dc.contributor.author |
Neagoe, Victor |
|
dc.contributor.author |
Ropot, Armand-Dragoș |
|
dc.date.accessioned |
2021-09-14T09:12:42Z |
|
dc.date.available |
2021-09-14T09:12:42Z |
|
dc.date.issued |
2004 |
|
dc.identifier.citation |
Neagoe, Victor. Neural versus statistical approaches for pattern recognition in space imagery. Timişoara: Editura Politehnica, 2004 |
en_US |
dc.identifier.uri |
http://primo.upt.ro:1701/primo-explore/search?query=any,contains,Neural%20versus%20statistical%20approaches%20for%20pattern%20recognition%20in%20space%20imagery&tab=default_tab&search_scope=40TUT&vid=40TUT_V1&lang=ro_RO&offset=0 Link Primo |
|
dc.description.abstract |
We investigate multispectral space image classification using the new neural model called Concurrent Self-Organizing Maps (CSOM), representing a winner-takes-all collection of small modular self-organizing neural networks. For comparison, we evaluate the performances of Bayes classifier. The implemented neural/statistical classifiers are evaluted using a LANDSAT TM image with 7 bands composed by a set of 7-dimensional pixels, out of which a subset contains labeled pixels, corresponding to seven thematic categories . The best experimental result leads to the recognition rate of 95.29 %. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Timişoara : Editura Politehnica |
en_US |
dc.relation.ispartofseries |
Buletinul ştiinţific al Universităţii „Politehnica” din Timişoara, România. Seria electronică şi telecomunicaţii, Tom 49(63), fasc. 1 (2004), p. 343-347 |
|
dc.subject |
Neural pattern recognition |
en_US |
dc.subject |
Multispectral space imagery |
en_US |
dc.subject |
Concurrent self-organizing maps |
en_US |
dc.title |
Neural versus statistical approaches for pattern recognition in space imagery [articol] |
en_US |
dc.type |
Article |
en_US |