, the request is 
satisfied immediately and the requesting node is granted the access to the grid shared data object. If the 
token is not owned, a request is issued to the probable owner via the Naimi-Trehel algorithm. Requests 
for different object identifiers, which are handled through different tokens, can be handled in parallel, 
meaning that the request queue can be seen as a multi-queue, one queue per each token type. 

A second extension is considered in case the token is owned by the primary node and another 
request of the token is received from another primary node. Normally, in this case the token is simply sent 
after the node from the first universe releases the grid shared object. However, if there are pending 
requests in the queue for the same token, one can serve those requests instead of the one coming from a 
remote universe. To ensure a certain degree of fairness and limit starvation, this preemption mechanism 
can use a preemption threshold. Preemption can be realized both in terms of time and in terms of request 
counts. In case of “time preemption” we assign a time slice, during which requests are served within the 
universe instead of remote universes. The “numeric preemption” refers to the situation that if the current 
preemption is lower than a numerical threshold, a pending request within the primary node’s request 
queue can be served instead of the remote request.  

A third extension is considered for situations where an acquire request is processed and this 
request is followed by another acquire exclusive or non-exclusive request. While processing the second 
request, eventually the object’s state must be synchronized. We aim to overlap the second object 
synchronization with the first object processing by making use of an eager synchronization mechanism for 
these situations. For these cases we trigger an eager synchronization each time we encounter an acquire 
request that is followed by another request. Such an optimization can be done by inspection each multi-
token queue at the time of handling of each acquire request. All three ideas are depicted in Figure 23. 

The operations performed in this model in order to fulfill the GridUniverse and GridObject 
interface specifications and semantics applicable for the generic grid object are described in the following 
pseudo-code. The requests for acquire and release operations that are issued by each node are sent to 
the primary node from the universe the node belongs to. The node waits for a reply message within the 
prescribed timeout values. The interactions are illustrated in Figure 24. For convenience and 
conciseness, the complete pseudo-code of the solution and logic are presented in Appendix A.3. 
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Figure 23: Multi-Token Queue 

The node holds the following information: 

// For every node Ni which has following local vari ables: 
Node : self  - keeps the node identification (Ni) 
Node : PN  - keeps the primary node identity (e.g. address) 
Boolean : exclusive - specifies if the previous acq uire request was exlusive or not . 
 

 
Figure 24: Request-Reply Pattern 

The CreateGridObject, FindGridObject, DeleteGridObject and CreateCopy are identical to the 
ones of the previous model. The other operations on each node of the universes are very similar to those 
of the distributed centralized model. The nodes simply delegate the operations to the primary node of 
their universe and in case of the Acquire and AcquireExclusive operations, a reply is awaited in the 
prescribed timeout value. The data structure for registration information is shown in Figure 25. The same 
registration and synchronization mechanism is used as in the previous solution. The only difference 
appears in the NodeObjectTable which does not hold status and dirty flag fields anymore. 
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Figure 25: Centralized/Naimi-Trehel Primary Node Data Structure 

// For every primary node PNi which has following l ocal variables: 
Node  : self  - keeps the node’s identification (PN i) 
Node  : electedNode  - elected initial primary node  to hold all tokens 
Boolean : requesting[] - specifies if token for an OID has been requested or not 
Node  : next[]  - array of next nodes to receive th e token for an OID 
 
Struct token{ 
 Boolean : exclusive - specifies if the token is ow ned exclusively 
 Node :  nonex[]   - nodes that hold the token in n on-exclusive mode 
 Node :  latest[] - nodes that hold the most recent  copy of an object with OID   
}  
 
Token : token[] - array of tokens for each object i dentifier 
Boolean : owner[] - specifies if the node is the ow ner of the token[OID] 
Timer : prTimer[] - timer for token preeemption for  each token[OID] 
int  : PREEMPT_TIME – preemption time for token exc hange 

Each primary node keeps a token structure data for each token that corresponds to all object ides 
that exist in the system. A token contains a Boolean value exclusive that specified if the token is owned 
exclusively by a node or not. It contains also a list of all nodes that are currently accessing the data in 
non-exclusive mode and a list of latest nodes that contain a copy of the latest value of the object referred 
by the object identifier OID. 

The CreateGridObject and DeleteGridObject operations are similar to those of the previous 
model, with an important and subtle change: upon registration or replication, the grid shared data object is 
not registered anymore to the global designated sequencer, but to the primary node where it belongs to. 
Thus, the information about an object or one of its replicas appears only in one universe. The 
FindGridObject method is identical to the one of the previous model and for the sake of space is listed 
only in the appendix A.3. 

Both Acquire and AcquireExlusive operations add a request to the processing queue of the 
primary node. The primary node takes each request from the head of the queue, decodes the request 
type and delegates to the required operation handler (PN_Acquire or PN_AcquireExclusive). The 
interactions for Acquire operations are described below and depicted in Figure 26 and Figure 27. 

There are a few more extensions to the original Naimi-Trehel algorithm that can be seen in the 
above algorithm illustrated in pseudo-code. The first extension is to differentiate the two acquire operation 
types. Second, when a node request non-exclusive acquire, the token is not requested, but a message is 
sent to the token owner. If the token is not already in exclusive mode, the token stores the requesting 
non-exclusive node in a list. All the nodes in the list could own the token in non-exclusive mode without 
having the token. When the node releases the resource in non-exclusive mode, the probable owner path 
is followed again and the node is removed from the list. The operations in the AcquireExclusive case are 
similar to the original Naimi-Trehel algorithm, with the exception that the exclusive mode is granted only if 
the token’s node list is empty, meaning that there are no current nodes in non-exclusive mode. 
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Figure 26: Acquire Interactions 

In order to fulfill entry consistency specification, each token has been extended with a list of 
nodes (token[OID].latest) which keeps track of the nodes that hold the most recent copy of an grid shared 
object which has the type OID. Initially, when the first object is created, the node where the object is 
created is added in to the token[OID].latest list (PN_Initialize method). When an object is acquired in non-
exclusive mode, the AcquireGranted message transmits the latest node list too. If the node that holds the 
object pointed by the reference is not part of Latest, the object is synchronized using one of the replicas 
from the Latest list. Object synchronization is described in the next chapter that focuses on the detailed 
design. When an object is acquired exclusively, the same synchronization mechanism applies. In 
addition, after the synchronization operation, the Latest node list is reinitialized with the current node that 
issued the AcquireExclusive request. 

Preliminary assessment . Compared to the previous solution, an acquire request requires a 
message to the primary node of the same universe as the caller. If the token for the object identifier is not 
owned by the primary node, a number of O(log(n)) calls might follow, in order to locate the current owner, 
where n is the total universe count, or the primary node count. Compared to the previous solution, the 
possibility of a bottleneck is alleviated because each primary node is able to serve requests in parallel per 
each object identifier group (OID). In the situation that the token is already owned, the solution has the 
advantage or a very fast “Acquire” operation because it is resolved within the universe on a low latency 
connection. Although retrieving the token requires more than one message, as in the distributed-
centralized approach, this algorithm provides a better scalability, thus a higher number of universes could 
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be connected in this solution. Applying the preemption idea can lead to a better token locality and saving 
large latency communication calls especially in “trashing scenarios” where the token is asked repeatedly 
from one or more distinct universes. 

 
Figure 27: Acquire Exclusive Interactions 

In case of broken communication links where network partitions occur, the algorithm could work 
independently per universe through the centralized algorithm part, assuming that the primary nodes do 
not fail, but only the communication links are broken. Such a scenario is not possible in case of the 
previous solution, where a remote universe is always contacted to perform sequence the requests. Of 
course, if a primary node fails, all universe-related object registration is lost, together with the currently 
held tokens. System rehabilitation could be accomplished through leader election algorithms and 
promoting regular nodes to primary nodes. 

From the possible system deployment scenarios, the most promising deployments where this 
solution fits best would be the ones consisting of universes mapped to a medium machine count (10-20) 
and variable number of universes. From the application parallelism level, we expect that a highly or 
medium parallel application would work best in this setup. A low parallel application that has frequent 
synchronization points would probably trigger frequent token exchanges over large latency connections 
and would probably have a weaker performance. Although the type consistency object specification could 
help in this respect, it is hard to judge to what extent would make a difference on a general basis. We 
expect that a proper object type choice in case of low parallel applications has the highest impact on 
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overall performance. As the application exhibits increasing levels of parallelism, the impact of the object 
type choice would probably decrease. 

4.3.3 Hierarchical Models 

In this section we explore other potential architectural solutions for our system specification 
based on very recent community research results. The first class of solutions is obtained through an 
algorithm composition approach. In this case we considered different compositions of mutual exclusion 
token based algorithms on two levels: one level within each universe and another level between 
universes. An analysis of the performance and suitability of different token based algorithms has been 
presented in [125], where the authors have evaluated the following combinations against the Naimi-
Trehel algorithm applied on the global grid scope: 

1) Naimi-Trehel/Martin 

2) Naimi-Trehel/Naimi-Trehel 

3) Naimi-Trehel/Suzuki-Kasami 

The original Naimi-Trehel algorithm is not suitable for a widely distributed system as the token is 
retrieved by following multiple branches in the logical “probable owner tree” that could span across large 
latency communication channels. For this case, the architecture is depicted in Figure 28. 

The authors of [125] concluded that the Naimi-Trehel algorithm is the most suitable for inter-
cluster token handling and the choice of the intra-cluster algorithm has less impact on overall 
performance. While the third combination (Naimi-Trehel/Suzuki-Kasami) has the least obtaining average 
time, it has the highest total sent inter-cluster messages and thus higher bandwidth consumption. On the 
opposite side, the first combination (Naimi-Trehel/Martin) has the highest average obtaining time, but the 
least number of exchange messages between clusters. In terms of suitability for different types of 
applications, in case of low parallel applications, Martin’s algorithm has the same obtaining time as 
Suzuki-Kasami, but sends far less messages, thus being a good choice in this case. For intermediate 
parallel applications, Naimi-Trehel exhibits a similar obtaining time as Suzuki-Kasami, but with the 
advantage of less exchanged messages. For highly parallel applications, Suzuki-Kasami is suggested as 
providing the shorter obtaining time with an increased number of exchanged messages due to the 
frequent broadcasting scheme. A solution that extends the one level token model, by applying the Naimi-
Trehel token based algorithm at two levels has been presented in [122]. Applying the concept in our 
model, in this approach a unique token exists per grid universe and object identifier. In this way the 
bottleneck of the primary node as in the distributed-centralized model is removed, but the number of 
messages is increased as the probable owner path to the token is longer. The authors of [122] have 
extended the original algorithm by applying the following extensions: 

1) A proxy node is introduced per cluster that routes all requests to other clusters. The 
purpose is to cache the token’s owner and route a request directly to the owner if the 
owner is located in the same cluster. 

2) An aggregation concept is used so that remote requests are aggregated and only sent to 
remote clusters if there have been accumulated a certain number of requests. 

3) Token preemption is performed so that requests within a cluster are satisfied before 
remote requests if the preemption count does not exceed a certain threshold. 
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Figure 28: Hierarchical Naimi-Trehel multi-token architecture 

Preliminary assessment . The authors of [125] concluded that it is only the “between universes” 
algorithm which brings a significant performance impact on the system, whereas the algorithm applied 
inside a universe has no major performance impact, except in the number of exchanged messages. 
Although the experiments run on [122] were conducted on a grid made out of three clusters each of three 
machines, it is clear that the original Naimi-Trehel algorithm is superior to the centralized and broadcast 
algorithms in terms of token obtaining time. Applying the preemption concept and the implicit first 
extension to the original Naimi-Trehel led to the most efficient solution in terms of the obtaining time. 
Based on the measurements in [122], it seems that the Naimi-Trehel algorithm is the most suitable for 
exchanging tokens between universes and it provides a reasonable trade-off between different classes or 
applications (highly parallel vs. low parallel applications). It is not clear how the enhanced Naimi-Trehel 
algorithm relates to other three compositional solutions. What we can assume is that it exhibits a similar 
behavior as the solution presented in 4.3.2. All optimizations except the aggregation concept (which did 
not prove quite useful) can be also seen in the Centralized/Naimi-Trehel multi-token algorithm. Keeping in 
mind that the experiments were not conducted on a large latency wide distributed grid, but on a 100MBit 
and 10GBit connections, the results might be unknown in an environment dominated by large latency 
connections. 

Considering the implementation aspect, compositional approaches are easier to understand and 
implement. The extended Naimi-Trehel algorithm is the most complex solution. While none of those 
solutions address the entry-consistency specification, but only mutual exclusion, adapting the extended 
Naimi-Trehel algorithm requires a considerable effort. In addition, one must consider that there are also 
extensions required in order to handle the different kind of object types. 
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4.4 Solution Selection 

In the previous sections we have identified six potential candidate solutions for realizing mutual 
exclusion with entry-consistency semantics in a grid environment. We could add transactional memory 
approaches as well, but these are more suitable for tightly-connected nodes. To our knowledge, there 
have been several attempts towards grid transactional services specifications, which are basically an 
extension to grid service specification, but no realization of such theoretical models for large scale 
distributed systems. Second, transactional programming implies different semantics to our system 
specifications and requires reconciliation techniques when transactions fail. Most of the times, 
transactional programming specifies sequential consistency. According to [126] and [127] there are very 
subtle and complex aspects when relaxed consistency models are specified for transactions. 
Unfortunately, it is hard to foreseen all challenges of this approach as there is very little research 
evidence of relaxed consistency transactional programming. As a consequence we do not consider 
transactional models in the solution selection debate. 

The first out of the six solutions described in 4.3.1 has only the advantage of simplicity. The 
disadvantages of the sequencer bottleneck, inability to arbiter requests locally and the single point of 
failure rule out this solution immediately among the candidates. The second solution presented in 4.3.2 
combines both scalability and locality features on one hand and removes the disadvantages of the 
previous solution. Thus, it could be a candidate and we keep it for further comparison. The next three 
solutions are the three compositional approaches described in 4.3.3. These are similar to the previous 
solution, the only difference is the mutual exclusion algorithm applied inside a universe. The last choice is 
the adapted Naimi-Trehel algorithm described in [122] which is applied on the grid scope. This solution 
requires a “gateway node” in each cluster in order to keep track if the token is held remotely or not. From 
this point of view, this design approach resembles to the solution presented in 4.3.2.  

Based on the measurements in [122], it appears that the Naimi-Trehel algorithm is the most 
suitable for exchanging tokens between universes and it provides a reasonable trade-off between 
different classes or applications (highly parallel vs. low parallel applications). Following this observation, a 
reasonable solution choice is among those which rely on this particular algorithm for mutual exclusion 
between universes. In the following table, we summarize the characteristics of each of the four remaining 
candidates, where we highlight the negative characteristics of each solution by marking them in bold/red 
style. In Table 2 each assessed characteristic is rated using three values: low, medium and high. The 
meaning of these values is specific to the given characteristic and is described in Table 3.  

Criteria Centralized/N-T  Martin/N-T Suzuki-Kasami/N/T Grid N-T 
Universe scalability high high high high 
Local scalability low/medium  low medium high 
Local obtaining time low/medium medium/high medium low 
Local resource demand low medium high low/medium  
Independent processing high low low low 
Complexity low medium medium high 
Local dynamics high low/medium  low/medium low 

Table 2: Solution Criteria 

Universe scalability refers to the number of connected universes which can be supported by each 
solution without significant performance issues. All solutions present the same universe scalability, 
meaning that we expect the same behavior when the universe number increases. Local scalability refers 
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to scalability inside universes due to the increasing number of nodes. Although it relies on a central 
resource, due to the ability to handle parallel requests per object identifier, the first solution is expected to 
have a low to medium scalability. In case of the Martin algorithm, as the logical ring length increase, the 
scalability factor decreases. The next two solutions have higher scalability due to the missing centralized 
resource or the dependency on the number of nodes. The local obtaining time refers to the time elapsed 
from the moment the acquire operation is issued, until the access to the shared data is granted. In case of 
the first and last algorithms we expect a low to medium value, considering the ability of the centralized 
algorithm to handle parallel requests. The Martin and Suzuki-Kasami algorithms are expected to have 
increasing obtaining times due to their dependencies to the number of participant nodes 

Criteria Low Medium High 
Universe scalability up to 5 universes 5 to 15 15 to 50 
Local scalability up to 10 machines 5 to 50 50 to 100 
Local obtaining time 10-10ms 100-500ms 500-5000ms 

Table 3: Solution Criteria Description 

Local resource demand translates to the number of exchanged messages in order to acquire a 
resource. The first algorithm requires only O(1) messages to the primary node. The second algorithm 
requires to traverse the entire logical ring, leading to O(n) messages. The same is valid to the third 
algorithm which relies on broadcasting, thus it sends and expects n-1 messages, which means a 
performance of O(n). In case of the last algorithm, it has only to traverse the local logical tree, which in 
the worst case requires O(log(n)) messages and O(1) in the best case where the location of the token is 
cached. The independent processing ability refers to failure scenarios where communication between 
universes is broken. When universes are disconnected, but the machines within universes are functioning 
properly, the first three algorithms enable the system to continue independently as the algorithms rely 
only on universe specific information. The global Naimi-Trehel algorithm requires locating the token which 
might belong to other universes, thus its proper operation is seriously hindered.  

We consider by “local dynamics” the normal universe evolution where machines are becoming 
available or disappear from the universe. This situation is more frequent than “universe dynamics” as we 
assumed that the primary nodes are always available. In this case, the first solution is not impacted, as it 
makes use of local information only and there is no distributed information stored on any of the nodes 
within a universe. The following two solutions require the reconstruction of the logical ring and the 
multicasting group, which leads to lower dynamic characteristics. Although adding new machines in the 
last solution is easy to handle, removing a machines that has a token results in system failure. Leader 
election algorithms are required to deal with this kind of conditions. Last but not least, in terms of 
complexity, the first solution is easier to realize than any of the other solutions. The adapted global Naimi-
Trehel algorithm is the most complex solution due to its distributed data structures and additional token-
related information synchronization protocol.  

Considering all the above factors we chose for our system specification the Centralized/Naimi-
Trehel Multi-Token  algorithm [128]. The core motivation for this choice is its high local dynamics, higher 
capability to perform independently, a low resource demand and low complexity. We have traded the 
local scalability for all other characteristics as we believe that universes will have a limited number of 
nodes (up to 20) for typical deployment scenarios. Last but not least, we believe that this solution allows 
us to realize object specific handling in a more efficient and maintainable way and the bottleneck of the 
primary node will be greatly reduced due to parallel processing of object type requests. 
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5 Detailed System Architecture 
 

In the previous chapter we have presented the solution for realizing mutual exclusion on the grid 
scope and the way entry consistency is realized for the generic grid object type. In this chapter we 
address the design for specialized grid objects and define in more details the node deployment and object 
access mechanism. Universe nodes can be deployed in any number, on any grid machine. A single node 
deployment scenario is depicted in Figure 29 where one universe node is deployed on a grid machine 
where two applications are running. In this case the applications that are running in their own processes 
access the universe node’s services via an inter-process communication mechanism (IPC).  

 

Figure 29: Single Universe Node Deployment 

A multiple universe node deployment scenario is illustrated in Figure 30, where two applications 
are running in their own processes and two universe nodes are deployed. Both applications are 
communicating to each other by accesses data from both universe nodes. 

 

Figure 30: Multiple Universe Node Deployment 
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The deployment process implies assigning universe nodes on a set of grid machines S1 and 
spawning application codes across another set of machines S2. Interactions between universe nodes and 
application process happen either within the same machine or remote, across machine boundaries, as 
depicted in Figure 31. We require that on each machine where an application process is launched, there 
shall be at least one universe node deployed. In other words S2 <= S1. The rationale for this 
consideration, and therefore a system deployment constraint, is that we aim to provide better data 
locality. In case there is no universe node deployed on a grid machine, and an application is running 
there, there is no chance to replicate data on the same machine as the universe node does not exist on 
that machine. However, if universe nodes exist on all machines where computations are running, there 
are better chances to replicate data on the universe node located at the same grid machine and thus to 
favor local data access over remote data access. 

 

Figure 31: Single Node Multiple Machine Interactions 

Every interaction between a grid shared object and the application process happens over a 
reference defined previously as GridObjectRef. A reference is obtained when an object is created or 
looked-up and is used to manipulate the referred object’s state and to coordinate access status by 
acquiring and releasing the referred object. In our model, the reference holds internally the following 
information:  

• OID -  object identifier assigned by the programmer/user 

• GID - global unique identifier assigned by the system 

• DataNode - identity of the node where the referred data is located and where all 
accesses are redirected (e.g. acquire/release and payload read/write) 

• Client - identity of the calling process (client) that is currently manipulating the referred 
data. 

It is important to note that every calling client that uses a reference is having its own reference 
that is constructed by the system and given on the client space. Some of the reference’s internal data 
parts are fixed like the OID and the GID whereas DataNode and Client are dynamic. Some of the parts 
are always available and known like the OID, GID, but the others can be known only in some stages of 
the execution. When the reference is created for the first time all four parts are known. For instance, when 
the referred data item migrates from one machine to another, the DataNode becomes invalid for the 
duration of the migration process. As a result, after a data item migrates to another node, the DataNode 
value might point to the incorrect node. In order to access the correct node, the access request must be 
routed among the probable owner tree of each node, as described in the Centralized/Naimi-Trehel 
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algorithm. Thus, all processes that hold a reference to a migrating data item might experience the 
situation that the DataNode is invalid at some point in time. We say that when all four parts of the 
reference is known and valid that the reference is resolved. When at least one of the variable parts is not 
known or invalid, we say that the reference is not resolved. A sample grid reference is shown in Figure 
32.  

 

Figure 32: GridObjectRef Internal Structure 

5.1 Read-Only Objects Handling 

Read-only objects were defined in Definition 3.12 as immutable objects which do no propagate 
any potential state change to any of their replicas. As a consequence it would be beneficial to replicate 
them with a high rate so that read accesses could benefit of the data locality property and increase the 
chances for local accesses instead of remote accesses. The main purpose for read-only objects is to 
reduce access time due to large latencies. The default replication rules defined in our system in section 
4.2 ensure that read-only objects are highly replicate as close as possible to the location of the process 
that requests them, which are referred as caller nodes. It is important to note that read-only objects and 
are not migrated, but only replicated. The overall characteristics of read-only objects are summarized in 
Table 4. A visual representation of read-only objects handling is shown in Figure 33.  

Grid Object Type Number of Objects Replicate  Migrate Readers Writers 
Read-Only n yes no n 0 

Table 4: Read-Only Object Characteristics 

In the scenario depicted in Figure 33 we created three different read-only objects that are used by 
one application running on the same machines where the universe nodes are deployed. Read-only 
objects ReadOnly1 is replicated on all machines, but the other two, ReadOnly2 and ReadOnly3, are not 
replicated yet (we could consider that the object is quite heavy and replication rules did not evaluate to 
true yet). One can observe that applications are accessing read-only objects residing in their proximity 
whenever possible (e.g. a replica within in their proximity): ReadOnly1 object is always accessed from the 
same grid machine instead of accessing a remote replica over large latency connections. 
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Figure 33: Read-Only Objects Handling 

Algorithm adaptations . In the following code snippet, we present the required actions we 
consider to execute in order to fulfill the semantics of this object type. For the sake of simplicity and 
conciseness, we only present the changes in respect to the generic grid object approach. The complete 
system solution and logic are presented in Appendix A.3.   

As the payload or state of a read-only object is immutable, such objects do not require any 
locking mechanism. As no arbitration or token request is required anymore, a “do-nothing” logic is 
provided in the Acquire and Release methods for each node, Ni as following: 

// For every node Ni 
/** Acquires non-exclusively within the specified t imeout[ms] the grid object referred by a grid 
object reference. 
 @param  ref  Grid object reference. 
 @param  timeOut Timeout value. 
 @return   True if successful, otherwise false.  
*/ 
Acquire(GridObjectRef ref, long  timeOut) 

if (Type(ref) == READONLY) 
 return true 
end if 
// Code continues from the generic grid object hand ling 

 
/** Acquires exclusively within the specified timeo ut[ms] the grid object referred by a grid 
object reference. 
 @param  ref  Grid object reference. 
 @param  timeOut Timeout value. 
 @return   True if successful, otherwise false. */ 
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AcquireExclusive(GridObjectRef ref, long  timeOut) 
if (Type(ref) == READONLY) 
 return true 
end if 
// Code continues from the generic grid object hand ling 
. . . 
 

/** Releases a previously acquired grid object refe rred by a grid object reference. 
 @param  ref  Grid object reference, OID. 
 @return   True if successful, otherwise false. 
*/ 
Release(GridObjectRef ref) 

if (Type(ref) == READONLY) 
return true 

end if 
// Code continues from the generic grid object hand ling 
. . .  

Consequences . The following consequence apply for grid read-only objects: Changing the state 
of a read-only object is syntactically possible, but represents a semantics violation (programming error). 

As an example, if a read-only object’s state is changed, its new state is not synchronized to any 
of its existing replicas. In the situation that a read-only object’s state is changed, the state of any replica 
that is created after this point in time is undefined (initial value or the changed value). The same applies 
to the find operation when a reference to such an object is returned, what might point to an arbitrary read-
only object (the correct object or the modified object). 

5.2 Private Objects Handling 

Private objects introduced in Definition 3.13 are bound to a fixed location and are typically used 
by one or more local processes belonging to the same grid machine. Normally, private objects are used 
only locally, but from the syntactical point of view they can be still accessed remotely. As a consequence, 
arbitration can be handled on the local scope instead of the grid scope. The main reasons for private 
object use are situations where an object is shared locally, by multiple processes within the same 
machine or machines within a low latency connected universe. In this case, a locking mechanism in the 
grid scope is avoided, thus a higher performance is expected for mutual exclusion in the machine scope. 
Typically, there is only one copy of a given private object instance, meaning that private objects are not 
replicated. As the location is bound to a certain node, private objects are not migrated either. The overall 
characteristics of private objects are summarized in Table 5. A visual representation of private objects 
handling is shown in Figure 34. 

Grid Object Type Number of Objects Replicate  Migrate Readers Writers 
Private 1 no no n (local) n (local) 

Table 5: Private Object Characteristics 

In the scenario depicted in Figure 34 we consider that the application is using private objects from 
a point in time when the computation logic do not require any information exchange between remote 
application processes. Each application process uses private data located in the same grid machine. 
However, remote access is semantically possible, but strongly discouraged as we will point out this 
below.   

Algorithm adaptations.  In the following code snippet, we present the required actions we 
consider to execute in order to fulfill the semantics of this object type. For the sake of simplicity and 
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conciseness, we only present the changes in respect to the generic grid object approach. The complete 
system solution and logic are presented in Appendix A.3.  

 

Figure 34: Private Objects Handling 

Private objects require a machine specific locking mechanism which can be handled in the 
arbitration methods on each node, without requiring any mutual exclusion algorithm between primary 
nodes. Instead of the “do nothing” implementation of read-only objects, we make use here of a read/write 
mutex object that performs a process specific read and write lock according to the entry consistency 
specification. Each universe node that contains a private grid object has a read-write mutex associated 
with each object type instance. Modern operating systems like WindowsXP or runtime executive systems 
such as Java (starting with version 1.5) provide natively such construct. Such locking object can be 
implemented using a standard mutex and a semaphore object. A sample implementation of such an 
object is listed in Appendix A.1. 

// For evey node Ni 
RWMutex[]  – Read/Write mutex that protects a resou rce for read/write access according to 

entry consistency semantics, one per each object ty pe 
 
/** Acquires non-exclusively within the specified t imeout[ms] the grid object referred by a grid 
object reference. 
 @param  ref  Grid object reference. 
 @param  timeOut Timeout value. 
 @return   True if successful, otherwise false. 
*/ 
Acquire(GridObjectRef ref, long  timeOut) 

if (Type(ref) == PRIVATE) 
 return RWMutex[ref.OID].ReadLock() 
end if 
// Code continues from the generic grid object hand ling 
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/** Acquires exclusively within the specified timeo ut[ms] the grid object referred by a grid 
object reference. 
 @param  ref  Grid object reference. 
 @param  timeOut Timeout value. 
 @return   True if successful, otherwise false. 
*/ 
AcquireExclusive(GridObjectRef ref, long  timeOut) 

if (Type(ref) == PRIVATE) 
 return RWMutex[ref.OID].WriteLock() 
end if 
// Code continues from the generic grid object hand ling 
. . .  

 
/** Releases a previously acquired grid object refe rred by a grid object reference. 
 @param  ref  Grid object reference, OID. 
 @return   True if successful, otherwise false. 
*/  
Release(GridObjectRef ref) 

if (Type(ref) == PRIVATE) 
return RWMutex[ref.OID].ReleaseLock() 

end if 
// Code continues from the generic grid object hand ling 
. . . 
 

Consequences.  The following consequence applies for grid private objects: Private objects are 
looked-up on the grid scope, but arbitration is done on local, machine scope.  

5.3 Migratory Objects Handling 

According to Definition 3.14 migratory objects are accessed in phases. In each phase different 
processes are taking exclusive access to the given object and then releasing the object. A migratory 
object is not replicated, thus, a single copy exists in the grid universe. As only one process is accessing a 
migratory object, a mutual exclusion protocol on the grid scope is not required. Normally the object is 
used exclusively by one process that resides in the proximity of the node where the migratory object has 
been migrated. However, the syntax of the interface allows the object to be read from a remote process, 
but the reading request is granted after the object has been released from the previous AcquireExclusive 
operation that triggered the migration process. The main benefit of this object type can be observed in 
cases where an object is used for a short, but intense period of time when data locality is important and 
replication would not bring a significant performance gain. The overall characteristics of migratory objects 
are summarized in Table 6. A visual representation of migratory objects handling is shown in Figure 35. 

Grid Object Type Number of Objects Replicate  Migrate Readers  Writers 
Migratory 1 no yes n 1 

Table 6: Migratory Object Characteristics 

In the above scenario, a process of Application1 is creating a migratory object on the 
UniverseNode1, on the same machine where the application code is running. The process is making use 
of the object by reading and writing data to it (1). In the next step, another process of the same 
application located in a different grid machine locates the migratory object and calls AcquireExclusive (2). 
When the first process finishes its operations with the object and releases the reference, the object 
migrates to the universe node in the proximity of the second caller (3). The second application process 
starts using the object (4). Next, the third application process gets a reference to the same migratory 
object, calls AcquireExclusive (5) and waits until the access is granted. When the second application 
process releases the referred object, the object migrates to UniverseNode3 (6). Then, the third 
application process can use the object (7). 
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Figure 35: Migratory Objects Handling 

Algorithm adaptations.  In the following code snippet, we present the required actions we 
consider to execute in order to fulfill the semantics of this object type. For the sake of simplicity and 
conciseness, we only present the changes in respect to the generic grid object approach. The complete 
system solution and logic are presented in Appendix A.3.  

Migratory objects require a machine specific locking mechanism which can be handled in the 
arbitration methods on each node, without making use of the token based arbitration between primary 
nodes. The mechanism is similar to the private objects, and relies on a local read-write mutex too. Each 
universe node that contains a migratory grid object has a mutex associated with each object type 
instance. In order to ensure reference location transparency and overcome the effects of the second 
consequence, each node performs a lookup on the supplied grid object reference in order to identify the 
correct node where the object has eventually migrated to.  

// For evey node Ni 
RWMutex[]  – Read/Write mutex that protects a resou rce for read/write access according to 

entry consistency semantics, one per each object ty pe 
self  - the identity of the current node 
 
/** Acquires non-exclusively within the specified t imeout[ms] the grid object referred by a grid 
object reference. 
 @param  ref  Grid object reference. 
 @param  timeOut Timeout value. 
 @return   True if successful, otherwise false. 
*/ 
Acquire(GridObjectRef ref, long  timeOut) 

if (Type(ref) == MIGRATORY) 
 GridObjectRef newRef = LookupRef(ref) 
 if (ref.DataNode != newRef.DataNode) 
  // Object has been migrated, forward request to new  node 
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return Call Acquire(newRef, timeOut) on ref.DataNod e 
 end if 

RWMutex[ref.OID].ReadLock() 
end if 
// Code continues from the generic grid object hand ling 
. . .  
 

/** Releases a previously acquired grid object refe rred by a grid object reference. 
 @param  ref  Grid object reference. 
 @return   True if successful, otherwise false. 
*/ 
Release(GridObjectRef ref) 

if (Type(ref) == MIGRATORY) 
RWMutex[ref.OID].ReleaseLock() 

end if 
// Code continues from the generic grid object hand ling 
. . . 

 
/** Looks up the correct node where the data referr ed by the reference has been migrated. 
 @param  ref  Grid object reference. 

@return   The correct reference. 
 
*/ 
LookupRef(GridObjectRef ref) 

// identify the referred grid object 
GridObject o = ref.GetObject() 
if (o = null) 

  // object has been migrated 
  return Call FindGridObject(ref.OID, ref.ClientNode)  on ref.ClientNode.PN  

end if   
return ref   

 
/** Acquires exclusively within the specified timeo ut[ms] the grid object referred by a grid 
object reference. 
 @param  ref  Grid object reference. 
 @param  timeOut Timeout value. 
 @return   True if successful, otherwise false. 
*/ 
AcquireExclusive(GridObjectRef ref, long  timeOut) 

if (Type(ref) == MIGRATORY) 
GridObjectRef newRef = LookupRef(ref) 

 if (ref.DataNode != newRef.DataNode) 
  // Object has been migrated, forward request to new  node 

return Call AcquireExclusive(newRef, timeOut) on re f.DataNode 
 end if 
 // Object resides on this node 
 RWMutex[ref.OID].WriteLock() 

// The requesting node must be different to the nod e where the object resides 
 if (ref.ClientNode != self) 

// identify the referred grid object 
GridObject o = ref.GetObject() 
// Migrate the referred object from this node to th e requestor node 
ok = Call CreateGridObject(o, ref.ClientNode) on re f.ClientNode.PN 
if (ok = true) 

// unregister the object from its current location  
Call PN_RemoveGridObject(ref.OID) on PN 
capacity = capacity – size(o)  
delete o 
// update reference’s data node as the new node 
// remote assignment to the process space where the  ref belongs to 
ref.DataNode = ref.ClientNode 
// obtain the mutex on the new node where the objec t was migrated 
// all references will be pointed to the new node f rom now on 
Call AcquireExclusive(ref, timeOut) on ref.ClientNo de 
// operations on this node are complete as the obje ct is migrated 
RWMutex[ref.OID].ReleaseLock()  

  end if 
 end if  
end if 
// Code continues from the generic grid object hand ling 
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Consequences.  The following consequences apply for grid migratory objects: 

1. A migratory object is migrated only if there is space available on the node residing on the 
same machine with the caller client node. 

2. After an object has been migrated to another node, all previously obtained references are 
invalid.  

3. Whenever an invalid reference is used for the first time, the reference must be resolved. 

5.4 Producer-Consumer Objects Handling 

Producer-Consumer objects defined in Definition 3.15 are objects that are written (produced) by a 
single process and read (consumed) by multiple other processes. The number of consumer processes 
can be arbitrary and new processes can become consumers at any time. The frequency of write 
operations directly determines the state update mechanism: write-update or write-invalidate. If the write 
frequency is low and read frequency is high, it would be advantageous to perform an eager write update 
protocol at release time. If the situation is opposite to this one, and the write frequency is high, an eager 
update protocol (e.g. perform replica update immediately at release time) would only waste bandwidth as 
changes might not reach the destination until a new change is propagated. The same applies in case of 
lightweight or heavyweight objects. Such a decision cannot be made at the system design time, but it 
represents an application characteristic that need to be address at deployment time. The default 
synchronization mechanism for generic objects is write-invalidate. We consider that at deployment time, 
the user can specify the rules to be followed for producer-consumer update: update or invalidate, based 
on the same primitives defined in the replication case. The overall characteristics of producer-consumer 
objects are summarized in Table 7. A visual representation of producer-consumer objects handling is 
shown in Figure 36. 

Grid Object Type Number of Objects Replicate  Migrate Readers  Writers 
Producer-Consumer n yes no n 1 

Table 7: Producer-Consumer Object Characteristics 

In Figure 36 we depict the scenario where a producer-consumer object “Producer-Consumer1” is 
replicated to two other nodes and is written (produced) by a process co-located with Universe Node1, and 
read (consumed) by two processes co-located with Universe Node2 and Universe Node3. It is important 
to note that the object is written only in Universe Node1 and only read on other nodes. 

Algorithm adaptations.  In the following code snippet, we present the required actions we 
consider to execute in order to fulfill the semantics of this object type. For the sake of simplicity and 
conciseness, we only present the changes in respect to the generic grid object approach. The complete 
system solution and logic are presented in Appendix A.3.  

The generic algorithm requires adaptations only if the synchronization policy is “write-update” and 
an eager synchronization protocol is used. In the generic solution, a list of nodes that have acquired the 
object in non-exclusive mode is stored in the token structure. The list is dynamically updated so that every 
time a release is triggered the corresponding node is removed and added when an acquire is invoked. In 
case of producer-consumer objects, a second list is used that holds all nodes that are identified as 
consumer nodes, which are nodes that are only acquiring in non-exclusive mode. Upon release in 
exclusive mode as a result of a write operation, the updated version of the shared data is synchronized to 
all known consumer nodes. For this reason, we augment the token structure by adding a list of consumer 
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nodes, consumers . The following pseudo-code reflects these changes, which are marked in bold style 
that affects all primary nodes. 

 
Figure 36: Producer-Consumer Objects Handling 

// For evey primary node PNi 
Struct{ 
 Boolean : exclusive - specifies if the token is ow ned exclusively 
 Node :  nonex[]   - nodes that hold the token in n on-exclusive mode 
 Node :  latest[] - nodes that hold the most recent  copy of an object with OID   
 Node :  consumers[] – consumer nodes of Producer-C onsumer type  
 
}Token : token[] - array of tokens for each object identifier 
 
/** Performs an acquire request. 
 @param  ref  Grid object reference. 
 @param  callerNode The caller node from where the operations has been triggered. 
*/ 
PN_Acquire(GridObjectRef ref, Node callerNode): 
 if  owner[ref.OID] != 0 then 
  // the node does not have the token 
  // node registers to the token owner as non-exclusi ve access 
  Send Request_Acquire(ref, callerNode, self) to ow ner[ref.OID] 
  Wait for  Acquire_Granted(ref.OID, latestNodes) 
 else 
  // this primary node has the token 
  Wait until (token[ref.OID].exclusive == false) 
  // now the token can be held non-exclusively 
  Add callerNode to token[ref.OID].nonex 
  latestNodes = token[ref.OID].latest 
  if (ref.DataNode not in latestNodes) then 

Add ref.DataNode to token[ref.OID].latest 
  end if 
 
  // update consumer nodes if not already known 

if (Type(ref) == PC and callerNode not in token[ref .OID].consumers) 
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Add callerNode to token[ref.OID].consumers 
  end if  
 end if  

// Code continues from the generic grid object hand ling 
. . . 

 
/** Processes an acquire request. 
 @param  ref  Grid object reference. 
 @param  requestorNode The caller node from where t he operations has been requested from. 
 @param  callerPN Primary node from where the reque st has been issued. 
*/ 
Receive_Request_Acquire(GridObjectRef ref, Node req uestorNode, PrimaryNode callerPN): 
 if  (owner[ref.OID] == 0) then 
  // this node has the token 
  Wait until (token[ref.OID].exclusive == false) 
  Add requestorNode  to token[ref.OID].nonex 
  // send the token granted to the requesting primary  node 
  Send Acquire_Granted(ref.OID, token[ref.OID].late st) to callerPN 
  Add ref.dataNode to token[ref.OID].latest 

// update consumer nodes if not already known 
if (Type(ref) == PC) and requestorNode not in token [ref.OID].consumers) 

Add requestorNode to token[ref.OID].consumers 
  end if  
 else 
  // non-root node, forward request 
  Send Request_Acquire(ref, requestorNode ) to owner[ref.OID] 
 end if  
 
/** Releases a previously acquired grid object refe rred by a grid object reference. 
 @param  ref  Grid object reference. 
 @param  callerNode The caller node from where the operations has been triggered. 
 @return   True if successful, otherwise false. 
*/ 
Release(GridObjectRef ref, Node callerNode): 
 requesting[ref.OID] = false 
 if  (token[ref.OID].exclusive == true ) then 

// synchronize all “consumer nodes” 
  if (Type(ref) == PC)   

Call SynchronizeAll(ref, token[ref.OID].consumers) on ref.DataNode 
  end if  

 // Code continues from the generic grid object hand ling 
 else 

 // Code continues from the generic grid object hand ling 
 end if  

5.5 Read-Mostly Objects Handling 

Read-Mostly objects introduced in Definition 3.16 represent a more general case of a producer-
consumer object, where the number of writers is not limited to one anymore.  If write operations (namely 
AcquireExclusive) occur on the same universe node, the situation is similar to the producer-consumer 
case, but if the write operations are issued from different nodes and the write frequency is much lower 
than read frequency, we identify those objects as read-mostly objects. The major difference compared to 
producer-consumer objects is that multiple writers from different nodes require a token exchange 
between universes. This situation does not occur in the case of producer-consumer objects, as the 
number of writers is limited to one. Similar to producer-consumer objects, we adopt a configurable 
synchronization mechanism. The overall characteristics of read-mostly objects are summarized in Table 
8. A visual representation of read-mostly objects handling is presented in Figure 37. 

Grid Object Type Number of Objects Replicate  Migrate Readers  Writers 
Read-Mostly n yes no n <<n 

Table 8: Read-Mostly Object Characteristics 
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Figure 37: Read-Mostly Objects Handling 

Figure 37 considers a situation where a read-mostly object is replicated to three different universe 
nodes and an application is running one process on each of the three nodes. The first process is 
acquiring the read-mostly object exclusively (1) and performs a series of write operations. Next, the 
second process is acquiring the same object, waiting of course until the first process releases the object. 
The token is not exchanged to the second node, but only the object’s data is synchronized. A similar 
action is triggered by the third application process (3). Next, the second process wants to write the object 
and acquires the object exclusively (4). As a result, the token is transferred to the second universe node 
(5). Next, the object replica from universe two is written by the second application process. Finally, the 
first application reads the content of its replica by acquiring the object in non-exclusively (6). 

 Algorithm adaptations.  In the following code snippet, we present the required actions we 
consider to execute in order to fulfill the semantics of this object type. For the sake of simplicity and 
conciseness, we only present the changes in respect to the generic grid object approach. The complete 
system solution and logic are presented in Appendix A.3. 

 Read-mostly objects handling requires similar adaptations as producer-consumer objects only if 
the synchronization policy is “write-update” and an eager synchronization protocol is used. The difference 
to producer-consumer objects is that the writers are also part of the “reader” list, so that when eager 
synchronization is performed, the writer nodes are also updated. The following pseudo-code reflects 
these changes, which are marked in bold style that affects all primary nodes. 
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// For evey primary node PNi 
Struct{ 
 Boolean : exclusive - specifies if the token is ow ned exclusively 
 Node :  nonex[]   - nodes that hold the token in n on-exclusive mode 
 Node :  latest[] - nodes that hold the most recent  copy of an object with OID   
 Node :  consumers[] – consumer nodes of Producer-C onsumer type  
 
}Token : token[] - array of tokens for each object identifier 
 
/** Performs an acquire request. 
 @param  ref  Grid object reference. 
 @param  callerNode The caller node from where the operations has been triggered. 
*/ 
PN_Acquire(GridObjectRef ref, Node callerNode): 
 // Same code as in the Producer-Consumer case 

if  owner[ref.OID] != 0 then 
  . . .  
 else 

. . .  
  // update consumer nodes if not already known 

if (Type(ref) == RM and callerNode not in token[ref .OID].consumers) 
Add callerNode to token[ref.OID].consumers 

  end if  
 end if  

// Code continues from the generic grid object hand ling 
. . . 

 
/** Performs an acquire exclusive request. 
 @param  ref  Grid object reference. 
 @param  callerNode The caller node from where the operations has been triggered. 
*/ 
PN_AcquireExclusive(GridObjectRef ref, Node callerN ode): 
 requesting[ref.OID] = true 
 if  owner[ref.OID] != 0 then 

// Code continues from the generic grid object hand ling 
. . . 

 else 
// Code continues from the generic grid object hand ling 
. . . 

 end if 
// update read-mostly nodes if not already known 
if (Type(ref) == RM and callerNode not in token[ref .OID].consumers) 

Add callerNode to token[ref.OID].consumers 
 end if  

// Code continues from the generic grid object hand ling 
. . . 

 
/** Processes an acquire request. 
 @param  ref  Grid object reference. 
 @param  requestorNode The caller node from where t he operations has been requested from. 
 @param  callerPN Primary node from where the reque st has been issued. 
*/ 
Receive_Request_Acquire(GridObjectRef ref, Node req uestorNode, PrimaryNode callerPN): 
 if  (owner[ref.OID] == 0) then 

// Code continues from the generic grid object hand ling 
. . . 
// update consumer nodes if not already known 
if ((Type(ref) == RM) and requestorNode not in toke n[ref.OID].consumers) 

Add requestorNode to token[ref.OID].consumers 
  end if  
 else 
  // non-root node, forward request 
  Send Request_Acquire(ref, requestorNode ) to owner[ref.OID] 
 end if  
 
/** Processes an acquire exclusive request. 
 @param  ref  Grid object reference. 
 @param  requestorNode The caller node from where t he operations has been requested from. 

@param  callerPN Primary node from where the reques t has been issued. 
*/ 
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Receive_Request_AcquireExclusive(GridObjectRef ref,  Node requestorNode, PrimaryNode callerPN): 
 if  owner[ref.OID] = 0 then 

 / / update read-mostly nodes if not already known 
if (Type(ref) == RM and requestorNode not in token[ ref.OID].consumers) 

Add requestorNode to token[ref.OID].consumers 
  end if  

// Code continues from the generic grid object hand ling 
 end if  

// Code continues from the generic grid object hand ling 
 
/** Releases a previously acquired grid object refe rred by a grid object reference. 
 @param  ref  Grid object reference. 
 @param  callerNode The caller node from where the operations has been triggered. 
 @return   True if successful, otherwise false. 
*/ 
Release(GridObjectRef ref, Node callerNode): 
 requesting[ref.OID] = false 
 if  (token[ref.OID].exclusive == true ) then 

// synchronize all “read-mostly nodes” 
  if (Type(ref) == RM)   

Call SynchronizeAll(ref, token[ref.OID].consumers) on ref.DataNode 
  end if  

 // Code continues from the generic grid object hand ling 
 else 

 // Code continues from the generic grid object hand ling 
 end if  

5.6 Result Objects Handling 

Definition 3.17 describes result objects as grid shared objects that consist of several non-
conflicting parts that can be updated simultaneously. As a consequence, whenever a result object’s part 
is written, no mutual exclusion is required. However, the interface specification requires that the 
AcquireExclusive method to be called, in order to signal that an object’s part is to be modified. The 
object’s overall state is composed on the node where a normal acquire has been invoked. The replication 
rate of such object is medium so that a good tradeoff between data locality and data synchronization 
penalty is reached. Object replicas allow local writes that need not travel across large latency 
connections. Of course, during object synchronization, some parts of the object’s content need to travel 
across large latency connections in order to obtain the complete object state. The overall characteristics 
of read-mostly objects are summarized in Table 9. A visual representation of result objects handling is 
shown in Figure 38.  

Grid Object Type Number of Objects Replicate  Migrate Readers  Writers 
Result n yes no 1 n 

Table 9: Result Object Characteristics 

In the depicted scenario, each application process is writing simultaneously one part of the result 
object: the process from universe node1 is writing the third part, the process from universe node2 is 
writing the first part and the one from universe node3 is writing the second one. At some point in time the 
application process co-located with the universe node2 is issuing an acquire request, signalling that it 
requires the entire object state. Next the object state is composed on the universe node2 out of the 
received parts from other universe nodes. 

Algorithm adaptations.  In the following code snippet, we present the required actions we 
consider to execute in order to fulfill the semantics of this object type. For the sake of simplicity and 
conciseness, we only present the changes in respect to the generic grid object approach. The complete 
system solution and logic are presented in Appendix A.3.  
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Figure 38: Result Objects Handling 

Result objects require a slightly different handling than the generic grid objects. From the usage 
perspective, AcquireExclusive is called when an object’s part is modified. When the object’s state is read, 
Acquire is called, but all other write operations must be completed at this point. This means that 
AcquireExclusive can be invoked simultaneously, but Acquire can be invoked only by one caller at a time. 
In other words, the semantics of Acquire and AcquireExclusive operations is the opposite of the generic 
object type. Basically there are two aspects to be taken care of: object part versioning and maintaining a 
correct writer set. Object versioning is maintained by each node. Whenever an object part is written for 
the first time, the original version is stored. We consider as original version either the original version of 
that part (or after an object replication) or the version obtained after the object’s state has been 
synchronized. The second change refers to the writer set. Whenever an object is acquired in exclusive 
mode, the token is not required anymore as there is no arbitration, but the node’s identity is maintained in 
a list of writers, that we refer as the writer set. When an normal acquire is called, the node where the 
result object’s state need to be assembled and synchronized receives all updated parts, based on the 
writer set’s versioning information.  

 
// For every primary node PNi 
/** Performs an acquire exclusive request. 
 @param  ref  Grid object reference. 
 @param  callerNode The caller node from where the operations has been triggered. 
*/ 
PN_AcquireExclusive(GridObjectRef ref, Node callerN ode): 

if (Type(ref) == RES)  

BUPT



A Grid Service Layer for Shared Data Programming  

 
 

 97 / 207 
 

 if  owner[ref.OID] != 0 then 
  // the node does not have the token 
  // node registers to the token owner as non-exclusi ve access 
  Send Request_Acquire(ref, callerNode) to owner[re f.OID] 
  Wait for  Acquire_Granted(ref.OID, latestNodes) 
 else 
  // this primary node has the token 
  Wait until (token[ref.OID].exclusive == false) 
  // now the token can be held non-exclusively 
  Add callerNode to token[ref.OID].nonex 

end if 
  Send AcquiredExclusive to callerNode 

end if 
// Code continues from the generic grid object hand ling 
. . . 

 
/** Performs an acquire request. 
 @param  ref  Grid object reference. 
 @param  callerNode The caller node from where the operations has been triggered. 
*/ 
PN_Acquire(GridObjectRef ref, Node callerNode): 

if (Type(ref) == RES) 
requesting[ref.OID] = true 

 if  owner[ref.OID] != 0 then 
  // the node does not have the token 

   // token must be requested 
   Send Request_AcquireExclusive(ref, callerNode) t o owner[ref.OID] 
   owner[ref.OID] = 0 
   Wait for  Token(ref.OID, latestNodes) 
  else 
   // the node has the token 

Wait until (token[ref.OID].nonex is empty) 
Wait until (token[ref.OID].exclusive == false)  

  end if  
  // perform object state synchronization 
  Call AssembleObject(ref, token[ref.OID].nonex) on r ef.DataNode 
  // reset token 

token[ref.OID].latest = ref.DataNode 
  token[ref.OID].nonex = 0 

token[ref.OID].exclusive = true  
  Send Acquired to callerNode 

end if  
// Code continues from the generic grid object hand ling 
. . . 
 

/** Assembles the object state residing on this nod e out of the updated values of replicas 
residing in a list of nodes. 
 @param  ref  Grid object reference. 
 @param  nodes  Array of nodes that hold updated ve rsions of object parts. 
*/ 
AssembleObject(GridObjectRef ref, Node[] nodes): 

// Construct the parts of the object 
GridObject o = ref.GetObject() 
Part parts[] = o.GetParts() 
Part changedPart 
 
index = 0 
for each part in parts  
 index++ 

for each n in nodes 
 // part is the local part that might have been writ ten somewhere 
 // changedPart is the out parameter, the most rece nt written part 

  changed = (Call GetObjectPart(index, part, changedP art) on n //remote call   
  if (changed = true) 
   parts[index] = changedPart 
   // first found is the correct non-conflicting part  

break 
  end if 
 end for 
end for  

BUPT



A Grid Service Layer for Shared Data Programming  

 
 

 98 / 207 
 

 

Consequences.  The following consequences apply for grid result objects: 

1. A result object’s part represents an indivisible data unit that is typically updated via a 
single write operation.  

2. Each time a result object’s part is modified, the original version is stored by the node so 
that it is known if a part has been changed or not. 

3. An object can be reconstructed out of its parts. 

4. Violations of the interface and object semantics result in undefined object state upon read 
synchronization (e.g. if a part is written by more than one client). 

5.7 Write-Mostly Objects Handling 

According to Definition 3.18, write-mostly objects as a step more general than result objects by 
removing the constraint that an object can be decomposed in non-conflicting parts. In addition the number 
of readers is not limited to one anymore. Write-mostly objects are generic grid shared objects that are 
written (acquired in exclusive mode) very frequently and read (acquired in normal mode) seldom. Such 
objects do not benefit of a high replication ratio, but rely on low replication rates and lazy synchronization 
mechanisms. The overall characteristics of write-mostly objects are summarized in Table 10. A visual 
representation of write-mostly objects handling is shown in Figure 39, where writers are located in all 
universe nodes and the only reader is located in universe node number three.  

 

Figure 39: Write-Mostly Objects Handling 
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Grid Object Type Number of Objects Replicate  Migrate Readers  Writers 
Write Mostly n yes no <<n n 

Table 10: Write-Mostly Object Characteristics 

Algorithm adaptations.  Write-mostly objects handling do not require any particular algorithm 
adaptation. The generic object handling which relies on lazy synchronization suites very well this kind of 
object handling. Write-mostly objects carry semantic information used to properly choose the replication 
rules.  

5.8 Object Type Transformations 

During an application execution one can start operating on some type of objects that are initially 
created. However, due to special conditions in the application logic, the original object type might not be 
suitable anymore and a new object type could be required instead of the original one. One simple 
example is during a computation where a final or intermediate result could be supplied as a read-only 
object. Such an object can be highly replicated and could be easier to reach for processes located “at the 
edges” of the grid universe. Similarly, as a computation evolves, some shared object could be used only 
locally from a certain point in time, thus private objects could be used instead with a much lower 
synchronization penalty. In order to support grid shared object type transformation, we supply an 
extension to the original interface of the grid object and its corresponding reference, as shown in Figure 
40. 

 

Figure 40: Grid Object Reference Type Handling 

The semantics of both SetType methods are described next: 

GridObjectRef::SetType(long type, OID oid)  – changes the type of the object referred by the reference 
to type and associates new user provided identifier, oid.  

GridObjectRef::SetAllType(long type)  – changes the type of the object referred by the reference and all 
its replicas to type. 

Discussion.  The first method changes the type of the directly referred object. As replicas of the 
designated object might exist, the caller must provide a new and unique identifier for the updated type 
object. If the provided identifier is not unique, undefined behavior shall be expected as there is no 
guarantee which of the existing object types is returned as a result of a find operation. The operation can 
be called at any time the object referred by the reference. 

// For every node N 
/** Changes the object type of an object. 
 @param  ref Grid object reference. 
 @param  type The new type of the object instance. 
 @param  oid The new identifier of the object. 
*/ 
SetType(GridObjectRef ref, long type, OID oid): 

BUPT



A Grid Service Layer for Shared Data Programming  

 
 

 100 / 207 
 

// the node does not have the token 
if (Call AcquireExclusive(ref, self) on self) = tru e) 

// the refered object resides on this node 
 GridObject o = ref.GetObject() 
 o.SetType(type) 
 o.SetOID(oid) 

// release the object 
 Call Release(ref, self) on self 
end if 

The second method changes the type for all objects identified by the same user provided 
identifier. In this case all objects keep their identifiers, but depending on object’s type, synchronization 
might be performed or not. Table 11 summarizes the synchronization requirements. For example, a 
change type to a read-only, private, producer-consumer of migratory object from any other object type 
requires that all newly transformed objects be synchronized upon transformation. In case of migratory 
object transformation, if more than one object is transformed, it requires to dispose all but one such object 
and keep the latest version. Result, write-mostly and the generic object type transformations do not 
require any particular synchronization operations. 

Transition From Transition To Synchronization 
Any Read-only All objects 
Any Private All objects 
Any Migratory Latest and dispose all (n-1) copies 
Any Producer-Consumer All objects 
Any Read-Mostly All objects 
Any Result None 
Any Write-Mostly None 
Any Generic None 

Table 11: Object Transformation Synchronization 

 
/** Changes the object type of an object and all it s replicas 
 @param  ref Grid object reference. 
 @param  type The new type of the object instance. 
*/ 
SetAllType(GridObjectRef ref, long type): 

// the node does not have the token 
if (Call AcquireExclusive(ref, self) on self) = tru e) 

// update all objects in all universes 
Call UpdateObjectType(ref, type) on PN 
// release the object 

 Call Release(ref, self) on self 
end if 

5.9 Object Transfer Protocol 

One of the major design guidelines has been to separate deployment configuration from system 
built-in logic. As a result we have split the logic for object replication into one part supplied to the system 
through deployment information and the generic implementation part which provides the logic and the 
realization for the replication rules and primitives. In this way, one can tailor different system behaviors as 
required by the deployed application. In a similar fashion, we define object synchronization protocol as 
part of the deployment information. By default, the generic grid object relies on lazy synchronization. 
However, we have shown that read-mostly objects could benefit out of eager synchronization protocols 
such as write-update. As a consequence, the choice of the synchronization protocol for read-mostly 
objects and producer-consumer is to be supplied via deployment configurations. 
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In the previous chapter, when referring to object synchronization, we did not refer to any specific 
protocol, but we implied that a coarse grained synchronization is performed and the complete object data 
is copied from one node to another. This protocol works well for small objects, but as it relies heavily on 
the ability to represent an object as a collection of bytes (serialization), it is not feasible for large or very 
large objects. We have addressed indirectly this problem in case of result objects, which rely on an 
explicit structure by breaking each result object is indivisible units referred as parts. This approach does 
not address again the case of large or very large parts. In case of large and very large objects, we adopt 
a different technique based on binary differences. The concept is well known in operating systems such 
as Unix where files need to be patched using the smallest possible patch image as fast as possible. 
Instead of sending the complete image, a binary difference is generated and sent instead of the complete 
object. The patch is applied to the original content and the final object is obtained. Using for example the 
bsdiff  algorithm, one could reduce the transported data from 16MB to 300KB, for a 16MB object. We 
consider again the object synchronization protocol as part of the deployment information, giving the 
system architect the freedom to choose different object synchronization protocols for different object 
types. 

5.10 Putting All Together 

The complete pseudo-code solution that describes the algorithm for the presented system model 
is listed in Annex A.3. The pseudo-code illustrates the operations performed on each universe node and 
primary node and covers both generic objects as well as all specialized objects. 
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6 Experiments and Theoretical Analysis 
 

Distributed systems’ analysis is a very important, complex and sensitive topic. One of the most 
common analysis domains relate to performance analysis where performance related aspects of a certain 
system are aimed to be highlighted. In many situations these aspects refer to response time for various 
operations. A simple example is the total execution time of a distributed algorithm, given certain input 
data and a particular system deployment. Other aspects of distributed systems’ analysis relate to the 
number and capacity of used resources in order to complete a certain task. Quality related analysis such 
as different kinds of statistical information represents another dimension of distributed system’s analysis 
(e.g. quality of service). Independent of the specific analysis that is aimed, a common problem in 
distributed systems and especially in grids is to be able to reproduce a given system state such as the 
number of deployed machines, characteristics of the connectivity layer (e.g. bandwidth, latency, network 
congestion) and machine characteristics (system load, free memory, resource distribution). As one can 
immediately notice, the deployment of real-life scenarios in an open environment leads to a very high 
number of possible combinations. Considering that most grid systems are used by a large number of 
users, it is very difficult to ensure a certain global system usage at a given time. Although resource 
reservation systems are widely used, they do not offer hard guarantees. As a result, most system 
evaluations are preferred to be done in ideal conditions where for example in a grid environment only the 
application under test is running (fixed resource allocation scheme) and the connectivity layer is closed to 
the outside world. In these cases, the number of deployed machines is most of the times quite modest. 

Evaluating a grid system in ideal conditions is straightforward, but it opens the question of 
reproducibility likelihood, meaning that if one wants to reproduce a given experiment, one must ensure a 
similar environment. Due to the complexity of grid systems, sometimes this requirement cannot be 
achieved. Worse, a real-life experimental scenario is almost impossible to reproduce in case of a large 
scale distributed application deployed on a wide area grid. This brings us to the idea of considering other 
means of system evaluation that could give the possibility to correlate results from different experiments. 
We aim to perform system analysis on three different directions: theoretical analysis, prototype-based 
analysis and computer aided analysis. We distinguish three main analysis domains while analyzing a grid 
system: performance analysis, resource related analysis and quality related analysis.  

Performance related analysis  refers mostly to the elapsed time for a given operation such as 
response time for a given request or global completion time. Resource related analysis  refers mostly to 
the resource usage in order to complete a given operation such as CPU or memory usage. It might also 
refer to resource status information like latency and bandwidth. Quality related analysis  comprises 
statistical information that is collected during the execution time of an application in a distributed system. 
It may refer to operation acceptance/revocation ratio, time-based availability, throughput, correctness 
level etc. Generally speaking, quality related analysis is closely related to particularities of the analyzed 
system as it aims to highlight domain specific aspects opposite to generic aspects found in the other two 
categories. 
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6.1 Evaluation Criteria 

In order to analyze the abstract model introduced in [128], we introduce several evaluation criteria 
as analysis metrics that shall be used while referring to different aspects of our system. We associate an 
abbreviation to each of the criteria in order to refer to them easily. We consider that a test application is 
running in the grid system which injects different stimuli into the system in order to analyze certain 
aspects. 

6.1.1 Performance Criteria 

In the context of performance analysis, we define the following measurements which serve as a 
performance evaluation criteria for our model: 

• RT – Response time [ms] – represents the execution time for a given operation such as creating, 
locating or removing an object. 

• CT – Completion time [ms] – represents the execution time for a distributed application, from the 
time the first application process starts execution until the last process finishes. 

• TT – Token obtaining time [ms] – represents the time elapsed from the moment a primary node 
issues a token request until the token is received by the primary node. The average (AVG_TT), 
minimum (MIN_TT) and maximum (MAX_TT) values are considered. 

• OST – Object synchronization time [ms] – represents the time required to synchronize two grid 
shared objects (e.g. copy the state of one object into the other object). The average (AVG_OST), 
minimum (MIN_OST) and maximum (MAX_OST) values are considered. 

• AQT – Acquire time [ms] – represents acquire time, which is the time elapsed from the moment of 
issuing an acquire request from a node until the acquire operation is granted on the referred data. 
The average (AVG_AQT), minimum (MIN_AQT) and maximum (MAX_AQT) values are 
considered. 

• AQET – Acquire exclusive time [ms] – represents acquire exclusive time, which is the time 
elapsed from the moment of issuing acquire exclusive request until the operation is granted on 
the referred data. The average (AVG_AQET), minimum (MIN_AQET) and maximum 
(MAX_AQET) values are considered. 

6.1.2 Resource Criteria 

In terms of resource related analysis, we define the following measurements which serve as an 
evaluation criteria for our model: 

• MEM – MEM usage [MB] – represents the memory demand per each node.  

• OP_SCOPE – Operation scope [nodes] – represents the number of nodes involved in the 
execution of one operation (e.g. searching scope). 
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6.1.3 Quality Criteria 

In terms of quality related analysis, we define the following measurements which serve as an 
evaluation criteria for our model: 

• AQSR – Acquire success rate [%] – represents the average success rate for all issued acquire 
operations during the application execution. An acquire operation is successful if the operation is 
granted within the demanded timeout. AQSR can relate to either a node, universe or to the grid 
universe. 

• AQESR – Acquire exclusive success rate [%] – represents the average success rate of acquire 
exclusive operations for all issued acquire exclusive operations during the application execution. 
An acquire exclusive operation is successful if the operation is granted within the demanded 
timeout. AQESR can relate to either a node, universe or to the grid universe. 

• TRAQ – Throughput for acquire [operations/s] – represents the number of successful acquire 
requests per second that are issued in the system. 

• TRAQE – Throughput for acquire exclusive [operations/s] – represents the number of successful 
acquire exclusive requests per second that are issued in the system.  

6.2 Experiments 

This section describes different experiments that aim to highlight performance, resource as well 
as qualitative aspects of the grid universe model. Evaluation of a generic application is most of the times 
a very hard task due to the lack of information about the application’s external conditions. On the other 
hand, a particular application (e.g. traveling salesman problem) might not provide sufficient information so 
that a generic profile can be synthesized.  In other words it is hard to devise a general behavior rule 
based on a particular set of application specific interactions (both data and service). As a result, opposite 
to evaluating a concrete application, we aim to evaluate different interaction patterns that can be 
interactions within a real-life application. Any application can be decomposed into a set of such 
interactions patterns. 

In the following, it is considered to have a number of m universes deployed. Without losing any 
generality, each of the m universes contains a number of n nodes. Of course imbalanced universes with 
different number of nodes can be considered as well, but it complicates the analysis very much. In 
addition, as it will be pointed out later, an imbalanced node distribution does not change the observation 
results. Each of the n nodes has a capacity c, thus there is a homogeneous node distribution across 
universes. Depending on the experiment, at a given time a number of p processes are running in the grid 
universe where p <= m x n. An experiment defines a concrete interaction pattern which focuses on one or 
more performance aspects of the global system and sets the experiment frame. Experiments might have 
variants. An experiment variant defines the exploration in the system parameters space where different 
parameter configurations are used. 

6.2.1 Grid Object Search 

Purpose: The purpose of this experiment is to evaluate the characteristics of the search operation in the 
grid universe. 
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Figure 41: Grid Object Search 

Workflow: The experiment consists of the following steps: 

• [S1 - Deployment] A number of p = m x n processes are deployed, one process on every grid 
node within the grid universe. 

• [S2 - Creation] One of the p processes creates a number of o grid objects in the grid universe 
within a range of numerical object identifiers [OID1, OID2]. 

• [S3 - Steady state] Each process out of the p processes issues a search request in the domain of 
the object identifiers, in order that objects are eventually replicated and a steady state is reached. 

• [S4 - Measurement] Each process performs a random search operation in the domain of the 
object identifiers that have been created and the evaluation criteria are logged.  

Performance evaluation criteria: The following performance evaluation criteria should be measured: 

• RT – response time for search operation [ms] 

Experiment variants:  

• [V1 – Replication] The following replication policies shall be used: “one object per universe”, “n/2 
objects per universe” and “one object per node”. 
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• [V2 – Object Type Count] The number of different object types that are created in S2 should be 
{1, 10, 100, 500, 1000}. 

• [V3 – Node count] The number of nodes within universes should be {5, 10, 20, 50}. 

Expected results: A decrease in search time is expected in case when object replication is enabled. 
Second, the search time should not be directly dependent on the number of nodes and number of 
objects. 

Figure 41 illustrates the operations sequences defined in this experiment. The experiment’s states 
are marked with S1 to S4. The first three states are marked with a dotted line which denotes the steps 
towards the steady state. The last step, the measurement is marked with a solid green arrow. 

6.2.2 Acquire Correctness 

Purpose: The purpose of this experiment is to observe the correctness of the acquire operation and 
evaluate its performance under various conditions. 

Workflow: The experiment consists of the following steps: 

• [S1 - Deployment] A number of p = m x n processes are deployed, one on every grid node within 
the grid universe. “One object per node” replication rule shall be used in order to maximize 
interaction patterns between nodes. 

• [S2 - Creation] One of the p processes creates a generic grid object in the grid universe. 

• [S3 - Steady state] Each process out of the p processes issues a search operation in order to 
trigger object replication and to reach a steady system state. 

• [S4 - Measurement] Each process performs a number of 100 acquire requests issued with a 
delay of d ms. All evaluation criteria are logged. 

Performance evaluation criteria: The following evaluation criteria should be measured: 

• RT – Response time for accessing the remote object [ms] 

• CT – Completion time for the application [ms] 

• AQT – Acquire time [ms] 

• AQSR – Acquire success rate [%] 

• TRAQ – Throughput for acquire [operations/s] 

Experiment variants:  

• [V1 – Node count] The number of nodes within universes should be {5, 10, 20, 50}. 

• [V2 – Acquire Operations] The delay between subsequent operations shall be {3000ms, 2000ms, 
1000ms, 500ms, 100ms}. 

• [V3 – Client count] The number of client applications is limited to one (in the grid universe) and 
the number of nodes is the maximum possible number. 

Expected results: A 100% acquire success rate shall be noticed independent on the experiment’s 
variants. 
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Figure 42 illustrates the operations sequences defined in this experiment. The experiment’s 
states are marked with S1 to S4. The first three states are marked with a dotted line which denotes the 
steps towards the steady state which are identical to the previous experiment. The last step, the 
measurement step, is marked with a solid green arrow and shows the acquire accesses between nodes. 

 

Figure 42: Acquire Correctness 

6.2.3 Acquire Exclusive Correctness 

Purpose: The purpose of this experiment is to observe the correctness of the acquire-exclusive operation 
and evaluate its performance under various conditions. 

Workflow: The experiment consists of the following steps: 

• [S1 - Deployment] A number of p = m x n processes are deployed, one on every grid node within 
the grid universe. “One object per node” replication rule shall be used in order to maximize 
interaction patterns between nodes. 

• [S2 - Creation] One of the p processes creates a generic grid object in the grid universe with the 
following data: a user provided data content (string) and a version (number) that is incremented 
automatically each time the content is set. 
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• [S3 - Steady state] Each process out of the p processes issues a search operation in order that 
objects are replicated and a steady state is reached. 

• [S4 - Measurement] Each process performs a series of 100 acquire-exclusive requests issued 
with a delay of d ms. All evaluation criteria are logged. After each acquire-exclusive operation, 
each process shall log the data content and the version of the object is operates on.  

Performance evaluation criteria: The following evaluation criteria should be measured: 

• RT – Response time for writing the remote object [ms] 

• CT – Completion time for the application [ms] 

• AQET – Acquire time [ms] 

• TT – Token obtaining time [ms] 

• AQESR – Acquire success rate [%] 

• TRAEQ – Throughput for acquire exclusive [operations/s] 

Experiment variants:  

• [V1 – Node count] The number of nodes within universes should be {5, 10, 20, 50}. 

• [V2 – Acquire Operations] The delay between subsequent operations shall be {3000ms, 2000ms, 
1000ms, 500ms, 100ms} (increasing operation frequencies). 

• [V3 – Client count] The number of client applications is limited to one (per grid universe) and the 
number of nodes is the maximum possible number. 

Expected results:  In all logged grid object sequences, there should be no entries belonging to different 
processes that have logged the same object version (acquire exclusive correctness criteria). 

6.2.4 Grid Read-Only Objects 

Purpose: The purpose of this experiment is to observe the performance increase for read-only objects. 

Workflow: The experiment consists of the following steps: 

• [S1 - Deployment] A number of p = m x n processes are deployed, one on every grid node within 
the grid universe. “One object per node” replication rule shall be used in order to maximize 
interaction patterns between nodes. 

• [S2 - Creation] One of the p processes creates a generic grid object and a read-only grid object in 
the grid universe with ids oid1 and oid2. 

• [S3 - Steady state] Each process out of the p processes issues a search operation for both oid1 
and oid2 in order that objects are replicated and a steady state is reached. 

• [S4 - Measurement] Each process performs a series of 100 acquire requests and reading object 
data issued with a delay of d ms for both object types. All evaluation criteria are logged.  

Performance evaluation criteria: The following evaluation criteria should be measured: 

• RT – Response time for accessing the remote object [ms] 
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• CT – Completion time for the application [ms] 

• AQT – Acquire time [ms] 

• AQSR – Acquire success rate [%] 

• TRAQ – Throughput for acquire [operations/s] 

Experiment variants:  

• [V1 – Node count] The number of nodes within universes should be {5, 10, 20, 50}. 

• [V2 – Acquire Operations] The delay between subsequent operations shall be {3000ms, 2000ms, 
1000ms, 500ms, 100ms}. 

• [V3 – Client count] The number of client applications is limited to one (in the grid universe) and 
the number of nodes is the maximum possible number. 

Expected results:  It is expected to notice a performance increase when read-only objects are used in 
comparison to generic objects, as well as 100% values for quality parameters (AQSR). 

6.2.5 Grid Private Objects 

Purpose: The purpose of this experiment is to observe the performance increase for private objects. 

Workflow: The experiment consists of the following steps: 

• [S1 - Deployment] A number of p = m x n processes are deployed, one on every grid node within 
the grid universe. No replication rule shall be used (according to private object definition).  

• [S2 - Creation] One of the p processes creates a generic and a private grid object in the grid 
universe with ids oid1 and oid2. 

• [S3 - Steady state] Each process out of the p processes issues a search operation for both oid1 
and oid2 in order that a steady state is reached. In this case the steady state of the system is the 
same as the state after S2 (as no replication occurs). 

• [S4 - Measurement] Each process performs a series of 100 acquire requests and reading object 
data, issued with a delay of d ms for both object types. All evaluation criteria are logged.  

• [S5 - Measurement] Each process performs a series of 100 acquire-exclusive requests and 
writing object data, issued with a delay of d ms for both object types. All evaluation criteria are 
logged.  

Performance evaluation criteria: The following evaluation criteria should be measured: 

• RT – Response time for accessing the remote object [ms] 

• CT – Completion time for the application [ms] 

• TT – Token obtaining time [ms] 

• AQT, AQET – Acquire and acquire exclusive time [ms] 

• AQSR, AQSR – Acquire and acquire exclusive success rate [%] 

• TRAQ, TRAEQ – Throughput for acquire and acquire exclusive [operations/s] 
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Experiment variants:  

• [V1 – Node count] The number of nodes within universes should be {5, 10, 20, 50}. 

• [V2 – Acquire Operations] The delay between subsequent operations shall be {3000ms, 2000ms, 
1000ms, 500ms, 100ms}. 

• [V3 – Client distribution] The client applications shall be deployed as following:  

o only on the node where the data has been created 

o only in the universe where the data has been created 

o in the entire grid universe 

Expected results:  It is expected to notice a medium performance increase for requests that are issued 
from the same universe and a high performance increase for requests that are issued from the same 
node where the object resides. 

6.2.6 Grid Migratory Objects 

Purpose: The purpose of this experiment is to evaluate the performance increase for migratory objects. 

Workflow: The experiment consists of the following steps: 

• [S1 - Deployment] A number of p = m x n processes are deployed, one on every grid node within 
the grid universe. No replication rule shall be used for migratory objects (according to the 
migratory object definition). One object per node replication rule shall be used for generic objects. 

• [S2 - Creation] One of the p processes creates a generic and a migratory grid object in the grid 
universe with ids oid1 and oid2. Both objects expose a remote method rm that requires d ms to 
execute. 

• [S3 - Steady state] Each process out of the p processes issues a search operation for both oid1 
and oid2 in order that objects are replicated and a steady state is reached.  

• [S4 - Measurement] For each type of objects, each process performs an acquire-exclusive 
request and a call to the object’s remote method rm which takes d ms to execute. In order to 
mimic a migratory process and reduce token congestion, the application processes are started 
with a predefined delay between each other. The application processes shall be started in a 
sequence so that every request is issued from a different universe. The experiment is completed 
when all processes have held the lock once. All evaluation criteria are logged. 

Performance evaluation criteria: The following evaluation criteria should be measured: 

• RT – Response time for accessing the remote object [ms] 

• CT – Completion time for the application [ms] 

• OST – Object synchronization time [ms] 

• TT – Token obtaining time [ms] 

• AQET – Acquire exclusive time [ms] 

• AQSR – Acquire exclusive success rate [%] 
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• TRAEQ – Throughput for acquire exclusive [operations/s] 

Experiment variants:  

• [V1 – Node count] The number of nodes within universes should be {5, 10, 20, 50}. 

• [V2 – Remote execution cost] The following values for d shall be used: 100ms, 500ms, 1000ms. 

Expected results:  It is expected to notice a performance increase in terms of response and completion 
time in case of migratory objects instead of generic objects when the remote execution cost is higher than 
a certain threshold. 

6.2.7 Grid Producer-Consumer Objects 

Purpose: The purpose of this experiment is to observe the performance aspects for producer-consumer 
objects. 

Workflow: The experiment consists of the following steps: 

• [S1 - Deployment] A number of p = m x n processes are deployed, one on every grid node within 
the grid universe.  

• [S2 - Creation] One of the p processes creates a generic and a producer-consumer grid object in 
the grid universe with ids oid1 and oid2. Both objects expose a remote method rm that requires d 
ms to execute. 

• [S3 - Steady state] Each process out of the p processes issues a search operation for both oid1 
and oid2 in order that objects are replicated and a steady state is reached.  

• [S4 - Measurement] For each object type, a producer process which continuously acquires the 
object exclusively and modifies its state every d ms. A set a x consumer processes perform a 
series of acquire operations every d-delta ms (experimentally selected so that a stable system is 
obtained). The consumer applications shall have a uniform deployment distribution in the grid 
universe. The produce-consume operations are run in a predefined number of cycles (e.g. 100). 

Performance evaluation criteria: The following evaluation criteria should be measured: 

• RT – Response time for accessing the remote object [ms] 

• CT – Completion time for the application [ms] 

• OST – Object synchronization time [ms] 

• TT – Token obtaining time [ms] 

• AQT , AQET – Acquire and acquire exclusive time [ms] 

• AQESR, AQSR – Acquire and acquire exclusive success rate [%] 

• TRAQ, TRAEQ – Throughput for acquire and acquire exclusive [operations/s] 

Experiment variants:  

• [V0 – Default Node count] The number of nodes within universes should be as high as possible 
(e.g. depending on available hardware configuration). 

• [V1 – Replication variants]: one object per universe, one object per node. 
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• [V2 –Frequency and cost] Selected acquire frequencies and object weights shall be applied (d 
parameter), so that a transition from a stable to unstable system is experienced. 

• [V3 – Consumers] The consumer number shall be 1, n/3, n/2, 2n/3 and n. 

Expected results:  It is expected to notice a performance increase in terms of response and completion 
time in case of producer-consumer objects instead of generic objects if replication mechanisms are used. 
If no replication rules are used, there should be no performance difference as there is a unique copy of an 
object type in the grid universe. 

6.2.8 Grid Read-Mostly Objects 

Purpose: The purpose of this experiment is to observe the performance aspects for read-mostly objects. 

Workflow: The experiment consists of the following steps: 

• [S1 - Deployment] A number of p = m x n processes are deployed, one on every grid node within 
the grid universe.  

• [S2 - Creation] One of the p processes creates a generic and a read-mostly grid object in the grid 
universe with ids oid1 and oid2. Both objects expose a remote method rm that requires d ms to 
execute. 

• [S3 - Steady state] Each process out of the p processes issues a search operation for both oid1 
and oid2 in order that objects are replicated and a steady state is reached.  

• [S4 - Measurement] For each object type, there is a number of pp producer processes which 
continuously acquire the object exclusively and modify its state every d ms. A set a cp consumer 
processes perform a series of acquire operations and check if there is a change in the object 
state every d-delta ms (experimentally selected so that a stable system is obtained). The 
produce-consume operations are run in a predefined number of cycles (e.g. 100). 

Performance evaluation criteria: The following evaluation criteria should be measured: 

• RT – Response time for accessing the remote object [ms] 

• CT – Completion time for the application [ms] 

• OST – Object synchronization time [ms] 

• TT – Token obtaining time [ms] 

• AQT , AQET – Acquire and acquire exclusive time [ms] 

• AQESR, AQSR – Acquire and acquire exclusive success rate [%] 

• TRAQ, TRAEQ – Throughput for acquire and acquire exclusive [operations/s] 

Experiment variants:  

• [V0 – Default Node count] The number of nodes within universes should be as high as possible 
(e.g. depending on available hardware configuration). 

• [V1 – Replication variants]: one object per universe, one object per node. 
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• [V2 –Frequency] Selected acquire frequencies shall be applied (d parameter) so that a transition 
from a stable to unstable system is experienced. 

• [V3 – Readers-Writes] The number of producer and consumer processes (pp and cp) should be: 
{1, n/2}, {1, n}, {n/10, n/2}, {n/10, n}, {n/5, n/2}, {n/5, n}, {n/3, n/2}, {n/3, n}. 

Expected results:  It is expected to notice a performance increase in terms of response and completion 
time in case of producer-consumer objects instead of generic objects if replication mechanisms are used. 
If no replication rules are used, there should be no performance difference as there is a unique copy of an 
object type in the grid universe. 

6.2.9 Grid Result Objects 

Purpose: The purpose of this experiment is to evaluate the performance aspects for result objects. 

Workflow: The experiment consists of the following steps: 

• [S1 - Deployment] A number of p = m x n processes are deployed, one on every grid node within 
the grid universe.  

• [S2 - Creation] One of the p processes creates a generic and a result grid object in the grid 
universe with ids oid1 and oid2. Each objects type is composed out of op parts. Each object part 
is accessed via a remote method rm that requires h ms to execute. 

• [S3 - Steady state] Each process out of the p processes issues a search operation for both oid1 
and oid2 in order that objects are replicated and a steady state is reached.  

• [S4 - Measurement] For each object type, there are a number of op writer processes which 
acquire the object exclusively and modify one object part. A set a cp reader processes perform a 
series of acquire operations and read the object state. The produce-consume operations are run 
in a predefined number of cycles (e.g. 100). 

Performance evaluation criteria: The following evaluation criteria should be measured: 

• RT – Response time for accessing the remote object [ms] 

• CT – Completion time for the application [ms] 

• OST – Object synchronization time [ms] 

• TT – Token obtaining time [ms] 

• AQT , AQET – Acquire and acquire exclusive time [ms] 

• AQESR, AQSR – Acquire and acquire exclusive success rate [%] 

• TRAQ, TRAEQ – Throughput for acquire and acquire exclusive [operations/s] 

Experiment variants:  

• [V0 – Default Node count] The number of nodes within universes should be as high as possible 
(e.g. depending on available hardware configuration). 

• [V0 – Default remote execution cost] The following value for h shall be used: 1000ms. 

• [V0 – Replication variants]: one object per node. 
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• [V1 – Readers-Writes] The number of reader and writer processes (consequently the number of 
object parts) should be: {n/2, 1}, {n, 1}, {n/2, n/10}, {n, n/10}, {n/2, n/5}, {n, n/5}, {n/2, n/3}, {n, n/3}. 

Expected results:  It is expected to notice a performance increase in terms of response and completion 
time in case of result objects instead of generic objects if replication mechanisms are used. If no 
replication rules are used, there should be no significant performance difference as there is a unique copy 
of an object type in the grid universe. 

6.2.10 Grid Write-Mostly Objects 

Purpose: The purpose of this experiment is to observe the performance aspects for write-mostly objects. 

Workflow: The experiment consists of the following steps: 

• [S1 - Deployment] A number of p = m x n processes are deployed, one on every grid node within 
the grid universe.  

• [S2 - Creation] One of the p processes creates a generic and a write-mostly grid object in the grid 
universe with ids oid1 and oid2. Both objects expose a remote method rm that requires h ms to 
execute. 

• [S3 - Steady state] Each process out of the p processes issues a search operation for both oid1 
and oid2 in order that objects are replicated and a steady state is reached.  

• [S4 - Measurement] For each object type, there is a number of pp producer processes which 
continuously acquire the object exclusively and modify its state every d ms. A set a cp consumer 
processes perform a series of acquire operations and check if there is a change in the object 
state every d-delta ms. The produce-consume operations are run in a predefined number of 
cycles (e.g. 100).  

Performance evaluation criteria: The following evaluation criteria should be measured: 

• RT – Response time for accessing the remote object [ms] 

• CT – Completion time for the application [ms] 

• OST – Object synchronization time [ms] 

• TT – Token obtaining time [ms] 

• AQT , AQET – Acquire and acquire exclusive time [ms] 

• AQESR, AQSR – Acquire and acquire exclusive success rate [%] 

• TRAQ, TRAEQ – Throughput for acquire and acquire exclusive [operations/s] 

Experiment variants:  

• [V0 – Default Node count] The number of nodes within universes should be as high as possible 
(e.g. depending on available hardware configuration). 

• [V0 – Default remote execution cost] The following value for h shall be used: 1000ms. 

• [V1 – Replication variants]: one object per universe, one object per node. 

• [V2 –Frequency] Selected acquire frequencies shall be applied (d parameter). 
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• [V3 – Readers-Writes] The number of producer and consumer processes (pp and cp) should be: 
{n/2, 1}, {n, 1}, {n/2, n/10}, {n, n/10}, {n/2, n/5}, {n, n/5}, {n/2, n/3}, {n, n/3}. 

Expected results:  It is expected to notice a performance degradation once a certain producer-consumer 
ratio is exceeded.  

6.3 Theoretical System Analysis 

This section describes a brief theoretical analysis of the grid shared data model for the 
experiments described in Section 6.2. The analysis is based on the cost model introduced in previous 
chapters which defines the communication costs in the grid universe. The cost model considers a 
homogeneous system, where a number of m universes are considered, and each universe containing a 
number of n nodes. The communication medium is error free, thus all communications between different 
entities have a certain upper limit.  

Let φ denote the communication cost between any two universes. φ is typically expressed in time 
units which denote the round-trip time to send a message and receive the response of the message. In 
other words, any node that sends a message to another node residing in a different universe has a cost 
equal to φ. Let δ  denote the communication cost between any two nodes within the same universe. δ  is 

typically expressed in time units which denote the round-trip time to send a message and receive the 
response of the message. In other words, any node that sends a message to another node residing in the 
same universe has a cost equal toδ . 

The theoretical analysis applies to a stable system which in this case denotes the absence of any 
queuing effects, as if there is only one request at any given time. As seen in the grid universe model, 
several message queues are present in the system. In this analysis, the queues are not considered 
meaning that a stable system is assumed where message queues are not inducing any communication 
latencies and the message arrival frequency equals the message departure frequency. The following 
notations are used: 

• GU – grid universe 

• U - universe 

• PN – primary node 

• m
nOP NCRT ),(  - response time for operation OP that is issued from client C on node N in the grid 

universe with m universes each containing n nodes. 

 If we refer to the cost as time units, and consider a communication between a client C and a node 

N, we note: 

Φ=∩∧∈∈∈∧∈≤ 212,1,21:,),( UUGUUGUUUNUCwhereNCRT m
nOP ϕ  

 The communication between nodes that belong to the same universe has an upper limitδ . If we 

refer to the cost as time units, and considering a communication between a client C and a node N, we 
note: 

UNUCwhereNCRT m
nOP ∈∧∈≤ :,),( δ  
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In the following sections, a particular configuration of the model is considered that reflects a hypothetical 
deployment. If not specified explicitly, the following parameters are used in the analysis: 

5,10,100,20 ==== mnmsms ϕδ  

6.3.1 Grid Object Search 

In the experiment described in Section 6.2.1, the search response time is evaluated when 
different replication rules are used. The search algorithm implies that when an object is looked up, the 
primary node within the universe where the search is issued from is contacted. If the object is registered 
there, the node where the object resides is returned. In the generic case where no replication is used, if 
the object is not present in that universe, the object is looked-up on every known universe until it is found. 
Considering that for m universes and that in the worst case there are up to m-1 search redirections, the 
following response time is obtained: 

ϕδ )1(),(),(),(
1

−+≤+≤ ∑
≠

≤

mPNPRTPNCRTNCRT

PNP
mP

m
nSearch

p

  (1) 

In case “one object per universe” replication rule is used, there will be always a replica of any 
object in the local universe and 

δ≤≤ ),(),( PNCRTNCRT m
nSearch  (2) 

In case “one object per node is used” replication rule is used, although there will be always a 
replica of any object on the client node, the search time implies contacting the primary node and: 

δ≤≤ ),(),( PNCRTNCRT m
nSearch  (3) 

For example, considering the above three situations, there are two possible search response time 
characteristics that are depicted in Figure 43. The dotted red line represents the right hand side of 
formula (1) and the green line formulas (2) and (3). 

 

 

Figure 43: Grid Search Object Time 
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6.3.2 Acquire and Acquire Exclusive 

The experiment described in Section 6.2.2 aims to highlight performance aspects of the acquire 
operation. The operation does not depend on the replication scheme, but rather on the token’s location.  

In case of the generic grid object, the node that requires access to the data needs to request 
access from the primary node that holds the token for that specific object type. Access is granted if there 
are no other acquire-exclusive requests. Assuming that the requests have to travel across the longest 
chain of primary nodes so that: 

GenericGenericToken
m
nGeneric TTmTTPNPRTPNCRTNCAQT ++≤++≤ ϕδ )log(),(),(),(  (4) 

where GenericTT represents the local token obtaining time. Basically GenericTT refers to the time required to 

obtain access to a resource assuming that the token is held by the node that requires the resource. 

GenericTT depends on the local resource arbitration algorithm. It also depends on the number of waiting 

requests to be processed when a request is issued, namely the pending acquire exclusive and non-
exclusive requests. Typically it includes also the resource holding time by all pending requests. As this 
value is application specific, it can be only measured or simulated.  

In case of the generic object, the acquire time does not depend on the object distribution, but 
rather on the token distribution. If the token is held by the universe where C resides, the acquire time 
becomes: 

Generic
m
nGeneric TTTTPNCRTNCAQT +≤+≤ δ),(),(   (5)  

Formula (5) represents the ideal case where all requests are made within the same universe and 
represents a lower bound for AQT. In case the token resides in another universe, according to the Grid 
Universe model, there can be up to m-1 possible token requests within the grid universe, which leads to 
an upper bound for AQT. Considering both situations, the following formula is obtained: 

Generic
m
nGenericGeneric TTmNCAQTTT ++≤≤+ ϕδδ )log(),(   (6) 

Assuming that no acquire-exclusive requests have been made, it means that GenericTT can be 

neglected since the token neither has to migrate, nor to be held by a node. Figure 44 reflects formula (7) 
where msTTGeneric 20=  

ϕδδ )log(),( mNCAQT m
nGeneric +≤≤     (7) 

In case of the acquire exclusive operation, in addition to the operations reflected in (7), the token 
migration and potential object synchronization time must be reflected so that: 

ObjMigrateGeneric

ObjMigrateGenericToken
m
nGeneric

SYNCTTTTm

SYNCTTTTPNPRTPNCRTNCAQET

++++≤

≤++++≤

ϕδ )log(

),(),(),(
 (8) 

As discussed in this section, the three parameters are application dependent and they can be 
simulated or measured. The token migration time as well as the synchronization time is directly 
dependent on ϕ  and the size of the token representation respectively the size of the grid shared object. 
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Figure 44: Acquire Time 

6.3.3 Grid Read-Only Objects 

The experiment described in Section 6.2.4, aims to highlight performance aspects of grid read-
only objects compared to the situation where generic grid objects are used. First, in the experiment 
definition, the response time for search operation is considered. As seen in section 6.3.1, the search time 
depends only on the replication scheme which results in the object distribution in the grid universe. 
Considering that read-only objects are using an aggressive replication rule (“one object per node” if the 
size of the object is reasonably small), there are no differences in terms of the search response time 
compared to generic grid objects provided that the same replication rules are used for generic objects. In 
the analysis of the acquire time AQT we have the following situations, depending on the object 
distribution: 

(C1). “One object per node” replication  

0),(Re =−
m
nOnlyad NCAQT  (9) 

as there is always a replica on N. 

(C2). “One object per universe” replication and C and N belong to the same universe 

m
nOnlyad NCAQT ),(Re − δ≤  (10) 

as a call to N is necessary to arbitrate the data access. 

(C3). “One object per universe” replication and C and N belong to t he different universe 

m
nOnlyad NCAQT ),(Re − ϕ≤   (11) 

as a call to N is necessary to arbitrate the data access. This situation is impossible to occur since 
read-only object are there will be exactly one replica of any read-only object in any universe. 
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The response time for reading object data depends at the end on the replication scheme which is 
used. Similar to the search operation analysis, if the same replication rules are used, object reading time 
shall be the same for read-only and generic grid objects. In both situation (assuming that acquire 
exclusive requests are not issued so that timeouts cannot occur), the acquire success rate for both object 
types is expected to be 100%. 

Obviously, the acquire time for read-only objects is by far lower than the one for the generic 
objects, thus a significant performance increase would be expected in case of the usage of read-only 
objects. Considering the application completion time, in case of the generic objects we have the following 
situation: 

dadmNCCT

dadmNCCT

dNCleaseadNCAQTNCCT

Generic
m
nGeneric

Generic
m
nGeneric

m
nGenericGeneric

m
nGeneric

m
nGeneric

++++≤

+++++≤

+++=

Re))log(1(2),(

Re)log(),(

),(ReRe),(),(

ϕδ
δϕϕδ   (12) 

In case of read-only objects: 

dadNCCT

dadNCCT

dNCleaseadNCAQTNCCT

Onlyad
m
nOnlyad

Onlyad
m
nOnlyad

m
nOnlyadOnlyad

m
nOnlyad

m
nOnlyad

++≤

+++≤

+++=

−−

−−

−−−−

ReRe

ReRe

ReReReRe

Re2),(

Re),(

),(ReRe),(),(

δ

δδ  (13) 

A graphical representation of formulas (12) and (13) is shown in Figure 45, considering the same 
value for the read operation, as if the object was located on the same node. As expected, a better 
performance is obtained by using grid read-only objects instead of the generic objects. In addition, the 
application performance is expected to be independent on the number of deployed nodes and universes. 

 

Figure 45: Grid Read-Only Objects – Application Completion Time 
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6.3.4 Grid Private Objects 

The experiment described in Section 6.2.5, aims to highlight performance aspects of grid private 
objects compared to generic grid objects. Similar to the case of read-only objects as seen in the previous 
section, the search time depends on the object replica distribution. As private objects are not replicated, 
generic grid objects might have an advantage due to replication in terms of the search operation. The 
worst case scenario is identical for the two situations when “one object per universe” is used for generic 
grid objects. If “one object per node” replication rule is used, search time for the generic grid object 
becomes δ≤≤ ),(),( PNCRTNCRT m

nSearch opposite to ϕδ )1(),( −+≤ mNCRT m
nSearch  which is 

required for private object search. 

The acquire time AQT or AQET  is determined directly by the communication cost to the node 
where the data resides as the token mechanism is avoided. This means that basically AQT and AQET 
depends only if the node holding the private objects resides or not in the same universe as the client node 
as following (considering in a stable system): 

(C1). C and N belong to the same universe 

ivate
m
nivate TTNCAQT PrPr ),( +≤ ϕ   (14) 

 (C2). C and N belong to different universes 

ivate
m
nivate TTNCAQT PrPr ),( +≤ δ   (15) 

where TT represents the token obtaining time. TT refers to the time required to obtain access to a 
resource assuming that the token is held by the node that requires the resource. It depends on the local 
resource arbitration algorithm and of course the number of the requests waiting to be processed when a 
request is issued. It also contains the resource holding time by all pending requests. As this value is 
implementation and application specific, it can be only measured or simulated. 

In case of the generic grid object, we have the same situation as described in (6) and (8).  

Due to algorithmic complexities, it is expected that Genericivate TTTT ≤Pr meaning that 
m
nGeneric

m
nivate NCAQTNCAQT ),(),(Pr <  no matter what replication rule is used for the generic objects. 

The response time for reading object data depends on the size of the object as well as on the 
object’s location relative to the caller node. Similar to the search operation analysis, if the same 
replication rules are used (e.g. no replication), object reading time shall be the same for private and 
generic grid objects. In this case, the application completion time becomes: 

dTTNCCT

dTTNCCT

dNCleaseadNCAQTNCCT

ivate
m
nivate

ivate
m
nivate

m
nivateivate

m
nivate

m
nivate

++≤

+++≤

+++=

PrPr

PrPr

PrPrPrPr

2),(

),(

),(ReRe),(),(

δ
δδ  (16) 
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Figure 46: Grid Private Objects – Application Completion Time 

If we consider for example that an average number of n/2 clients are waiting for the token at a 
given time and token request handling takes 5ms for the private objects and 10ms for generic objects 
(due to algorithm complexity), formulas (18) and (14) become the following, which is drawn in Figure 46: 

)10(
2Pr d
n

TT ivate +=  
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d
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TTGeneric +=  

dd
n

NCCT m
nivate +++≤ )5(

2
2),(Pr δ     (17) 

dd
n

mNCCT m
nGeneric ++++≤ )10(

2
2),( ϕδ    (18) 

6.3.5 Grid Migratory Objects 

The experiment described in Section 6.2.6 aims to highlight performance aspects of grid 
migratory objects compared to generic grid objects. Similar to the case of read-only objects as seen in 
section 6.3.1, the search time depends on the object replica distribution. As migratory objects are not 
replicated, generic grid objects might have an advantage due to replication in terms of the search 
operation. The worst case scenario is identical for the two situations when “one object per universe” is 
used for generic grid objects. If “one object per node” replication rule is used, search time for the generic 
grid object becomes δ≤≤ ),(),( PNCRTNCRT m

nSearch opposite to ϕδ )1(),( −+≤ mNCRT m
nSearch  

which is required for migratory object search. 

The acquire time AQT or AQET  is determined by the search time due to resolving invalid 
references. As a consequence, there are four possible situations: 
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(C1). If the reference is valid and C and N belong to same univ erses 

Migratory
m
nMigratory TTNCAQET +≤ δ),(      (19) 

(C2). If the reference is valid and C and N belong to different  universes 

Migratory
m
nMigratory TTNCAQET +≤ ϕ),(      (20) 

(C3). If the reference is invalid and C and N belong to differ ent universes 

MigratoryMigratory
m
nSearch

m
nMigratory TTmTTNCRTNCAQET ++≤++≤ ϕδϕ),(),(  (21) 

(C4). If the reference is invalid and C and N belong to the sa me universe 

MigratoryMigratory
m
nSearch

m
nMigratory TTmTTNCRTNCAQET +−+≤++≤ ϕδδ )1(2),(),(  (22) 

where TT represents the token obtaining time. TT refers to the time required to obtain access to a 
resource assuming that the token is held by the node that requires the resource. It depends on the local 
resource arbitration algorithm and of course the number of the requests waiting to be processed when a 
request is issued. It also includes the resource holding time by all pending requests. As this value is 
application specific, it can be only measured or simulated. 

In case of the generic grid object, we have the same situation as shown in section 6.3.1 in 
formulas (6) and (8), where both an upper and lower bounds can be defined depending on the token 
location with respect to the node holding the shared data: 

Generic
m
nGenericGeneric TTmNCAQTTT ++≤≤+ ϕδδ )log(),(      (6) 

ObjMigrateGeneric

ObjMigrateGenericToken
m
nGeneric

SYNCTTTTm

SYNCTTTTPNPRTPNCRTNCAQET

++++≤

≤++++≤

ϕδ )log(

),(),(),(
 (8) 

Based on (22) and (8), ⇔≤ m
nGeneric

m
nMigratory NCAQETNCAQET ),(),(  

⇔++++≤+−+ ObjMigrateGenericMigratory SYNCTTTTmTTm ϕδϕδ )log()1(2  

ObjMigrateGenericMigratory SYNCTTTTmTTm +++≤+−+ ϕϕδ )log()1(    (23) 

In case of the experiment considered in 0 every access to the migratory objects will result in an 
invalid reference which needs to be resolved. Considering every two consecutive accesses from two 
different nodes, there are two situations depending on the relative node’s locations: C3 and C4. It is 
important to note that at the global scope, where multiple acquire exclusive requests are being issued, the 
acquire time for migratory objects depends heavily on the performance of the search operation. Under 
these considerations, the situations C3 and C4 become: 

(C3’). If the reference is invalid and C and N belong to differe nt universes 

⇔++≤ Migratory
m
nMigratory TTmNCAQET ϕδ),(  

ObjectObject
m
nMigratory SYNCmSYNCmNCAQET ++=+++≤ ϕδδϕδ 2),(   (24) 

⇔++++≤ ObjectMigrateGeneric
m
nGeneric SYNCTTTTmNCAQET ϕδ )log(),(    
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ObjectGeneric
m
nGeneric SYNCTTmNCAQET +++≤ ϕδ )log(2),(     (25) 

Considering a stable system where GenericTT is negligible, based on (24) and (25) it can be 

observed that between universes: ≤m
nGeneric NCAQET ),( m

nMigratory NCAQET ),( � ϕϕ mm ≤)log(  

(C4’). If the reference is invalid and C and N belong to the sa me universe 

⇔+≤ Migratory
m
nMigratory TTNCAQET δ),(  

ObjectObject
m
nMigratory SYNCSYNCNCAQET +=++≤ δδδ 2),(     (26) 

ObjectGeneric
m
nGeneric SYNCTTNCAQET ++≤ δ),(      (27) 

Considering a stable system where GenericTT is negligible, based on (26) and (27) it can be 

noticed that within a universe ≤m
nGeneric NCAQET ),( m

nMigratory NCAQET ),( � .2δδ ≤  

The response time for reading object data depends at the end on the replication scheme that is 
used. Similar to the search operation analysis, if the same replication rules are used (e.g. no replication), 
object reading time shall be the same for migratory and generic grid objects. A major advantage for 
migratory objects is when a high number of operations are issued that requires a high amount of data 
marshaling across the network. In these cases, the locality characteristics of the migratory objects can 
play a significant role and decrease the total application execution time. 

6.3.6 Grid Producer-Consumer Objects 

The experiment described in Section 6.2.7 aims to highlight performance aspects of grid 
producer-consumer objects compared to generic grid objects. Similar to the case of previous types of 
objects and as seen in section 6.3.1, the search time depends on the object replica distribution. As 
producer-consumer objects are replicated in the same way as generic grid objects, there is no difference 
in search time and formulas (1), (2) and (3) apply in this situation too. 

In terms of the acquire time AQT or AQET  , there is no difference compared to the generic grid 
object and both lower and upper bounds apply in the same manner as follows: 

PC
m
nPCPC TTmNCAQTTT ++≤≤+ ϕδδ )log(),(     (28) 

Generally speaking, the token time is composed out of three different operations execution times: 

nhronizatioObjectSyncationClientOperquestTokenTTGeneric ++= Re  (29) 

In case of producer-consumer objects, where an eager synchronization protocol is used, the 
object synchronization time overlaps with the client operation, thus: 

 ationClientOperquestTokenTTPC += Re       (30) 

As seen from (29) and (30), the difference in AQT between the generic grid objects and producer-
consumer objects is reduced in the object synchronization time. The object synchronization time depends 
on the number of replicas that need to be synchronized and the size of the object. Depending on these 
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situations a performance increase up to the object synchronization time can be expected for acquire 
operations. It means that under any circumstances m

nGeneric
m
nPC NCAQTNCAQT ),(),( ≤  

In terms of the release time, in case of the generic objects the release time is reduced to the 
penalty of sending a message to the primary node from the node holding the object lock. However, in 
case of the producer consumer objects, besides notifying the primary node, an object synchronization 
protocol is followed where all consumer objects that are currently in use are being updated eagerly. This 
means that: 

 
m
nGeneric

m
nPC NCRLTNCRLT ),(),( >      

(31) 

Considering the acquire exclusive time, in case of the producer-consumer object where there is 
only one producer node, the acquire exclusive time is expected to be constant (assuming that a stable 
system is observed). For producer-consumer objects there is no object synchronization necessary in the 
acquire exclusive operation since there is only one producer which acquires the object from time to time, 
thus m

nGeneric
m
nPC NCAEQTNCAQET ),(),( ≤      

(32)
 

6.3.7 Grid Read-Mostly Objects 

The experiment described in Section 6.2.8 aims to highlight performance aspects of grid read-
mostly objects compared to generic grid objects. Similar to the case of producer-consumer objects and as 
seen in section 6.3.1, the search time depends on the object replica distribution. As read-mostly objects 
are replicated in the same way as generic grid objects, there is no difference in search time and formulas 
(1), (2) and (3) apply in this situation too. 

In terms of the acquire time AQT or AQET  , there is no difference compared to the generic grid 
object and both lower and upper bounds apply in the same manner as follows: 

RM
m
nRMRM TTmNCAQTTT ++≤≤+ ϕδδ )log(),(    (33) 

Similar to producer-consumer objects, an eager synchronization protocol is used and the object 
synchronization time might partially overlap with the client operation, thus: 

 ationClientOperTokenRqTTRM +=      (34) 

In general it is expected that up to a certain number of writers and write frequencies acquire time 
for read-mostly objects would be less than for generic objects. Since the performance gain is determined 
by the total overlapped operations (synchronization and client operations), it is impossible to express 
exactly the difference to generic objects. 

The only difference between read-mostly objects and producer-consumer objects is in the 
number of writers (or producers). The difference in terms of writer count can be reflected in the object 
synchronization protocol where the identity of readers and writers is more difficult to manage in case that 
multiple writers are allowed. It means that potentially the token time for read-only objects would be higher 
that the token time for producer-consumers and the probability of complete overlapping between object 
state synchronization and object usage is smaller. A quantitative definition of this overlapping would 
require a probabilistic estimation approach in the theoretical analysis which is aimed to be covered by 
prototype experiments as well as through computer aided verification support. 
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6.3.8 Grid Result Objects 

The experiment described in Section 6.2.9 aims to highlight performance aspects of grid result 
objects compared to generic grid objects. Similar to the case of previous types of objects and as seen in 
section 6.3.1, the search time depends on the object replica distribution. As result objects are replicated 
in the same way as generic grid objects, there is no difference in search time and formulas (1), (2) and (3) 
apply in this situation too. 

In terms of the acquire time AQT  , there is no difference compared to the generic grid object and 
both lower and upper bounds apply in the same manner: 

sult
m
nsultsult TTmNCAQTTT ReReRe )log(),( ++≤≤+ ϕδδ     (35) and 

nhronizatioObjectSyncationClientOperquestTokenTT sult ++= ReRe   (36) 

In case of result objects, object synchronization protocol is more complex than in case of generic 
grid objects. First, the latest objects parts are identified and then the state of the target object is 
assembled out of the distributed object states. Depending on object part distribution and their sizes 
different synchronization time values can be experienced. An analytical analysis of these aspects would 
require an extension towards probabilistic models which is exceeds the scope of the static analysis. The 
overall performance differences are aimed to be covered in later sections on prototype experiments as 
well as computer aided analysis. 

In terms of the acquire exclusive time AQET  , each acquire exclusive operation does not lock 
the object part, but only checks if the grid object can be accessed (e.g. no other client holds the object in 
exclusive mode). As a result: 

ϕδδ )log(),(Re mNCAQET m
nsult +≤≤       (37) 

Thus, it is expected that AQET for result objects to be much smaller than in case of generic 
objects due to the missing synchronization lock. 

6.3.9 Grid Write-Mostly Objects 

The experiment described in Section 6.2.10 aims to highlight performance aspects of grid write-
mostly objects compared to generic grid objects. Similar to the case of previous types of objects and as 
seen in section 6.3.1, the search time depends on the object replica distribution. As write-mostly objects 
are replicated in the same way as generic grid objects, there is no difference in search time and formulas 
(1), (2) and (3) apply in this situation too. 

As write-mostly objects are not different than generic objects (they carry semantic information 
especially for the selection of a proper replication rule), the acquire time AQT or AQET  is identical to the 
generic grid object and both lower and upper bounds apply in the same way: 

MostlyWrite
m
nMostlyWriteMostlyWrite TTmNCAQTTT −−− ++≤≤+ ϕδδ )log(),(   (38) 

The performance aspects are only affected by the replication rules and the number of readers 
and writes. Same as previous objects type, an analytical analysis of these aspects would require an 
extension towards probabilistic models which is quite complex. The overall performance differences are 
aimed to be covered in later sections on prototype experiments as well as computer aided analysis. 
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7 Prototype Analysis 
 

This chapter describes the analysis of a prototype model of the system that was developed in 
order to assess various performance and qualitative aspects as described in section 6.2. First, the 
prototype architecture is described and then the experimental results are presented. 

7.1 GUN Architecture 

GUN is the acronym for Grid UNiverse and represents a Java based implementation of the grid 
universe model defined in [132]. Remote interactions are expressed in GUN based on Java’s remote 
object model. First, the Remote Method Invocation (RMI) solution was chosen for its simplicity and ease 
of use. Second, because the system model does not require multicasting support (like Jini [129] or 
ProActive [130] solutions do), the RMI model fits well to the abstract model.  

GUN reflects the architecture of the abstract model and the abstract system architecture 
described in [131]. Similar to the abstract model, in GUN there are a set of processes deployed over 
several networks called universe nodes. The universe nodes are homogeneous and each of them is able 
to accommodate a certain number of data items, until the available capacity of the universe node is 
consumed. Typically universe nodes are grouped together in network latency proximity and form a 
universe. The collection of all deployed universes forms the grid universe. Each universe contains a 
dedicated node called “primary node” which manages the communication with other universes and 
indexes the information on available data items accommodated by each node within the same universe. 
All primary nodes can be seen as a distributed registry, each being responsible for managing certain 
number of data objects.  

 

Figure 47: GUN Layers 

The GUN prototype is divided into three layers, as illustrated in Figure 47. There is a user layer 
which exposes the abstractions and necessary interfaces to the application programmer. The second 
layer is the kernel which implements the core algorithms and implements all interfaces exposed to the 

BUPT



A Grid Service Layer for Shared Data Programming  

 
 

 127 / 207 
 

outside world by the user layer. Last but not least, there is a replication layer which handles object 
replication policies. The replication layer implements an interface required by the kernel so that the kernel 
invokes the replication engine at some key points in order to trigger object replication. The replication 
layer is extendable, meaning that user defined replication rules can be registered into the GUN 
architecture. 

7.1.1 GUN User Layer 

The user layer depicted in Figure 48 provides services to create, find, delete and acquire grid 
objects. The services are exposed through the GridUniverse class which is implemented as a singleton 
object. When an object is created, GUN returns a handle to that object. The handle contains information 
about the object identifiers OID, GID and an URI of the remote object in the RMI domain. The handle 
shall be passed by the client whenever an operation on the grid objects is invoked such as removal, 
acquire or release. Basically, the application programmer extends the GridObject class in order to 
implement its custom objects. The GridObject implements the RMI specific Remote interface, meaning 
that GUN user defined objects are automatically remote objects. The concrete custom interface is 
retrieved from GUN using the GetGridObjectRef method of the GridObjectHandle class. 

 

Figure 48: GUN User Layer 

Object creation follows the locality principle and tries to find a node in the proximity of the node 
from where the request was issued (e.g. caller node). Upon completion, the create service returns a 
handle to the client that can be used to acquire exclusive or non-exclusive access to the object instance 
as well as to invoke specialized methods that are provided in the concrete object definition. Object finding 
follows the same data locality principle and tries to locate an object that resides in the proximity of the 
caller application.  
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7.1.2 GUN Kernel 

In the GUN kernel , there are interfaces defined for nodes and primary nodes as well as their 
implementations for grid nodes and grid primary nodes. The grid node related classes that are described 
in Figure 49 are not exposed by the user layer and thus they are not visible to the GUN application 
programmer.  

 

Figure 49: GUN Architecture: GridNode and GridPrimaryNode 

When the GUN system is started, first all primary nodes are being started. Each primary node 
has a configuration file which contains the address of at least another primary node so that following the 
known primary nodes, all primary nodes can be eventually known to one another.. Based on this 
minimalistic configuration file, primary nodes are able to discover all the other primary nodes dynamically. 
The primary nodes are running a simple discovery protocol, which at the end brings all primary nodes to 
know the identity of all other primary nodes. The same mechanism is applied when a primary node is 
removed from the grid universe.  As a result, in the GUN system, it is ensured that every primary node 
knows all other primary nodes, or in other terms, all universes know all other universes. This decision has 
been made based on the assumption that primary nodes are running on dedicated machines, which have 
a high availability rate (e.g. hardware fault tolerance). The GUN system can be extended from this point 
of view to a peer-to-peer like discovery protocol between primary nodes. 
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Figure 50: GUN Architecture: Kernel Messages 

After the primary nodes are started, the grid nodes are deployed. Every grid node has a 
configuration file that specifies its name, capacity and the address of the primary node where it must 
register. Normally the grid nodes are located in network latency proximity, meaning that in every universe 
there are homogeneous communication characteristics. When the node is instantiated, it automatically 
registers to the designated primary node. The primary node stores information in a hash table about all 
the registered nodes and their status (e.g. available capacity, stored objects etc). Using a hash table 
mechanism it is ensured that a fast lookup time is achieved. 

The kernel component implements the mutual exclusion algorithms and the model defined in 
[131] where an extended version of the distributed multi-token Naimi-Trehel algorithm has been defined. 
The interaction between nodes and primary nodes is happening via remote message invocations (RMI). 
This interaction follows the following pattern: request messages are sent via methods named like 
DoSomething() while callbacks are received via methods named onSomeMessage(). Internally, the 
asynchronous communication is realized via message classes that are described in Figure 50. 

7.1.3 GUN Mutual Exclusion Handling 

When a client invokes an operation on a grid object via the GridUniverse, the node where the 
client resides gets invoked one of the following methods (depending on the desired operation): Acquire, 
AcquireExclusive or Release. The node creates the corresponding request message and adds it into its 
request queue. Next, the node delegates the operation to the primary node to which it had registered. 
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Next, the node is waiting for the primary node to reply to its request by calling a wait method on the 
queued message. After processing the node’s request, the primary node responds to the node by calling 
one of the callback methods which triggers a notification on the awaited message. After the node is 
notified by the awaited message, the message is removed from the queue, the original client method 
invocation ends and the response is returned to the client. This mechanism is used for all interactions 
between nodes and primary nodes. 

The interaction between grid primary nodes is more complex and it basically implements the 
multi-token Naimi-Trehel algorithm. All requests that are sent by grid nodes are queued by the primary 
nodes in two separate queues: a queue for acquire requests and one for release requests. There is a 
dedicate message queue for each group of object identifiers, as depicted in Figure 51. 

 

Figure 51: GUN Architecture: Message Queues 

There are several worker threads that are processing the queued requests. In order to facilitate a 
higher parallelism level as well as lower locking time, the GUN prototype makes use of several worker 
threads that are handling the following operations: 

• Acquire requests – serving acquire requests 

• Acquire exclusive requests – serving acquire exclusive requests 

• Release requests – serving release requests 

• Token reception – serving token reception 

• Latest nodes exchange – handling the set of latest nodes which hold the most up to date replica 

Some of the kernel threads are depicted in Figure 52. In addition to the threads shown in Figure 
52, there are a few more threads that are temporary used in order to perform certain cleanup operations. 

Once the requests are queued on the primary nodes, they are processed one by one by the 
worker threads. In addition, the primary nodes are processing requests from other primary nodes that are 
received over the remote interface. These two kinds of requests are competing requests that are 
synchronized in the processing methods of the primary nodes using critical sections. It is worth to note 
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that all remote requests (e.g. remote from other universes via primary nodes) are received in the context 
of the RMI constructed thread. This means that the arbitration between local or remote requests is non-
deterministic. However, in case of acquire-exclusive requests, GUN implements a priority mechanism, as 
described in [131], where requests coming from the local universe are handled before requests issued 
from other universes. The priority handling is time-based, meaning that requests are prioritized within a 
certain time-frame. 

 

Figure 52: GUN Architecture: Kernel Worker Threads 

 

Figure 53: GUN Architecture: Kernel Token 
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The distributed mutual exclusion algorithm is based on the multi-token concept. For every group 
of object group there is a token associated. The tokens as well as all data structures are hashed based 
on the object identifier OID. The token structure is depicted in Figure 53. The token contains a list of 
nodes that are having requested the object in non-exclusive mode and did not release the objects yet. 
Second, the token contains a list of nodes that are holding an up-to-date version of the object. For 
specialized objects the token structure has been extended with a list of consumers and writers (for 
producer-consumer and result objects). 

7.1.4 GUN Monitoring and Replication 

In order to collect performance related data, a monitoring layer has been integrated into the grid 
primary node and grid node. The grid universe monitor which keeps track of the time spent for a given 
operation such as acquire time, acquire hits and misses and computes statistical information like acquire 
success rates. The monitoring components are invoked by the kernel in certain key points in order to log 
the required data. Performance data can be dumped into comma separated value files by invoking a 
method of the node where the client application is running. The monitoring classes are reflected in Figure 
54. 

 

Figure 54: GUN Architecture: Kernel Monitor 

GUN defines a generic replication hook that is called by the kernel when replication can be 
triggered. GUN contains a replication layer that takes care of object replication and migration, by applying 
a set of extendable dynamic replication rules that are supplied to the system at deployment time. Object 
replication and migration can happen either when an object is looked-up as there could be a closer 
replica, or during object acquiring and release. The replication mechanism is based on replication rules 
that are defined at deployment time and are loaded into the replication engine when the GUN system is 
started. If the replication engine decides to replicate a given object, the object is replicated to the 
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designated target node and the client handles are updated so they refer to the newly created replica. The 
replication engine and the replication hook that is called by the GUN kernel are shown in Figure 55. 

 

Figure 55: GUN Architecture: Replication Engine and Replication Hook 

 

Figure 56: GUN Architecture: Replication Rules 

The basic replication rule classes are presented in Figure 56. It is possible to define custom 
replication rules and register them into the replication engine. The rule evaluation is left to the concrete 
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rule implementation. The replication engine simply collects the evaluation of all replication rules. If one of 
the rules evaluates to true, the replication engine triggers object replication. 

7.2 Experimental Results 

The GUN prototype was tested in a large scale grid environment which is depicted in Figure 57. 
During the prototype development and testing phases, a number of 3 to 5 universes were deployed. The 
first universe is represented by a small cluster physically deployed at the “Politehnica” University of 
Timisoara which is part of the MedioGrid project [134]. The second universe is made out of machines of a 
high performance cluster located at the Western University of Timisoara which is used in the SCIEnce 
European project. The third universe contains machines located at the Research Institute for Symbolic 
Computation (RISC) in Linz, Austria.  The last two universes consist of machines located in a cluster of 
the “Technische Universität Dresden”, Germany and the Bangalore Institute of Technology University, 
India. In this configuration, the latencies between universes were ranging between 10ms and 240ms. The 
very first experimental results [133] have confirmed the initial hypothesis of the feasibility of shared data 
programming approaches for large scale distributed systems.  

 

Figure 57: GUN Experiments Setup 

One of the first problems encountered during the execution of the first experiments was that the 
number of required nodes was higher than the number of available machines. Most of the clusters that 
were accessed had between 3 and 10 machines and the experiments require a number of nodes ranging 
from 5 to 50 (in the ideal case). The problem was exacerbated because there were no common access 
interfaces to those networks so that a significant effort was required to deploy GUN and start the 
experimental applications.  As a result, a better experimental setup was necessary.  
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An SGI Altix 4700 machine was used, which is available at the Research Institute for Symbolic 
Computation (RISC) in Linz, Austria and at “Technische Universität Dresden”, Germany. The machine 
located at RISC has 128 Intel Itanium 2 Montecito processors with hyper-threading technology, running at 
1,6GHz and having 18 MB L3 cache which means that it can execute 256 threads simultaneously. The 
machine has 1 Terabytes of main memory (Global Shared Memory NUMA) and 24300 GB data storage. 
The machine located at TU Dresden's Center for Information Services and High-Performance Computing 
(ZIH) is powered by 2048 Intel Itanium 2 Montecito processor and has 6.5 Terabytes of main memory. 
This machine can deliver 11.9 trillion floating point operations per second (TFLOPS), making it the most 
powerful system in the East German Federal States.  

The second problem appeared due to the Java runtime environment which was provided by the 
JRockit java distribution which is supposed to be optimized for the Altix machines and the Linux SUSE 
operating system. Preliminary tests showed a non-scalable behavior of the GUN prototype although the 
theoretical analysis highlighted the contrary situation. Investigations that were done during almost one 
month time showed that the JRockit runtime environment is not scalable in terms of the RMI server 
implementation. In other words, the RMI server does not scale to a high number of clients and therefore 
introduced a bottleneck in our system. The problem was fixed by using an adapted version of SUN’s JDK 
version 1.6 for 64 bit machines which does not have the same scalability problem. 

The environment problems were not completely overcome because the latency between 
universes was not present anymore in a natural way. As a result, artificial delays between remote calls 
were introduced in the GUN prototype in order to reflect a real deployment. In order to reduce the risk of 
uncontrolled thread scheduling, a spinning wait was used. A latency of 10ms was considered for calls 
within a universe and 50ms for calls from one universe to another. It is important to note that these values 
are highly dependent on the remote method signature as well as their values (e.g. in case of a list of 
various objects), as all method parameters are serialized and transferred over the network. This aspect 
was not addressed in the experiments running on Altix as it naturally happens in a real deployment, 
because in case of GUN, there is no significant data marshaling between remote machines. However, the 
remote execution penalty in the real wide scale distributed environment was not higher than 250ms, 
considering the parameters for all remote methods defined in GUN. In case of only the European clusters, 
the latency was between 40ms and 90ms. As a result, the fixed value of 50ms was considered in the Altix 
evaluation setup. 

The bulk of the both qualitative and quantitative results have been gathered during the execution 
of the prototype experiments, which took more than 3 months to complete. Some experiments required 5 
to 6 hours to complete and some of them needed to be run again to match the same overall system load 
(as the experiments have been conducted on a real system where a large group of scientists were 
working on). In several cases multiple runs were necessary in order to rule out extreme situations (e.g. 
high system load) and have a more balanced measured data set. 

7.2.1 Grid Object Search 

The experiments for grid object search that are described in Chapter 6 specified a number of 
nodes up to 50 nodes per universe and 1000 grid objects. Due to physical limitation in available 
computing cores the experiment was conducted in a configuration of up to 30 nodes per universe  and a 
number of 3 universes.  
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In case that “one object per node” replication rule is used, the search time dependency to the 
number of objects, ranging from 1 to 1000 is shown in Figure 58 for a configuration of 30 nodes per 
universe. The first group of 30 client nodes is the one belonging to the universe where the initial object 
has been created. Due to the replication policy, an object replica exist in all nodes of every universe, thus 
the same search time is experienced by all applications independent on their universe membership.  

 

Figure 58: Grid Object Search – One object per node 

 

 
Figure 59: Grid Object Search – n/2 objects per node 

Similarly, the same results can be observed in Figure 59 and Figure 60 where “n/2 object 
replication” and “one object per universe” replication rules are used. In all previous situations we 
observed a uniform distribution of search time values across universe nodes, independent to the number 
of grid objects. Some of the occasional search time oscillations can be accounted on system load burst 
as well as unpredictable operations of the java run-time environment (e.g. garbage collector routine 
execution). 
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Figure 60: Grid Object Search - One object per universe 

In case when no replication is used, the search time dependency to the number of objects, 
ranging from 1 to 1000 is shown in Figure 61 for a configuration of 30 nodes per universe. The first group 
of 30 client nodes belongs to the universe where the object was created. As a result, the clients residing 
in that universe have small search time values. The next group of 30 clients is located in a different 
universe and the search request if forwarded across the universe registration graph. In this case the first 
contacted universe during the search operation has the object. As a consequence, the search times are 
higher with approximately 100ms (round trip request). The last group of 30 nodes belongs to a different 
universe. The search requests are first directed to the second universe’s primary node and then to the 
first universe where the object resides. Thus, the search time is approximately twice the value as in the 
later case. 

 

Figure 61: Grid Object Search – No replication 
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The experiment results with different number of nodes within a universe, in case of 1000 grid 
objects where one object per node and no replication is used are presented in Figure 62 and Figure 63.  It 
can be noticed that the search time does not depend on the number of nodes. In case where no 
replication is used, the same pattern described in Figure 61 occurs: the search time increases together 
with the search chain length. For every search indirection, the search time increases by one round-trip 
inter-universe latency (approximately 100ms). 

 

Figure 62: Grid Object Search – Node dependencies with replication 

 

Figure 63: Grid Object Search – Node dependencies without replication 

7.2.2 Acquire Correctness 

The experiments for the acquire operation that are described in Chapter 6 specified a number of 
nodes up to 50 nodes per universe. Due to physical limitation in available computing cores the 
experiment was conducted in a configuration of up to 30 nodes per universe (one node runs on one core) 
and a number of 3 universes.  
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During all the experiments we have noticed a 100% success rate for all acquire operations 
(AQHIT=1) that were issued, considering a timeout value of 2000ms. First, in case that only one client 
was running and the token was held in a remote universe, in a 30 node per universe configuration 
scenario, the results summarized in Table 12 were obtained. Since there is only one worker and the 
number of requests are constant over a period of time, there are no variations of the acquire time 
depending on the acquire request frequency. These values are reference values that apply to a relaxed 
system with seldom operations.   

Parameter d=100ms d=500ms d=1000ms d=2000ms d=3000ms 

OST [ms] 33 31 31 21 30 

AQT [ms] 105 116 106 109 110 

AQHIT 100% 100% 100% 100% 100% 

AQMISS 0 0 0 0 0 

RLT [ms] 37 41 44 40 44 

TRAQ  0.008 0.007 0.007 0.008 0.008 

Table 12: Acquire measurements for one worker 

In the same deployment of 30 nodes per universe, but where a client is running on every node, 
depending on the delay between subsequent operations the results illustrated in Figure 64 were obtained. 
The first group of 30 nodes belongs to the universe where the token resides. As there is no acquire 
exclusive issued in this scenario, the token remains fixed, thus the nodes within the same universe 
experience a very low acquire time. The other nodes which belong to universes which do not hold the 
token experience increasing acquire time values as the delay between subsequent requests decreases.  

 
Figure 64: Acquire time 

As seen in the diagrams, in case the acquire operations are issued with a delay of 2000ms 
respectively 3000ms, GUN shows a good and stable performance independent on the node location. 
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There is only a slight increase in acquire time for the nodes belonging to the universes that do not have 
the token. This is quite normal since the acquire request has to pass the universe boundaries (remote call 
over large latency connection). In the other three cases, there is a performance degradation in the system 
when the acquire requests are issued more rapidly. This happens because all nodes are issuing request 
towards the primary node that holds the token and the requests are serialized in a queue. If the request 
frequency is higher than the processing frequency, the requests are accumulating in the queue and the 
waiting time increases (see Table 12). It is worth to note that the processing frequency depends on the 
inter-universe network latency because the responses are sent via a large latency connection. 

 
Figure 65: Release time 

As shown in Figure 65, contrary to the acquire time, the release time remains stable independent 
on the request frequency (acquire frequency is equal to the release frequency) since the release 
operation is implemented asynchronously and a response is not awaited from the primary nodes. Only in 
the extreme case where requests are issued within each 100ms, a variation of the release time can be 
noticed but this can be accounted to the global task scheduling mechanism. Completion time shown in 
Figure 66 highlights a shape resembling the acquire time. 

The performance results for average acquire time if different nodes and request frequencies were 
used are shown in Figure 67, Figure 68, Figure 69 and Figure 70. It can be observed that the same 
pattern described above appears in all node configuration with the remark that the impact on the acquire 
time is direct proportional to the number of nodes. This aspect is obvious since the number of requests is 
dependent on the number of nodes. 
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Figure 66: Completion time 

 

 
Figure 67: Acquire time dependency to the number of nodes, d=3000ms 
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Figure 68: Acquire time dependency to the number of nodes, d= 2000ms 

 
 

 
Figure 69: Acquire time dependency to the number of nodes, d=1000ms 
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Figure 70: Acquire time dependency to the number of nodes 

In case of the release operation, there is no dependency to the number of nodes, as shown in 
Figure 71. 

 
Figure 71: Release time dependency to the number of nodes 

7.2.3 Acquire Exclusive Correctness 

The experiments for acquire exclusive operation that are described in Section 6.2.3 specified a 
number of nodes up to 50 nodes per universe. Due to physical limitation in available computing cores the 
experiment was conducted in a configuration of up to 30 nodes per universe and a number of 3 
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universes. The timeout value was set to 2000ms and during all the experiments a 100% success rate was 
obtained (AQHIT=1).  

The correctness of the GUN implementation for acquire exclusive was assessed according to the 
specifications of the entry consistency model. In our experiment, each grid shared data contains a 
counter which is incremented each time the value of the object is changed. Since the order of acquire 
operations is the same from every node’s point of view, the interleaved sequence of object counters must 
be ordered. Such an ordered sequence of object versions was witnessed for all the run experiments. 

Parameter d=100ms d=500ms d=1000ms d=2000ms d=3000ms d=5000ms 

TT [ms] 83 74 79 80 80 78 

MAX(OST) 

[ms] 134 145 122 134 155 169 

AQET [ms] 98 88 102 104 98 110 

AQEHIT 100% 100% 100% 100% 100% 100% 

AQEMISS 0 0 0 0 0 0 

RLT [ms] 32 34 25 26 25 26 

TRAEQ 0.008 0.008 0.008 0.008 0.008 0.009 

Table 13: Acquire exclusive measurements for one client 

In case there is only one client issuing acquire exclusive requests, and the token resides in 
another universe, the measurements shown in Table 13  were obtained for different values of the delay d. 
In the table the maximum value of OST is considered since the objected is synchronized only once (only 
one client modifies the replica). Subsequent acquire exclusive requests will not determine any object 
synchronization anymore, thus OST reduces to a local function call (~10ms) and thus the average OST 
value tends to become very small. 

In case of 30 nodes per universe deployment where a client is running on every node and is 
issuing acquire exclusive requests as specified in the experiment description, the average acquire 
exclusive time for 7 different values of the delay parameter is represented in Figure 72. If the delay is 
higher than 1000ms, acquire exclusive time does not show any significant fluctuations between universe 
nodes and remains stable between 400 and 1000ms. If the delay is reduced below 1000ms, acquire 
exclusive time increases. The explanation is that smaller delays lead to a higher number of requests per 
time unit. As the processing capability of the primary nodes has an upper bound, requests accumulate in 
the primary node’s queues and thus increasing the processing time. 

In case of the same deployment, release time is represented in Figure 73. Similar to acquire 
operation, the release operation corresponding to acquire exclusive requests shows a constant time 
independent on the number of nodes or the delay between subsequent requests. Same as for acquire 
operation, the release operation corresponding to acquire exclusive requests uses an asynchronous 
mechanism where the release of the shared object is not awaited anymore. As a consequence, every 
acquire operation might be blocked until all pending releases are performed. This solution increases the 
system’s throughput and increases the chances of higher concurrency. 
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Figure 72: Acquire exclusive time 

 

 
Figure 73: Release time 

The performance of acquire exclusive operation in respect of the number of nodes for d=5000ms, 
d=2000ms and d=50ms is illustrated in Figure 74, Figure 75 and Figure 76. As expected from the 
previous results, if the delay between operation is large enough (e.g. 5000ms) the number of nodes does 
not have an impact on acquire exclusive time. However, if the delay is smaller (e.g. 2000ms) there is 
already a noticeable difference as seen in Figure 75 or Figure 76. As the number of nodes increases, the 
number of issued requests per time unit increases. This effect is similar to decreasing the time between 
operations which cause an increase of the number of issued requests per time unit too. 
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Figure 74: Acquire exclusive time dependency to the number of nodes, d=5000ms 

 
 

 
Figure 75: Acquire exclusive time dependency to the number of nodes, d=2000ms 
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Figure 76: Acquire exclusive time dependency to the number of nodes, d=50ms 

Due to the asynchronous implementation, as expected and represented in Figure 77, the release 
time is not dependent on the number of nodes. As explained above, potential stalls due to pending 
releases are only visible as increases of the acquire time for pending acquire operations. 

 
Figure 77: Release time dependency to the number of nodes 

7.2.4 Grid Read-Only Objects 

The experiments for read-only objects which are described in Chapter 6 specified a number of 
nodes up to 50 nodes per universe. Due to physical limitation in available computing cores the 
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experiment was conducted in a configuration of up to 30 nodes per universe and a number of 3 
universes.  

In case of read-only objects the acquire time is close to zero as no locking is necessary since the 
object’s state is immutable. The same applies for the release operation. In this respect, the difference to 
the generic grid object is evident (assuming that the read only object is replicated to the caller node and 
thus no remote invocation cost is incurred). Since there is no logic behind the acquire operation there is 
no dependency to the number of nodes. Some of the measurements for the situation where there is only 
one client are summarized in Table 14.  

Parameter d=100ms d=500ms d=1000ms d=2000ms d=3000ms 

AQT [ms] 0 0 0 0 0 

AQHIT 1 1 1 1 1 

AQMISS 0 0 0 0 0 

RLT [ms] 0 0 0 0 0 

CT [ms] 13142 53376 103184 203652 303187 

TRAQ 0.064 0.054 0.059 0.052 0.063 

Table 14: Read-only object measurements for one client 

The application completion dependency to different values for the delay d is shown in Figure 78. 
Since acquire and release time is zero, the differences are accounted to the value of the delay multiplied 
by the number of runs. For example the difference between the first two situations where d=3000ms and 
d=2000ms is equal to (3000-2000) * 1000 = 100000ms which is the total delay time introduced in the 
experiment. 

 
Figure 78: Completion time for read-only objects 
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Figure 79: Completion time: read-only vs. generic objects, d=3000ms 

A more interesting aspect is the difference in the application completion time between read-only 
and generic objects. The results for d=3000ms and d=100ms are shown in Figure 79 and Figure 80 

 
Figure 80: Completion time: read-only vs. generic objects, d=100ms 

. In case of the generic objects, the first group of object resides in the universe containing the 
token and is experiencing significantly lower values for the completion time. The other group of objects 
require to contact the primary node containing the token in order to get the acquire request granted and 
thus have higher completion time values.  As seen in both cases, there is a significant advantage of using 
read-only objects where frequent object state must be read especially when the location of the token is 
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uncertain (e.g. one client performs acquire exclusive operation and all other requests have to be 
redirected to a remote universe). 

7.2.5 Grid Private Objects 

The experiments for private objects which are described in Chapter 6 specified a number of 
nodes up to 50 nodes per universe. Due to physical limitation in available computing cores the 
experiment was conducted in a configuration of up to 30 nodes per universe and a number of 3 
universes.  

The first part of the experiment refers to acquire operations . In case of a 30 node deployment  
where only one client is issuing requests and the client is located on the same node as the shared 
objects, the measurements presented in Table 15 and Table 16 were obtained. As can be seen by 
comparing the two tables, the private object offers much better performance. Virtually the acquire time are 
insignificant, the cost of the operation is basically a local procedure call. It is important to note that in case 
of the generic object, the token was residing to a different universe and was not migrated during the 
interactions. 

Parameter d=100ms d=500ms d=1000ms d=2000ms d=3000ms 

AQT [ms] 107 110 104 114 112 

AQHIT 1 1 1 1 1 

AQMISS 0 0 0 0 0 

RLT [ms] 39 38 38 42 40 

CT [ms] 28138 68558 117506 219328 318981 

TRAQ 0.0079 0.00753 0.007532 0.007524 0.007523 

Table 15: Generic objects measurements for one client and acquire operation 

 

Parameter d=100ms d=500ms d=1000ms d=2000ms d=3000ms 

AQT [ms] 0.061 0.051 0.0306 0.0714 0.0408 

AQHIT 1 1 1 1 1 

AQMISS 0 0 0 0 0 

RLT [ms] 0 0 0 0 0 

CT [ms] 15332 54575 106645 206131 306032 

TRAQ 0.0333 0.0367 0.0263 0.0258 0.0279 

Table 16: Private objects measurements for one client and acquire operation 

In the same case of 30 node deployment, but where clients are located within the same universe 
as the private object, the measurements depicted in Figure 81 and Figure 82 were obtained. In case of 
the generic objects, the token resides in a different universe, thus the situation is the worst case scenario. 
In case of the private objects, the measurements show an increase in acquire time as the delay d 
decreases which denotes a higher number of acquire requests per time unit. The behavior is similar to the 
generic grid objects. As seen in Figure 82, there are a few cases where the acquire time is close to 0. 
These situations are those where the client node and the shared object are located on the same node 
(see previous measurements). 
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Figure 81: Acquire time for generic objects within the same universe 

 

 
Figure 82: Acquire time for private objects within the same universe 

. Figure 83 and Figure 84 illustrate the results where the clients are distributed across all 
universes for the same 30 node deployment per universe.  In case of the generic objects, the same 
results were obtained as the ones presented in Section 7.2.2. Private objects show a uniform distribution 
across the nodes from all universes. The very low values correspond to the clients located on the nodes 
where the private object resides.  
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As can be seen from both graphs, the performance is comparable when the universe containing 
the generic object holds the token. If the token resides on a remote universe, the difference between 
private and generic objects becomes obvious when the delay value is set below 2000ms 

 
Figure 83: Acquire time for grid objects across all universes 

 

 
Figure 84: Acquire time for private objects across all universes 

Discussion. One of the obvious differences in acquire time between private and generic objects 
is when the token does not belong to the same universe as the client node. The private object relies on 
the pure Java implementation of a multi-threaded monitor object. On the other side, the GUN 
implementation relies on a message queue which adds a queuing effect to all calls. Particularly to this 
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scenario is the fact that only acquire calls are being issued and no acquire exclusive calls are being 
made. As a result, the implementation of the private objects is more efficient. The saturation effect 
experienced when the request frequencies increase is expected to appear to the private objects too, but 
on a more moderate scale.  

The second part of the experiment refers to acquire exclusive operations . In case of a 30 node 
deployment  where only one client is issuing requests and the client is located on the same node as the 
shared objects, the measurements presented in Table 17 and Table 18 were obtained. Similar to the 
other scenario, private objects exhibit lower acquire time values as well as shorter completion times.  It is 
important to note that during the experiment, in case of the generic objects, the token migrates to the 
universe where it is requested from. As a result, the average value of AQET time decreases since all the 
following calls are within the universe containing the token. This explains why the average values for 
AQET are smaller than in case of AQT. 

Parameter d=100ms d=500ms d=1000ms d=2000ms d=3000ms 

TT [ms] 118 110 120 116 121 

AQT [ms] 34 35 33 35 37 

AQHIT 1 1 1 1 1 

AQMISS 0 0 0 0 0 

CT [ms] 20266 60480 110283 210475 310787 

TRAQ 0.018129 0.017036 0.017895 0.017467 0.016113 

Table 17: Generic object measurements for one worker on acquire exclusive operation 

Parameter d=100ms d=500ms d=1000ms d=2000ms d=3000ms 

TT [ms] 0 0 0 0 0 

AQT [ms] 0.0204 0.0000 0.0612 0.0102 0.0612 

AQHIT 1 1 1 1 1 

AQMISS 0 0 0 0 0 

CT [ms] 14712 54796 107711 204625 307267 

TRAQ 0.0340 0.0337 0.0196 0.0363 0.0201 

Table 18: Private object measurements for one worker on acquire exclusive operation 

Figure 85 and Figure 86 show measurements for acquire exclusive time for generic and private 
objects where clients are located only within the same universe as the shared object. As in previous 
experiments, several variations of the delay d were chosen. An important remark is that the token 
migrates automatically to the universe where the clients are deployed after the first acquire exclusive call.  

Comparing the two object types, one can notice similar patterns in acquire exclusive time 
depending on the delay d. Occasional fluctuations can be accounted on variable load of the cores which 
execute the node’s logic. Besides the similar pattern, there are comparable values of acquire exclusive 
time for the same value of the delay d. It appears that the growth is initially slower for private objects, but 
the situation might reverse when the delay is set to lower values. 
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Figure 85: Acquire exclusive time for generic objects within the same universe 

 
Figure 86: Acquire exclusive time for private objects within the same universe 

Figure 87 and Figure 88 illustrate the measurements for acquire exclusive time for generic and 
private objects where clients are deployed across all universes. The results and behavior pattern obtained 
for generic objects is similar to the results presented in 7.2.3. Again, the global patterns of the two object 
types are similar. 

Considering the more relaxed scenario where d=5000ms, the generic objects require about 
600ms to satisfy an acquire exclusive request. Under the same conditions, the private objects require 
oscillating values around 1000ms. As the delay d decreases (more requests per time unit), generic 
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objects require about 1800ms in the worst case scenario where d=100ms. This time private objects 
require about 3500ms to satisfy a request.  

 
Figure 87: Acquire exclusive time for generic objects across all universes 

 

 
Figure 88: Acquire exclusive time for private objects across all universes 

Discussion. In case acquire exclusive requests are issued, the bottleneck of the global sequencer 
(e.g. private object) becomes evident. The difference becomes evident when more than one client is used 
and accelerate when the number of client nodes increases. It is obvious that the GUN implementation is 
better in terms of response time and scalability than a plain sequencer. Although pure acquire operation 
appears to be more efficient, by extrapolating the results shown in this section, it is expected that seldom 
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acquire exclusive requests can cause severe performance degradation. As a conclusion, as expected 
from the model design, private objects are very efficient when the callers are localized in the proximity of 
the shared data and only a limited number of calls are being issued. Breaking the locality constraints as 
well as the request limit leads to performance degradation and it would be better to use generic objects 
for these situations. 

7.2.6 Grid Migratory Objects 

The experiments for migratory objects which are described in Chapter 6 specified a number of 
nodes up to 50 nodes per universe. Due to physical limitation in available computing cores the 
experiment was conducted in a configuration of up to 30 nodes per universe and a number of 3 
universes. As observed during the experiment execution, the most relevant aspects were revealed in the 
maximum node configuration. 

Figure 89 shows acquire exclusive time for migratory objects for different values of the remote 
method execution cost. Basically there is no dependency to this parameter since the method execution 
cost does not interfere with granting access to the shared object. The same applies for the release 
operation where an asynchronous solution was adopted too. In case of different node deployment 
configurations (e.g. 5, 10, 20, 30), the same acquire exclusive time values were obtained independent on 
the number of nodes. This shows that the migratory object implementation is scalable in respect to the 
grid universe. 

 
Figure 89: Acquire exclusive time for migratory objects 

Figure 90 and Figure 91 show the differences between migratory and generic grid objects in 
respect of the acquire exclusive time for different values of the parameter d. As seen in both situations, 
there is a difference of about 100ms in favor of the generic objects. One must acknowledge that this 
experiment is a corner case which aims to answer the question whether there are situations where 
migratory objects are a real advantage compared to generic objects (assuming the same interaction 
orchestration is defined). It is self-evident that migratory objects would perform better than generic objects 
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when the latter ones are not replicated. In this case, generic objects would experience the bottleneck 
effect.  

 
Figure 90: Acquire exclusive time: migratory vs. generic objects, d=1000ms 

 
Figure 91: Acquire exclusive time: migratory vs. generic objects, d=100ms 

The opposite case is the one described in the experiment, where generic objects are highly 
replicated. The experiment has proved that migratory objects do not improve the performance by the 
locality aspect since the locality is already offered by the generic object without the migration penalty. 
However the difference is not significant. Most probably an even point would be the situation where 
generic objects are replicated just on a certain number of nodes. Exceeding that threshold would bring 
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the system in the state described above. Below that threshold it is expected that migratory objects 
perform better than the generic ones. 

Figure 92 shows the differences between migratory and generic grid objects in respect of 
completion time. The differences seen in case of acquire exclusive time propagate to the application 
completion time. As pointed out above, release time does not play a role to the global completion time. 

 
Figure 92: Completion time: migratory vs. generic objects 

7.2.7 Grid Producer-Consumer Objects 

The experiments for producer-consumer objects which are described in Chapter 6 specified a 
number of nodes up to 50 nodes per universe. Similar to the previous cases, due to physical limitation in 
available computing cores the experiment was conducted in a configuration of up to 30 nodes per 
universe and a number of 3 universes.  

One important aspect for producer-consumer objects is related to the object weight. In the grid 
shared object model, objects have weights associated which denote the object size (e.g. memory). The 
object weight implies the cost to transport an object from one node to another. The higher the weight is 
the higher the object transfer time. To simplify things object size units were associated to the object 
weight. During the experiments, different object size units were used and it was considered that one 
object size unit corresponds to a transport penalty of 10ms. 

In the simplest situation where there is only one producer and one consumer, and the delay 
between subsequent operations was d=5000ms, and the “one object per node” replication policy was 
chosen, the results summarized in Table 19 were obtained. In this case, for a 10 object units (ui), one can 
notice that the acquire exclusive time has comparable values for producer-consumer and generic objects. 
The release time for producer-consumer objects is significantly higher due to the write-update protocol. 
The acquire time for producer-consumer is almost three times smaller than for the generic objects 
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because the object synchronization cost does not appear anymore. Summing these up, the completion 
time for producer-consumer objects is smaller than in case of the generic objects. 

Parameter [ms] P-C object Generic object 

OST 175 173 

AQET 991 1044 

RLT 208 28 

AQT 111 272 

RT 42 34 

Table 19: Producer consumer vs. generic objects for one consumer 

Figure 93 and Figure 94 illustrate the differences between producer-consumer and generic 
objects in respect of acquire and completion time, if one node per universe replication is used and the 
object size unit is equal to 1, for a delay of 10000ms. The overall graph shape is similar to the ones 
obtained in Section 7.2.2 where the first group of nodes belongs to the universe holding the token. As 
shown in both graphs, producer-consumer objects exhibit lower acquire and completion time values than 
the generic objects 

 
Figure 93: Acquire time: producer consumer vs. generic objects 

 Table 20 summarizes the differences between producer-consumer and the generic object in 
respect of the OST, AQET and RLT parameters. As expected, AQET is smaller in case of the producer-
consumer since the chances for object synchronization prior to granting the access are totally reduced. 
The opposite situation can be noticed for the release time (RLT) because the release operation is 
synchronizing all object replicas. It is important to note that for the entire application execution, the 
distribution in time of these operations is important since a snapshot to the system’s status does not 
reflect the entire behavior of the system. 
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Parameter [ms] Object type AVG time value [ms] Count 

OST pc_object 59 2980 

AQET pc_object 281 100 

RLT pc_object 1783 100 

OST generic_object 22 2982 

AQET generic_object 1051 100 

RLT generic_object 25 100 

Table 20: Producer consumer vs. generic objects for 30 clients 

 
Figure 94: Completion time: producer consumer vs. generic objects 

 

 
Figure 95: Acquire time: producer consumer vs. generic objects for different timings 
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As specified in the experiment’s description, different delays between the acquire requests have 
been selected. Figure 95 shows that independent on the selected acquire request frequencies, the same 
values and pattern of the acquire time is obtained. As in the previous situations, the first group of nodes 
belongs to the universe holding the token and experiences a lower acquire time. Table 21 shows the 
differences in respect of the OST, AQET and RLT parameters depending on the parameter d. As 
expected, OST is the same in all cases since it is the same kind of object which is being synchronized. As 
the number of requests increases per time unit (d is decreasing), a slight increase in terms of the AQET 
parameter is noticed. This can be explained by the increasing saturation of the primary node’s event 
queue. Release time appears to be constant independent on the selected delay. In case of a stable 
system (one producer and no queue overflow) the node holding the modified object has to update every 
time the same set of consumer nodes. As the consumer node set is fixed, the value for the RLT time is 
constant. 

Parameter [ms] d=10000ms d=8000ms d=6000ms d=5000ms 

OST 59 58 58 59 

AQET 281 335 353 318 

RLT 1783 1781 1781 1793 

Table 21: Producer consumer vs. generic objects for 30 clients and different timing 

In case the object size increases, it was only considered a ten times increase, from 1 ui to 10 ui. 
Figure 96 shows that an increase in object size leads to an increase in acquire time. Table 22 
summarizes OST, AQET and RLT. It can be noticed that an increase in object size leads to a higher 
average object synchronization time as well as to higher AQET and more dramatically RLT parameter 
values. The explanation for this behavior is that increasing the object size increases the release time and 
thus delaying the moment of granting the acquire request. If different delays are used in the producer and 
consumer (experimentally it was considered delta = d/2) the above behavior does not appear anymore 
and the acquire time (both exclusive and non-exclusive) do not depend on size of the shared object. 

 
Figure 96: Acquire time: producer consumer vs. generic objects for different object size 
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Parameter [ms] 1 object unit 10 object unit 

OST 59 147 

AQET 318 803 

RLT 1793 4341 

Table 22: Producer consumer vs. generic objects for 30 clients and different object size 

 

 
Figure 97: Acquire time: producer consumer vs. generic objects with different replication 

In case “one object per universe” replication is used instead of the standard “one object per 
node”, AQT values experience a significant reduction as shown in Figure 97. In both cases similar OST 
and AQET parameter values were measured, as presented in Table 23. Since there is a significant 
reduction in the number of replicated objects, the RLT parameter is dramatically reduced when “one 
object per universe” replication rule is used. As a consequence, the overall application completion time 
reduces too. 

Parameter [ms] One object/node One object/universe 

OST 147 169 

AQET 803 754 

RLT 4341 362 

CT 629291 610972 

Table 23: Producer consumer vs. generic objects for 30 clients and different replication 

In the discussions of the previous paragraphs a number of 30 clients were considered. The same 
experiments were run in a configuration of 30, 21, 15, 9 and 1 client. Acquire time dependency to the 
number of clients is shown in Figure 98. One can notice that virtually the same values are obtained for 
acquire time independent on the number of clients.  
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Figure 98: Acquire time: producer-consumer vs. generic objects with different client counts 

In case d=5000ms, and one object size unit and “one object per node” replication rule, Table 24 
shows the dependency of OST, AQET and RTL in respect of the client count. As expected, OST is 
constant since the same kind of object is being synchronized. It can be noticed that AQET slightly  
decreases together with the number of clients (acquire queue effect) and the release time increases 
together with the number of clients since a higher number of object replicas need to be updated. 

Parameter [ms] 30 clients 21 clients 15 clients 9 clients 1 client 

OST 110 167 165 147 154 

AQET  1210 870 682 756 980 

RLT 4340 1247 914 1235 110 

Table 24: Producer-consumer vs. generic objects for 30 clients and different replication 

7.2.8 Grid Read-Mostly Objects 

The experiments for read-mostly objects which are described in Chapter 6 specified a number of 
nodes up to 50 nodes per universe. Similar to the previous cases, due to physical limitation in available 
computing cores the experiment was conducted in a configuration of up to 30 nodes per universe and a 
number of 3 universes.  

Considering a stable system where requests are being issued every d=10000ms where there are  
10 consumers per universe and only one producer in the entire grid universe and one object per node 
replication rule is chosen, as shown in Figure 99, read-mostly objects show a much lower acquire time. 
As summarized in Table 25, acquire exclusive time as well as release times are higher due to the write-
update protocol which is used for read-mostly objects. The graphic shape is similar to the acquire time for 
generic objects where the first group of nodes belong to the universe holding the token. Since there is 
only one producer there is no token movement and TT=0. 
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Figure 99: Acquire time: read-mostly vs. generic objects 

Parameter OST [ms] AQET [ms] RLT [ms] CT [ms] 

read-mostly 149 1219 4513 4500262 

generic 115 850 41 4500287 

Table 25: Read-mostly vs. generic objects for 30 clients 

 
Figure 100: Acquire time: read-mostly vs. generic objects for 3 producers and 10 consumers 

Parameter OST [ms] TT [ms] AQET [ms] RLT [ms] CT [ms] 

read-mostly 148 1110 1178 5646 6000292 

generic 139 1112 1798 40 6000276 

Table 26: Read-mostly vs. generic objects for 3 producers and 10 consumers 
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Figure 101: Acquire time: read-mostly vs. generic objects for 3 producers and 5 consumers 

 

Parameter OST [ms] TT [ms] AQET [ms] RLT [ms] CT [ms] 

read-mostly 148 1088 1207 3461 3500237 

generic 139 1049 1494 40 2450300 

Table 27: Read-mostly vs. generic objects for 3 producers and 5 consumers 

For the same configuration of 30 nodes per universe, “one object per node” replication rule and 
d=10000ms, the variation of acquire time is shown in Figure 100 and Figure 101 where the producer-
consumer ratio is 3:10, respectively 3:5. While the former situation depicts a stable system (occasional 
spikes are caused by delays caused by write updates), the later shows the starting point of an unstable 
system as the producer-consumer ratio is increasing and more nodes are producing data rather than 
consuming. The other significant parameters are summarized in Table 26 and Table 27. Both situations 
show the same parameter variation pattern. It is important to note that the release time is higher in the 
first case since the number of client nodes which have to be synchronized is double (10 instead of 5). 

For the same configuration of 30 nodes per universe, “one object per node” replication rule and 3 
producers/universe and 10 consumers/universe, by changing the frequency of the acquire operations, the 
results depicted in Figure 102 and Table 28 were obtained.  

d OST [ms] TT [ms] AQET [ms] RLT [ms] CT [ms] 

10000 ms 148 1110 1178 5646 6000292 

7000 ms 145 1101 1502 5588 4200288 

5000 ms 146 1223 3451 5580 3000287 

Table 28: Parameter variation for read-mostly objects depending on acquire frequency  

It can be noticed that for d=10000ms and d=7000ms the system exhibits the same performance 
parameters. Increasing the rate of the acquire requests by setting d to 5000ms, there is a dramatic 
increase in acquire time, as well as in the acquire exclusive time as a result of the primary node’s 
increasing congestion. As expected, the release time remains constant since the same operations are 
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performed independent on the acquire frequency (the same number of objects are being updated and the 
same primary node is contacted to release the lock on the shared object). 

 
Figure 102: Acquire time variation for read-mostly objects depending on acquire frequency 

Figure 103 and Table 29 show the parameter values for both “one object per node” and “one 
object per universe” replication rules, for the same configuration of 30 nodes per universe, d=10000ms 
and 3 producers/universe and 10 consumers/universe.  

 
Figure 103: Acquire time variation for read-mostly objects depending on replication rules 

Replication OST [ms] TT [ms] AQET [ms] RLT [ms] 

One/node 146 1223 3451 5580 

One/universe 170 1103 1234 380 

Table 29: Parameter variation for read-mostly objects depending on replication rules 

BUPT



A Grid Service Layer for Shared Data Programming  

 
 

 167 / 207 
 

As the total number of replicated objects decreases, there is decrease in terms of acquire and 
acquire exclusive time, as well as the release time (since less objects are being synchronized upon 
releasing the shared object). In the experiments the object size has been chosen quite modest meaning 
that the object can be read remotely very fast. For these situations it appears that choosing “one object 
per universe” replication rule is more effective than having the object replicated on all the nodes. The 
overhead of replica management and object synchronization takes a significant amount of computing 
time, thus for small objects is it more effective to use as less replicas as possible. The situation changes 
as the object size increases especially if many remote operations are being issued. However, as this 
situation is not the main performance aspect of the experimental evaluation (this relates more to the 
proper replication selection), this aspect is not being investigated in more details in this section. 

Another scenario of the experimental evaluation considered different producer/consumer ratios. A 
stable system was considered when only one producer was used in the entire grid universe and 10 
consumers for every universe were deployed. The request frequency was determined by d=10000 ms. 
Figure 104 and Table 28 present the acquire time as well as the OST, TT, AQET and RLT parameters. 

 
Figure 104: Acquire time variation for read-mostly objects depending on producer/consumer ratio 

Variant OST [ms] TT [ms] AQET [ms] RLT [ms] 

1 prod, 10 cons/univ 149 0 1219 4513 

1 prod/univ, 10 cons/univ 131 757 787 4790 

2 prod/univ, 10 cons/univ 149 753 2113 5191 

3 prod/univ, 10 cons/univ 146 1223 3450 5580 

Table 30: Parameter variation for read-mostly objects depending on producer/consumer ratio 

Acquire time exhibits a steady variation with occasional spikes due to the synchronizations 
between producers and consumers. Experimentally, by choosing different acquire frequencies for 
producers and consumers, it was noticed that such spikes do not occur anymore. In terms of the acquire 
exclusive time, its value increases together with the number of producers since the token competition is 
increasing and thus inducing higher waiting times. Interestingly the release time remains constant since 
GUN implements an asynchronous release operation. Since the number of consumer nodes is constant 
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(in this experiment was set to 10), the release time is approximately the same since the same number of 
object replicas are being updated. 

7.2.9 Grid Result Objects 

The experiments for result objects described in Chapter 6 specified a number of nodes up to 50 
nodes per universe. Similar to the previous cases, due to physical limitation in available computing cores 
the experiment was conducted in a configuration of up to 30 nodes per and a number of 3 universes.  

Considering a relatively stable system where requests are being issued every d=5000ms where 
there are 10 producers and only one consumer, as represented in Figure 105, acquire exclusive time is 
much smaller for result objects. This is a natural consequence of the fact that there are virtually no locks 
in the acquire exclusive implementation. On the opposite side, the generic objects show the same 
behavior presented in previous sections. Table 31 shows that the acquire time is almost 6 times higher for 
the result objects as an effect of the object composition procedure out of the disjoint parts. As there is no 
token movement in this scenario, the token time (TT) is zero for result objects. The penalty of the higher 
object synchronization time is generated by the higher complexity of the object composition procedure 
and probably on the higher simultaneous updates which causes a longer execution time of the 
synchronization procedure. 

 
Figure 105: Acquire exclusive time: result vs. generic objects for 1 consumer 

 

Parameter OST [ms] TT [ms] AQT [ms] RLT [ms] CT [ms] 

result 1454 0 1965 37 350292 

generic 438 782 355 48 350263 

Table 31: Result vs. generic objects for 1 consumer 

While increasing the number of consumers from one to three and keeping the same experiment 
parameters as in the previous case, it can be observed that the system made out of result objects is still 
in a relatively stable state where AQET is below 1000 ms (see Figure 106 and Table 32). While the 
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system made out of generic objects is moving towards the unstable state (increasing AQT, TT), the result 
objects scenario shows a still stable system (same AQET, AQT values as in the previous case). 

 
Figure 106: Acquire exclusive time: result vs. generic objects for 10:3 producers: consumers 

 

Parameter OST [ms] TT [ms] AQT [ms] RLT [ms] CT [ms] 

result 1402 84 1508 29 2100257 

generic 448 968 710 68 2100156 

Table 32: Result vs. generic objects for 10:3 producers: consumers 

 
Figure 107: Acquire exclusive time result vs. generic objects for 5:3 producers: consumers 

Increasing the producer-consumer ratio from 10:3 to 5:3 and keeping the same experiment 
parameters as in the previous case, it can be noticed that the result objects have an increasing acquire 
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exclusive time, but lower values for the other parameters since the number of consumers have reduced 
and thus the overall update penalty. Compared to case of generic objects, result object show an overall 
better performance. 

Object type OST [ms] TT [ms] AQT [ms] RLT [ms] CT [ms] 

result 761 100 871 31 2100280 

generic 443 718 730 68 2100302 

Table 33: Result vs. generic objects for 10:3 producers: consumers 

By changing the frequency of the acquire requests using 2000ms, 3000ms and 5000ms delays 
and keeping the other parameters unchanged, the results presented in Figure 108 and Table 34 show the 
evolution path towards an unstable system at d=2000ms, where there is a dramatic increase in both 
acquire exclusive and acquire time, while the object synchronization time remained approximately the 
same. 

 
Figure 108: Acquire exclusive time variation with d for result objects 

 

d OST [ms] TT [ms] AQT [ms] RLT [ms] CT [ms] 

5000 ms 1402 84 1508 29 2100257 

3000 ms 1400 116 1495 29 1300287 

2000 ms 1394 534 2657 30 900259 

Table 34: Parameter variation with d for result objects 

The experimental results obtained by changing the producer-consumer ratio in different system 
configurations are shown in Figure 109, Figure 110 and Table 35. While in the first case where 
d=5000ms, there was no major difference in terms of the system parameters (e.g. stable system), 
regardless of the producer-consumer ratio, in case the delay was decreased to 2000ms, it can be noticed 
that as the consumer-producer ratio increases, the acquire exclusive increases too. This behavior is the 
expected one since the system is processing an increasing number of operations per second and the 
primary node’s queues become saturated. 
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Figure 109: Acquire exclusive time for result objects at different p-c rates, d=5000ms 

 

Variant OST [ms] TT [ms] AQT [ms] RLT [ms] 

1 cons, 10 prod/univ 1454 0 1965 37 

1 cons/univ, 10 prod/univ 1414 80 1545 30 

2 cons/univ, 10 prod/univ 1392 84 1989 32 

3 cons/univ, 10 prod/univ 1402 84 1519 30 

 
Table 35: Parameter variation for result objects at different p-c rates 

 
Figure 110: Acquire exclusive time for result objects at different p-c rates, d=2000ms 
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7.2.10 Grid Write-Mostly Objects 

The experiments for result objects described in Chapter 6 specified a number of nodes up to 50 
nodes per universe. Similar to the previous cases, due to physical limitation in available computing cores 
the experiment was conducted in a configuration of up to 30 nodes per universe and a number of 3 
universes.  

 
Figure 111: Acquire exclusive time for write mostly and different acquire frequencies 

Considering a producer-consumer ratio of 10:3, one object per node replication rule and 30 
nodes per universe and changing the operation frequency by choosing d=2000ms, d=3000ms and 
d=5000ms, the results illustrated in Figure 111 and Table 36 were obtained. It can be noticed that by 
increasing the operation frequencies, both AQET and AQT parameters are increasing their values, 
indicating a saturation of the primary node’s queues and the path towards an unstable system. 

d OST [ms] TT [ms] AQT [ms] RLT [ms] 

5000 ms 146 95 268 34 

3000 ms 145 397 286 35 

2000 ms 138 324 1441 34 

Table 36: Parameter values for write mostly and different acquire frequencies 

For one of the selected configurations, by selecting different replication rules like “one object per 
universe” and “one object per node”, according to Figure 112 and Table 37, it can noticed that by having 
one replica per universe the AQET is reduced to the same values as in case of a stable system (e.g. 
d=5000ms). The same reduction can be seen for the AQT parameter, corresponding to a stable system 
too. This means that starting with a certain producer-consumer ratio; it is more efficient to limit the 
number of replicated objects, since a higher number of replicas generate increasing update penalties. 
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Figure 112: Acquire exclusive time dependency to the replication rule 

 

Variant OST [ms] TT [ms] AQT [ms] RLT [ms] 

One object/node 138 324 1441 34 

One object/universe 170 455 307 38 

Table 37: Parameter dependency to the replication rule 

For two different configurations where d=2000ms and d=5000ms, by changing the producer-
consumer ratio, the results summarized in Figure 113, Table 38, respectively Figure 114 and Table 39 
were obtained. Similar to the case of result objects, the first situation shows a stable system where all 
parameters are relatively constant, while the second experiment shows increasing AQET and AQT times 
and higher variations, denoting the path towards an unstable system.  

 

Variant OST [ms] TT [ms] AQT [ms] RLT [ms] 

1 cons, 10 prod/univ 132 70 180 28 

1 cons/univ, 10 prod/univ 175 37 284 31 

2 cons/univ, 10 prod/univ 157 41 285 32 

3 cons/univ, 10 prod/univ 146 89 275 30 

Table 38: Parameter variation for different p:c ratios and d=5000ms 
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Figure 113: Acquire exclusive time variation for different p:c ratios and d=5000ms 

 

 

Figure 114: Acquire exclusive time variation for different p:c ratios and d=2000ms 

 

Variant OST [ms] TT [ms] AQT [ms] RLT [ms] 

1 cons, 10 prod/univ 145 151 1226 29 

1 cons/univ, 10 prod/univ 153 237 2688 36 

2 cons/univ, 10 prod/univ 145 268 3503 37 

3 cons/univ, 10 prod/univ 138 324 4230 36 

Table 39: Parameter variation for different p:c ratios and d=2000ms 
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8 Conclusions 
 

The evolution of distributed systems from the conceptual and software technologies point of view, 
introduced more and more possibilities in programming solutions. One of the many programming 
paradigms in distributed systems, and also the focus of this thesis is shared data programming. While 
being considered outside of the common programming solutions, mainly dominated by message passing 
concept, we believe that shared data programming provides an attractive alternative to MPI-like solutions 
where the programmer does not have to explicitly orchestrate data exchange between processes, but 
rather focus on the algorithmic complexities of the problem to be solved. In order to support this idea we 
had, based on carefully monitoring the grid domain for some time, we started to analyze the drawbacks of 
existing solutions followed by a model design and prototype implementation of a novel solution which 
aims to respond to the call for an alternative grid programming concept.  

The first part of the thesis focused on a critical analysis of grid programming concepts and 
technologies with a focus on the shared data programming paradigm which are barely visible in today’s 
grid programming solutions. Distributed shared programming concepts were considered as a viable and 
interesting approach especially in highly interactive applications where message passing would increase 
application’s complexities and decrease programmability and potentially performance. The dilemma of 
distributed shared data programming was analyzed from several perspectives and the major qualities of a 
design were highlighted.  

In the second part of the thesis we have defined a model for distributed shared data programming 
based on the concept of universes and grid nodes. Out of several potential architectural solutions we 
have selected the most promising one that shall represent a good tradeoff between complexity, scalability 
and performance. The overall architecture has been augmented by adding a coherence type dimension 
where specialized objects are considered for certain interaction patterns.  

The final part of the thesis addressed the analysis of both the model as well as the prototype 
implementation of the grid service layer for shared data programming. While the theoretical analysis 
focused on a static system where no message queues have been modeled, the prototype analysis 
exposes the behavior of an implementation where all aspects found in real deployments are present. 

One of the first observations during the experiments was that it was very easy and 
straightforward to program a distributed application using the prototype implementation of the universe 
model (GUN). GUN does not require any knowledge of MPI-like programming concepts, and it requires 
only the algorithmic representation of the problem. It was easier and more convenient to express 
interactions via shared data rather than messages. Additionally, it was very straightforward to orchestrate 
data exchange via workers since there is a built-in data representation at the grid shared object. Even if 
this is a subjective remark, it appeared quite easy to define distributed data abstractions and let their life 
cycle be managed by GUN automatically. From the deployment point of view, GUN was run in different 
heterogeneous configurations, spanning its universes across Europe and Central Asia. In general 
deployment aspects are more difficult to manage, but this aspect is an inherent issue of distributed 
computing and especially grids.  

The concepts defined in this work as well as the GUN prototype represent an attractive MPI-like 
alternative to program large scale grid applications following the shared data paradigm. The solution 
makes use of a flexible deployment model based on the network’s characteristics as well as a 
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customizable object replication configuration. Having a good scalability and built-in object life-cycle 
management, it provides an easy to use concept for shared data programming on the grid. Considering 
the experimental results, the GUN prototype showed a good performance as well as scalability. From the 
object usage point of view, the following recommendations can be made: 

• Use read-only objects for immutable objects as much as possible 
• Use migratory objects only when a very high method invocation penalty cannot be 

avoided 
• Use private objects for interactions within a universe or where the number of writers is 

very low 
• Use producer-consumer objects where there is only one writer and multiple readers 

across universe (otherwise use private objects) 
• Use result objects where the object state can be composed in non-conflicting parts that 

are written frequently and independently 

The main contribution of this thesis consists of a novel solution to shared data programming for 
large scale distributed systems. The solution, together with this work brings the following original 
contributions in the context of grid computing domain: 

• A comprehensive overview on grid computing landscape, including its history, with a 
focus on grid programming paradigms. Contrary to most synthesis papers on grid 
computing which concentrate on grid infrastructure, grid middleware or grid applications, 
we focused our attention on grid programming paradigms and the challenges in 
constructing grid applications based on different programming paradigms and concepts. 

• Design of a novel model to support distributed shared data programming on the grid 
where both relaxed consistency is combined with type coherence in an object oriented 
fashion.  

• Detailed design and implementation of a flexible and scalable architecture for a grid 
service layer for shared data programming which implements the defined model. The 
solution’s novelty comes out of the combination of several design decisions: entry 
consistency specification, type coherence, three algorithmic extensions to existing mutual 
exclusion algorithms, and an easy to use object oriented interface to the application 
programmer. 

• Propose a methodology to evaluate the performance and qualitative aspects of shared 
data programming solutions by defining a clear set of experiments. Contrary to 
application specific evaluation, the experiments define a clear set of interaction patterns 
which are easy to orchestrate and implement. 

• Design and implement a Java based prototype solution (GUN) which implements the 
defined architecture using standard functionalities of the Java platform for increased 
portability. 

• Validate the model, architecture and prototype implementation by conducting both 
theoretical analysis of the model as well as a prototype-based performance 
benchmarking. The analysis provides a practical evaluation, in both real and simulated 
environments, and a large set of detailed performance results, which confirm and 
demonstrate the feasibility of the original ideas developed in the context of this work. 
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The next steps which we have already undertaken relate to the model analysis through formal 
methods using a probabilistic model checker which aims to complement the theoretical and prototype 
based evaluation and support early model analysis and evaluation. At the time of this writing a formal 
model based on the PRISM model checker has been developed, based on which we could formally check 
the correctness of the model. During the preliminary activities towards the quantitative performance 
analysis we reached a state explosion state while increasing the number of universes and their nodes. 
Consequently the model has to be re-factored in order to overcome the state explosion problem and to be 
able to execute the complete set of experiments. Last but not least, we aim to apply the developed 
concept to other engineering domains which could benefit from the shared data programming model. One 
of these domains relate to virtualization techniques for building next generation multi-core mobile 
communication systems like the ones developed within the eMuCo project (www.emuco.eu). 
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Appendix A 

A.1 Read/Write Mutex Java Implementation 
public class RWLock 
{ 

private int  givenLocks = 0; 
private int  waitingWriters = 0; 
private Object mutex = new Object(); 
 
public RWLock() 
{ 
} 
  
public void ReadLock() 
{ 

synchronized(mutex) 
 { 
  try 
  { 
   while((givenLocks == -1) || (waitingWriters != 0 )) 
   { 
    mutex.wait(); 
   } 
   catch(java.lang.InterruptedException e){} 
   givenLocks++; 
  } 
 } 
  
public void WriteLock() 
{ 
 synchronized(mutex) 
 { 
  waitingWriters++; 
  try 
  { 
   while(givenLocks != 0) 
   { 
    mutex.wait(); 
   } 
   catch(java.lang.InterruptedException e){} 
   waitingWriters--; 
   givenLocks = -1; 
  } 
 } 
} 
  
  
public void ReleaseLock() 
{  

synchronized(mutex) 
 { 
  if(givenLocks == 0) 
   return; 
  if(givenLocks == -1) 
   givenLocks = 0; 
  else 
   givenLocks--; 
    
  mutex.notifyAll(); 
 } 
} 

} 
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A.2 Distributed Centralized Algorithm 
 
// Every node Ni has following local variables 
* self - keeps the node identification (Ni) 
* PN - keeps the primary gateway identity (e.g. add ress) 
 
/** Creates a copy of the GridObject o in the Grid Universe and returns a GridObjectRef 
 @param  o The GridObject to be created on the Grid  Universe. 
 @return  Reference to the created grid object. If operation fails null is returned. 
*/ 
CreateGridObject(GridObject o): 
 Call CreateObject(o, self) on PN 
 
/** Finds a GridObject in the Grid Universe that ha s a given user provided object identifier. 
 @param  oid Object identifier, OID. 
 @return  Reference to the found grid object. Retur ns null if no object could be 
found. 
*/ 
FindGridObject(OID oid): 
 Call FindGridObject(oid, self) on PN 
 
/** Deletes all GridObjects from the Grid Universe that have a given user provided object 
identifier. 
 @param  id Object identifier, OID. 
 @return  True if successful, otherwise false. 
*/ 
DeleteGridObject(OID oid): 
 Call DeleteGridObject(oid) on PN 
 
/** Acquires non-exclusively within the specified t imeout[ms] the grid object referred by a grid 
object reference. 
 @param  ref  Grid object reference. 
 @param  timeOut Timeout value. 
 @return   True if successful, otherwise false. 
*/ 
Acquire(GridObjectRef ref, long  timeOut): 
 Within timeOut do 
  Call Acquire(ref, timeOut, self) on PN 
 
/** Acquires exclusively within the specified timeo ut[ms] the grid object referred by a grid 
object reference. 
 @param  ref  Grid object reference. 
 @param  timeOut Timeout value. 
 @return   True if successful, otherwise false. 
*/ 
AcquireExclusive(GridObjectRef ref, long  timeOut): 
 Within timeOut do 
  Call AcquireExclusive(ref, timeOut, self) on PN 
 
/** Releases a previously acquired grid object refe rred by a grid object reference. 
 @param  ref  Grid object reference, OID. 
 @return   True if successful, otherwise false. 
*/ 
Release(GridObjectRef ref): 
 Call Release(ref, self) on PN 

 
/** Receives a "CreateCopy" message and creates a c opy of a GridObject on the invoked node. 
 @param  o Grid object that shall be copied on the node. 
*/ 
Receive_CreateCopy(GridObject o): 

// creates a copy of the object instance o in the m emory space of the node  
 Create a clone of o 
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// For every primary node PNi 
 
/** Creates a copy of the GridObject o in the Grid Universe and returns a GridObjectRef 
 @param  o  The GridObject to be created on the Gri d Universe. 
 @param  callerNode The caller node from where the operations has been triggered. 
 @return   Reference to the created grid object. If  operation fails null is 
returned. 
*/ 
CreateGridObject(GridObject o, Node callerNode): 
 // Try to create on the caller node if possible  
 Lookup table entry (NodeTable) where  NID = callerNode 
 if  (entry.Load + o.Weight < entry.Capacity) then 
  // create the object on the callerNode 
  Call CreateCopy(o) on callerNode 
  Call PN_RegisterObject(o, callerNode) to callerNo de.PN 
  // update distributed sequencer registration table 
  PN = f(o.OID) 
  Call PN_RegisterObjectStatus(o, callerNode) to PN  
  return  GridObjectRef(o.OID, o.GID, callerNode) 
 else 
  // Find a node within the universe with enough left  capacity 
  for  each  n in  NodeTable 
   if  (n.Load + o.Weight < n.Capacity) then 
    // create the object on the callerNode 
    Call CreateCopy(o) on n 
    Call PN_RegisterObject(o, n) on n.PN 
 
    // update sequencer registration table 
    PN = f(o.OID) 
    Call PN_RegisterObject(o, callerNode) on PN 
     
    return  GridObjectRef(o.OID, o.GID, n) 
   end if 
  end for 
 end if 
 // no capacity left in this universe 
 // shared data object must be created in other univ erses 
 for  each  u in  UniverseTable 
  if  u != self then 
   GridObjectRef = Call CreateGridObject(o, u.addre ss) on u.address 
   if  (GridObjectRef != null) then  
    return  GridObjectRef 
   end if 
  end if 
 end for 
  
 // no free space in the entire grid universe 
 return  null 
 
/** Register a grid object on a given node within a  universe. 
 @param  o  The GridObject to be registered on the Grid Universe. 
 @param  targetNode The node where the object has b een created. 
*/ 
PN_RegisterObject(GridObject o, Node targetNode): 
 // update capacity left 
 Update table entry (NodeTable) where  NID = targetNode with Load = Load + o.Weight 
 
/** Register a grid object on a given primary node where the mutual exclusion is arbitrated.  
 @param  o  The GridObject to be registered on the Grid Universe. 
 @param  targetNode The node where the object has t o be arbitrated. 
*/ 
PN_RegisterObjectStatus(GridObject o, Node targetNo de): 
 // add object in object table 

Add table entry (NodeObjectTable, {targetNode.NID, o.GID, o.OID, READY, FALSE}) 
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/** Finds a GridObject in the Grid Universe that ha s a given user provided object identifier. 
 @param  id  Object identifier, OID. 
 @param  callerNode The caller node from where the operations has been triggered. 
 @return   Reference to the found grid object. Retu rns null if no object could 
be found. 
*/ 
FindGridObject(OID id, Node callerNode): 
 // Locality strategy : try to locate a node within the same universe  
 Lookup table entry (NodeTable) where  OID = id 
 if  (entry != null) then 
  return  GridObjectRef(entry.OID, entry.GID, entry.NID);  
 end if 
 // shared data object is not part of the current un iverse 
 for  each  u in  UniverseTable 
  if  u != self then 

newref = Call FindGridObject(id, u) to u.address 
   if  (newref != null) then  
    return  newref 
   end if 
  end if 
 end for 
 
/** Deletes all GridObjects from the Grid Universe that have a given user provided object 
identifier. 
 @param  id Object identifier, OID. 
 @return  True if successful, otherwise false. 
*/ 
DeleteGridObject(OID id): 
 Lookup table entry (NodeObjectTable) where  OID = id 
 if  (entry != null) then  
  Wait until entry.Status = READY 
  Delete table entry (NodeObjectTable) for  OID = id 
  // update available capacity as object is removed 
  Update table entry (NodeTable) 
 end if 
 // check other replicas in other universes 
 for  each  u in  UniverseTable 
  if  u != self then 
   Send DeleteGridObject(id) to u.address 
  end if 
 end for 
 // wait for all replies from all universes 
 Wait for  all Msg 
/** Acquires non-exclusively within the specified t imeout[ms] the grid object referred by a grid 
object reference. 
 @param  ref  Grid object reference. 
 @param  callerNode The caller node from where the operations has been triggered. 
 @param  timeOut Timeout value. 
 @return   True if successful, otherwise false. 
*/ 
Acquire(GridObjectRef ref, long  timeOut, Node callerNode): 
 PN = f(ref.OID) 
 Call PN_Acquire(ref, timeOut, callerNode) on PN 
 
/** Acquires exclusively within the specified timeo ut[ms] the grid object referred by a grid 
object reference. 
 @param  ref  Grid object reference. 
 @param  callerNode The caller node from where the operations has been triggered. 
 @param  timeOut Timeout value. 
 @return   True if successful, otherwise false. 
*/ 
AcquireExclusive(GridObjectRef ref, long  timeOut, Node callerNode): 
 PN = f(ref.OID) 
 Call PN_AcquireExclusive(ref, timeOut, callerNode)  on PN 
 
  

BUPT



A Grid Service Layer for Shared Data Programming  

 
 

 197 / 207 
 

/** Acquires non-exclusively within the specified t imeout[ms] the grid object referred by a grid 
object reference. 
 @param  ref  Grid object reference. 
 @param  callerNode The caller node from where the operations has been triggered. 
 @param  timeOut Timeout value. 
 @return   True if successful, otherwise false. 
*/ 
PN_Acquire(GridObjectRef ref, long  timeOut, Node callerNode): 
 Within timeOut do 
  Lookup table entry (NodeObjectTable) where  OID = ref.OID 
  Wait until all entry.Status != ACQUIRE_EXCLUSIVE 
  // entry state could be either READY or ACQUIRE 
  // mark new acquired object as dirty 
  Lookup table entry (NodeObjectTable) where  GID = ref.GID 
  if  (entry.Dirty = TRUE) then  
   Lookup table e (NodeObjectTable) where  OID = ref.OID and DIRTY = FALSE 
   // lazy object synchronization  

Copy e.GID content to ref content 
  end if 
  entry.DIRTY = FALSE 
  Save all entry.Status 
  // all objects and their replicas have been acquire d 
  Set all entry.Status = ACQUIRE 
 end 
 if  Timeout occured 
  Revert Status to original state 
 end if 
 
/** Acquires exclusively within the specified timeo ut[ms] the grid object referred by a grid 
object reference. 
 @param  ref  Grid object reference. 
 @param  callerNode The caller node from where the operations has been triggered. 
 @param  timeOut Timeout value. 
 @return   True if successful, otherwise false. 
*/ 
PN_AcquireExclusive(GridObjectRef ref, long  timeOut, Node callerNode): 
 Within timeOut do 
  Lookup table entry (NodeObjectTable) where  OID = ref.OID 
  Wait until all entry.Status = READY 
  // mark new acquired object as dirty 
  Lookup table entry (NodeObjectTable) where  GID = ref.GID 
  if  (entry.Dirty = TRUE) then  
   Lookup table e (NodeObjectTable) where  OID = ref.OID and DIRTY = FALSE 
   // lazy object synchronization  
   Copy e.GID content to ref content 
  end if 
  entry.DIRTY = FALSE 
  // mark as invalid all other entries except this on e 
  Lookup table entry (NodeObjectTable) where  OID = ref.OID and GID != ref.GID 
  Set all entry.DIRTY = TRUE 
  // all objects and their replicas have been acquire d exclusively 
  Set all entry.Status = ACQUIRE_EXLUSIVE 
 end 
 if  Timeout occured 
  Revert Status 
 end if 
 
/** Releases a previously acquired grid object refe rred by a grid object reference. 
 @param  ref  Grid object reference, OID. 
 @param  callerNode The caller node from where the operations has been triggered. 
 @return   True if successful, otherwise false. 
*/ 
Release(GridObjectRef ref, Node callerNode): 
 PN = f(ref.OID) 
 Call PN_Release(ref, callerNode) on PN 
 
PN_Release(GridObjectRef ref, Node callerNode): 
 Lookup table entry (NodeObjectTable) where  OID = ref.OID 
 // all objects and their replicas refered by ref ha ve been released 
 Set all entry.Status = READY 
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A.3 Centralized/Naimi-Trehel Multi-Token Algorithm 
 
// For every node Ni which has following local vari ables: 
Node  : self  - keeps the node identification (Ni) 
Node  : PN  - keeps the primary node identity (e.g.  address) 
Long  : capacity - free node capacity in bytes  
Boolean : exclusive - specifies if the previous acq uire request was exlusive or not . 
RWMutex : rwMutex[] - read/write mutex for local ar bitration according to entry-consistency 

semantics, one per each object type  
 
/** Creates a copy of the GridObject o in the Grid Universe and returns a GridObjectRef 
 @param  o The GridObject to be created on the Grid  Universe. 
 @return  Reference to the created grid object. If operation fails null is returned. 
*/ 
CreateGridObject(GridObject o): 
 Call CreateObject(o, self) on PN 
  
/** Finds a GridObject in the Grid Universe that ha s a given user provided object identifier. 
 @param  oid Object identifier, OID. 
 @return  Reference to the found grid object. Retur ns null if no object could be 
found. 
*/ 
FindGridObject(OID oid): 
 Call FindGridObject(oid, self) on PN 
 
/** Deletes all GridObjects from the Grid Universe that have a given user provided object 
identifier. 
 @param  oid Object identifier, OID. 
 @return  True if successful, otherwise false. 
*/ 
DeleteGridObject(OID oid): 
 Call DeleteGridObject(oid) on PN 
 
/** Acquires non-exclusively within the specified t imeout[ms] the grid object referred by a grid 
object reference. 
 @param  ref  Grid object reference. 
 @param  timeOut Timeout value. 
 @return   True if successful, otherwise false. 
*/ 
Acquire(GridObjectRef ref, long  timeOut): 

if  (Type(ref) == READONLY) 
 return true 
else if  (Type(ref) == PRIVATE) 
 return rwMutex[ref.OID].ReadLock() 
else if  (Type(ref) == MIGRATORY) 
 GridObjectRef newRef = LookupRef(ref) 
 if (ref.DataNode != newRef.DataNode) 
  // Object has been migrated, forward request to new  node 

return Call Acquire(newRef, timeOut) on ref.DataNod e 
 end if  

rwMutex[ref.OID].ReadLock() 
end if 

 
exclusive = false 
Within timeOut  

  Send Acquire(ref, timeOut, self) on PN 
  // wait until Acquired message is received  
  Wait for Acquired 
  return true 
 end  

// timeout occured  
 return false  
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/** Acquires exclusively within the specified timeo ut[ms] the grid object referred by a grid 
object reference. 
 @param  ref  Grid object reference. 
 @param  timeOut Timeout value. 
 @return   True if successful, otherwise false. 
*/ 
AcquireExclusive(GridObjectRef ref, long  timeOut): 

if  (Type(ref) == READONLY) 
 return true 
else if  (Type(ref) == PRIVATE) 
 return rwMutex[ref.OID].WriteLock() 
else if  (Type(ref) == MIGRATORY) 

GridObjectRef newRef = LookupRef(ref) 
 if  (ref.DataNode != newRef.DataNode) 
  // Object has been migrated, forward request to new  node 

return Call Acquire(newRef, timeOut) on ref.DataNod e 
 end if  
 // Object resides on this node 
 rwMutex[ref.OID].WriteLock() 

// The requesting node must be different to the nod e where the object resides 
 if (ref.ClientNode != self) 

// identify the referred grid object 
GridObject o = ref.GetObject() 
// Migrate the referred object from this node to th e requestor node 
ok = Call CreateGridObject(o, ref.ClientNode) on re f.ClientNode.PN 
if (ok = true) 

// unregister the object from its current location  
Call PN_RemoveGridObject(ref.OID) on PN 
capacity = capacity – size(o)  
delete o 
// update reference’s data node as the new node 
// remote assignment to the process space where the  ref belongs to 
ref.DataNode = ref.ClientNode 
// obtain the mutex on the new node where the objec t was migrated 
// all references will be pointed to the new node f rom now on 
Call AcquireExclusive(ref, timeOut) on ref.ClientNo de 
// operations on this node are complete as the obje ct is migrated 
rwMutex[ref.OID].ReleaseLock()  

  end if  
 end if  
end if  
 
exclusive = true 
Within timeOut  

  Send AcquireExclusive(ref, timeOut, self) on PN 
  // wait until AcquiredExclusive message is received  
  Wait for AcquiredExclusive 
  return true 
 end  

// timeout occured  
 return false  
 
/** Releases a previously acquired grid object refe rred by a grid object reference. 
 @param  ref  Grid object reference, OID. 
 @return   True if successful, otherwise false. 
*/ 
Release(GridObjectRef ref): 

if  (Type(ref) == READONLY) 
 return true 
else if  (Type(ref) == PRIVATE) 
 return rwMutex[ref.OID].ReleaseLock() 
else if  (Type(ref) == MIGRATORY) 
 return rwMutex[ref.OID].ReleaseLock() 
end if  

 
Send Release(ref, self, exclusive) on PN 
// wait until Released message is received  

 Wait for Released 
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/** Creates a copy of a GridObject in the storage m emory of the node. 
 @param  o Grid object that shall be copied on the node. 
*/  
CreateCopy(GridObject o): 

// creates a copy of the object instance o in the m emory space of the node  
 Create a clone of o 

capacity = capacity + size(o) 
 

/** Looks up the correct node where the data referr ed by the reference has been migrated. 
 @param  ref  Grid object reference. 

@return   The correct reference. 
*/ 
LookupRef(GridObjectRef ref) 

// identify the referred grid object 
GridObject o = ref.GetObject() 
if  (o = null) 

  // object has been migrated 
  return Call FindGridObject(ref.OID, ref.ClientNode)  on ref.ClientNode.PN  

end if   
return ref   

 
// For every primary node PNi which has following l ocal variables: 
Node  : self  - keeps the node’s identification (PN i) 
Node  : electedNode  - elected initial primary node  to hold all tokens 
Boolean : requesting[] - specifies if token for an OID has been requested or not 
Node  : next[]  - array of next nodes to receive th e token for an OID 
 
Struct{ 
 Boolean : exclusive - specifies if the token is ow ned exclusively 
 Node :  nonex[]   - nodes that hold the token in n on-exclusive mode 
 Node :  latest[] - nodes that hold the most recent  copy of an object with OID   

Node :  consumers[] – reader nodes for Producer-Con sumer and Read-Mostly types 
 
}Token : token[] - array of tokens for each object identifier 
 
PrimaryNode  : owner[] - specifies the primary node  that owns the token[OID] 
Timer  : prTimer[] - timer for token preeemption fo r each token[OID] 
int   : PREEMPT_TIME – preemption time for token ex change 
 
/** Creates a copy of the GridObject in the Grid Un iverse and returns a GridObjectRef 
 @param  o  The GridObject to be created on the Gri d Universe. 
 @param  callerNode The caller node from where the operations has been triggered. 
 @return   Reference to the created grid object. Re turns null in case of 
error. 
*/ 
CreateGridObject(GridObject o, Node callerNode): 
 // Try to create on the caller node if possible  
 Lookup table entry (NodeTable) where  NID = callerNode 
 if  (entry.Load + o.Weight < entry.Capacity) then 
  // create the object on the callerNode  
  Call CreateCopy(o) on callerNode 
  Call PN_RegisterObject(o, callerNode) on callerNo de.PN 
  // initialize the token  

for  each  u in  UniverseTable 
   Call PN_Initialize(o.OID, callerNode) on u 
  end for 
  return  GridObjectRef(o.OID, o.GID, callerNode, callerNode ) 
 else 
  // Find a node within the universe with enough left  capacity 
  for  each  n in  NodeTable 
   if  (n.Load + o.Weight < n.Capacity) then 
    // create the object on the callerNode 
    Call CreateCopy(o) on n  
    Call PN_RegisterObject(o, n) on n.PN 

// initialize the token  
for  each  u in  UniverseTable 

     Call PN_Initialize(o.OID, n) on u 
    end for 
    return  GridObjectRef(o.OID, o.GID, n, callerNode) 
   end if 
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  end for 
 end if 

// no capacity left in this universe 
 // shared data object must be created in other univ erses 
 for  each  u in  UniverseTable 
  if  u != self then 
   newref = Call CreateGridObject(o, u.address) on u.address 
   if  (newref != null) then  
    return  newref 
   end if 
  end if 
 end for 
 // no free space in the entire grid universe 
 return  null 
 
/** Register a grid object on a given node within a  universe. 
 @param  o  The GridObject to be registered on the Grid Universe. 
 @param  targetNode The node where the object has b een created. 
*/ 
PN_RegisterObject(GridObject o, Node targetNode): 

Lookup table entry (NodeTable) where  NID = targetNode 
 if  (entry != null) then 

// update capacity left 
  Update table entry (NodeTable) where  NID = targetNode with Load = Load + o.Weight 
 else 

// add a new entry 
  Add table entry (NodeObject, {targetNode, self, s elf.capacity, o.Weight}) 
 end if 
 // add object in object table 
 Add table entry (NodeObjectTable, {targetNode.NID,  o.GID, o.OID}) 
 
/** Finds a GridObject in the Grid Universe that ha s a given user provided object identifier. 
 @param  id  Object identifier, OID. 
 @param  callerNode The caller node from where the operations has been triggered. 
 @return   Reference to the found grid object. Retu rns null if no object could 
be found. 
*/ 
FindGridObject(OID oid, Node callerNode): 
 // Locality strategy : try to locate a node within the same universe  
 Lookup table entry (NodeTable) where  OID = oid 
 if  (entry != null) then 
  return  GridObjectRef(entry.OID, entry.GID, entry.NID, cal lerNode);  
 end if 
 
 // shared data object is not part of the current un iverse 
 for  each  u in  UniverseTable 
  if  u != self then 
   newref = Call FindGridObject(id, u) to u.address  
   if  (newref != null) then  
    return  newref 
   end if 
  end if 
 end for 
 
/** Deletes all GridObjects from the Grid Universe that have a given user provided object 
identifier. 
 @param  oid Object identifier, OID. 
 @return  True if successful, otherwise false. 
*/ 
DeleteGridObject(OID oid): 
 if  owner[oid] != 0 then 
  // the node does not have the token 
  Send Request_AcquireExclusive(ref, callerNode) to  owner[oid] 
  Wait for  Token(oid) 
 else 
  // the node has the token 
  Wait until token[oid].nonex is empty 
  // wait until the object is released 
  Wait until token[oid].exclusive = false 
 end if 
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// we have the token and no clients are neither wri ting nor reading  
 for all u in UniverseTable 

Call PN_RemoveGridObject(id) on u.address 
 
/** Removes an object from the universe information  table. 
 @param  oid Object identifier, OID. 
*/  
PN_RemoveGridObject(OID oid): 
 Lookup table entry (NodeObjectTable) where  OID = oid 
 if  (entry != null) then  
  Delete table entry (NodeObjectTable) for  OID = oid 
  // update available capacity as object is removed 
  Update table entry (NodeTable) 
 end if 
  
/** Acquires non-exclusively within the specified t imeout[ms] the grid object referred by a grid 
object reference. 
 @param  ref   Grid object reference. 
 @param  callerNode The caller node from where the operations has been triggered. 
 @param  timeOut  Timeout value. 
 @return    True if successful, otherwise false. 
*/ 
Acquire(GridObjectRef ref, long  timeOut, Node callerNode): 
 queue = queue + (OP_Acquire, ref, timeOut, callerN ode) 
 
/** Acquires exclusively within the specified timeo ut[ms] the grid object referred by a grid 
object reference. 
 @param  ref  Grid object reference. 
 @param  callerNode The caller node from where the operations has been triggered. 
 @param  timeOut Timeout value. 
 @return   True if successful, otherwise false. 
*/ 
AcquireExclusive(GridObjectRef ref, long  timeOut, Node callerNode): 
 queue = queue + (OP_AcquireExclusive, ref, timeOut , callerNode) 
 
/** Processes continuously requests from the reques t queue. 
*/ 
PN_ProcessQueue(): 
 while  ( true ) do 
  entry = queue.head 
  queue = gueue - head 
  if  (entry == OP_Acquire) 
   PN_Acquire(entry.ref, entry.callerNode) 

if  (queue not empty) and (queue.head.entry == OP_Acqu ire) 
    // eager synchronization if next operation is acqui re 
    PN_EagerSync(queue.head.ref, queue.head.callerNode)  

end  if 
  else  if  (entry = OP_AcquireExclusive) 
   PN_AcquireExclusive(entry.ref, entry.callerNode)  
 end while  
 
/** Initializes the primary node data stuctures for  a token type. 

@param  oid Token identifier to be initialized. 
@param  n The node where the an object of type oid was created. 

*/ 
PN_Initialize(OID oid, Node n): 
 requesting[oid] = false 
 next[oid] = 0 
 token[oid].exclusive = false 
 if  (self = electedNode) then 

 owner[oid] = 0   // this node is the owner 
 else   
  owner[oid] = electedNode  // electedNode is the owner 
 end if  

// mark this node as one that contains the latest s hared object 
 Add n to token[oid].latest 
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/** Performs an acquire request. 
 @param  ref  Grid object reference. 
 @param  callerNode The caller node from where the operations has been triggered. 
*/ 
PN_Acquire(GridObjectRef ref, Node callerNode): 

if (Type(ref) == RES) 
requesting[ref.OID] = true 

 if  owner[ref.OID] != 0 then 
  // the node does not have the token 

   // token must be requested 
   Send Request_AcquireExclusive(ref, callerNode) t o owner[ref.OID] 
   owner[ref.OID] = 0 
   Wait for  Token(ref.OID, latestNodes) 
  else 
   // the node has the token 

Wait until (token[ref.OID].nonex is empty)  
Wait until (token[ref.OID].exclusive == false) 

  end if  
  // perform object state synchronization 
  Call AssembleObject(ref, token[ref.OID].nonex) on r ef.DataNode 
  // reset token 

token[ref.OID].latest = ref.DataNode 
  token[ref.OID].nonex = 0 

token[ref.OID].exclusive = true  
  Send Acquired to callerNode 

end if  
 
 // regular handling 
 if  owner[ref.OID] != 0 then 
  // the node does not have the token 
  // node registers to the token owner as non-exclusi ve access 
  Send Request_Acquire(ref, callerNode, self) to ow ner[ref.OID] 
  Wait for  Acquire_Granted(ref.OID, latestNodes) 
 else 
  // this primary node has the token 
  Wait until (token[ref.OID].exclusive == false) 
  // now the token can be held non-exclusively 
  Add callerNode to token[ref.OID].nonex 

 
latestNodes = token[ref.OID].latest 

  if (ref.DataNode not in latestNodes) then 
   Add ref.DataNode to token[ref.OID].latest 
  end if 
   

// update consumer nodes if not already known 
if ((Type(ref) == PC or RM) and callerNode not in t oken[ref.OID].consumers) 

Add callerNode to token[ref.OID].consumers 
  end if  
 end if  
 // synchronize object if not in latest  
 if (ref.DataNode not in latestNodes) 
  // update the object pointed by ref residing on cal lerNode  

// with one value of objects residing on latestNode s 
Synchronize(ref, ref.DataNode, latestNodes)  

 end if  
 Send Acquired to callerNode 
 
/** Performs an acquire exclusive request. 
 @param  ref  Grid object reference. 
 @param  callerNode The caller node from where the operations has been triggered. 
*/ 
PN_AcquireExclusive(GridObjectRef ref, Node callerN ode): 

if (Type(ref) == RES)  
requesting[ref.OID] = true 

 if  owner[ref.OID] != 0 then 
  // the node does not have the token 
  // node registers to the token owner as non-exclusi ve access 
  Send Request_Acquire(ref, callerNode) to owner[re f.OID] 
  Wait for  Acquire_Granted(ref.OID, latestNodes) 
 else 
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  // this primary node has the token 
  Wait until (token[ref.OID].exclusive == false) 
 
  // now the token can be held non-exclusively 
  Add callerNode to token[ref.OID].nonex 

end if 
  Send AcquiredExclusive to callerNode 

return 
end if 

  
 // regular handling 
 requesting[ref.OID] = true 
 if  owner[ref.OID] != 0 then 
  // the node does not have the token 
  // token must be requested 
  Send Request_AcquireExclusive(ref, callerNode, se lf) to owner[ref.OID] 
  owner[ref.OID] = 0 
  Wait for  Token(ref.OID, latestNodes) 
 else 
  // this primary node has the token 
  Wait until (token[ref.OID].nonex is empty) 
  Wait until (token[ref.OID].exclusive == false) 

latestNodes = token[ref.OID].latest 
 end if  

 
// update read-mostly nodes if not already known 
if (Type(ref) == RM and callerNode not in token[ref .OID].consumers) 

Add callerNode to token[ref.OID].consumers 
 end if  

 
// synchronize objects if not in latest  

 if (ref.DataNode not in latestNodes) 
  // update the object pointed by ref residing on cal lerNode  

// with one value of objects residing on latestNode s 
  Synchronize(ref, ref.DataNode, latestNodes) 
 end if 
 token[ref.OID].latest = ref.DataNode 
 token[ref.OID].nonex = 0 

token[ref.OID].exclusive = true  
 Send AcquiredExclusive to callerNode 
 
/** Processes an acquire request. 
 @param  ref  Grid object reference. 
 @param  requestorNode The caller node from where t he operations has been requested from. 
 @param  callerPN Primary node from where the reque st has been issued. 
*/ 
Receive_Request_Acquire(GridObjectRef ref, Node req uestorNode, PrimaryNode callerPN): 
 if  (owner[ref.OID] == 0) then 
  // this node has the token 
  Wait until (token[ref.OID].exclusive == false) 
  Add requestorNode  to token[ref.OID].nonex 
  // send the token granted to the requesting primary  node 
  Send Acquire_Granted(ref.OID, token[ref.OID].late st) to callerPN 
  Add ref.dataNode to token[ref.OID].latest 

// update consumer nodes if not already known 
if ((Type(ref) == PC or RM) and requestorNode not i n token[ref.OID].consumers) 

Add requestorNode to token[ref.OID].consumers 
  end if  
 else 
  // non-root node, forward request 
  Send Request_Acquire(ref, requestorNode ) to owner[ref.OID] 
 end if  
 
/** Processes an acquire exclusive request. 
 @param  ref  Grid object reference. 
 @param  requestorNode The caller node from where t he operations has been requested from. 

@param  callerPN Primary node from where the reques t has been issued. 
*/ 
Receive_Request_AcquireExclusive(GridObjectRef ref,  Node requestorNode, PrimaryNode callerPN): 
 if  owner[ref.OID] = 0 then 
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  // serve internal requests with priority within a c ertain time frame 
  if  (queue has requests with ref.OID) then 

// If timer is not already setup, it must be starte d  
   if  (prTimer[ref.OID] is not running) then 
    prTimer[ref.OID].start(PREEMPT_TIME) 
    return 

end if 
 
// Check if the timer expired 

   if  (prTimer[ref.OID] is not expired) then 
    return 

end if 
   // the timer expired, thus we have to process reque sts 
  end if  
   

// update read-mostly nodes if not already known 
if (Type(ref) == RM and requestorNode not in token[ ref.OID].consumers) 

Add requestorNode to token[ref.OID].consumers 
  end if  
 

// time frame elapsed or no pending internal reques ts 
  if  (requesting[ref.OID] == true)  then 
   // The node asked for acquire exclusive 
   next[ref.OID] = callerPN 
  else 
   Wait until (token[ref.OID].nonex is empty) 
   Wait until (token[ref.OID].exclusive == false) 
   // send the token directly to the requesting node 
   Send Token(ref, token[ref.OID].latest) to caller PN 
   // reset token 
   token[ref.OID].exclusive = false 
   token[ref.OID].latest = empty 
   token[ref.OID].nonex = empty 
  end if  
 else 
  // non-root node, forward request 
  Send Request_AcquireExclusive(ref, requestorNode,  callerPN) to owner[ref.OID] 
 end if  
 owner[ref.OID] = callerPN 
 
/** Releases a previously acquired grid object refe rred by a grid object reference. 
 @param  ref  Grid object reference. 
 @param  callerNode The caller node from where the operations has been triggered. 
 @return   True if successful, otherwise false. 
*/ 
Release(GridObjectRef ref, Node callerNode): 
 requesting[ref.OID] = false 
 if  (token[ref.OID].exclusive == true ) then 

token[ref.OID].latest = callerNode 
// synchronize all “consumer nodes” 

  if (Type(ref) == PC or RM)   
Call SynchronizeAll(ref, token[ref.OID].consumers) on ref.DataNode 

  end if  
  // release from exclusive acquire 
  if  (next[ref.OID] != 0) then 
   // Send the token if the timer expired 
   if  (prTimer[ref.OID] is expired) then 
    owner[ref.OID] = next[ref.OID]   

Send (Token, ref, token[ref.OID].latest) to next[re f.OID] 
    next[ref.OID] = 0 
    // reset token 
    token[ref.OID].latest = empty 

 token[ref.OID].nonex = empty 
end if 

  end if  
token[ref.OID].exclusive = false 

 else 
  // release from non-exclusive acquire 
  if (owner[ref.OID] != self) 
   // primary node does not have the token 
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Send (Request_Release, callerNode, false) to owner[ ref.OID] 
   Wait for  message (Release_Granted) 
  else 
   Remove callerNode from token[ref.OID].nonex 
  end if  
 end if 
 Send Released to callerNode 
 
/** Processes a release request. 
 @param  ref  Grid object reference. 
 @param  requestorNode The caller node from where t he operations has been requested from. 
 @param  callerPN Primary node from where the relea se is issued from. 
 */ 
Receive_Request_Release(GridObjectRef ref, Node req uestorNode, PrimaryNode callerPN): 
 if  (owner[ref.OID] == 0) then 
  // this node has the token 
  if (exclusive == false ) then 
   Remove requestorNode  from token[ref.OID].nonex 
  end if 
  // send the token granted to the requesting primary  node 
  Send Release_Granted[ref.OID] to callerPN  
 else 
  // non-root node, forward request 
  Send Request_Release(ref, requestorNode , callerPN) to owner[ref.OID] 
 end if  
  
/** Processes a token received message. 
 @param  ref  Grid object reference. 
 @param  nodes  Array of nodes that have the latest  object values. 
*/ 
Receive_Token(GridObjectRef ref, Node[] nodes): 
 // receive the token from node  

owner[ref.OID] = 0 
Add nodes to token[ref.OID].latest 

 
/** Synchronizes an object data with one of the lat est object values. 
 @param  ref  Grid object reference. 
 @param  callerNode The caller node from where the operations has been requested from. 
*/ 
PN_EagerSync(GridObjectRef ref, Node callerNode): 
 if  owner[ref.OID] != 0 then 
  // the primary node does not have the token 
  // node registers to the token owner as non-exclusi ve access 
  Send Request_LatestNodes(ref, callerNode) to owne r[ref.OID] 
  Wait for  LatestNodes(ref.OID, latestNodes) 
 else 
  // this primary node has the token 
  latestNodes = token[ref.OID].latest 
 end if  

 
 if (callerNode not in latestNodes) 
  // update the object pointed by ref residing on cal lerNode  

// with one value of objects residing on latestNode s 
  Synchronize(ref, callerNode, latestNodes) 
 end if 

 
/** Processes an acquire request. 
 @param  ref  Grid object reference. 
 @param  callerNode The caller node from where the operations has been requested from. 
*/ 
Receive_LatestNodes(GridObjectRef ref, Node callerN ode): 
 // callerNode is the requesting node 
 if  (owner[ref.OID] == 0) then 
  // this primary node has the token 
  // send the token’s latest node list granted to the  requesting node 
  Send LatestNodes(ref.OID, token[ref.OID].latest) to callerNode 
  Add ref.dataNode to token[ref.OID].latest 
 else 
  // non-root node, forward request 
  Send Request_LatestNodes(ref, callerNode) to owne r[ref.OID] 
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 end if  
 
 

/** Assembles the object state residing on this nod e out of the updated values of replicas 
residing in a list of nodes. 
 @param  ref  Grid object reference. 
 @param  nodes  Array of nodes that hold updated ve rsions of object parts. 
*/ 
AssembleObject(GridObjectRef ref, Node[] nodes): 

// Construct the parts of the object 
GridObject o = ref.GetObject() 
Part parts[] = o.GetParts() 
Part changedPart 
 
for each part in parts  
 index++ = 0 

for each n in nodes 
 // part is the local part that might have been writ ten somewhere 
 // changedPart is the out parameter, the most rece nt written part 

  changed = (Call GetObjectPart(index, part, changedP art) on n //remote call   
  if (changed = true) 
   parts[index] = changedPart 
   // first found is the correct non-conflicting part  

break 
  end if 
 end for 
end for  
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