Utilizaţi acest identificator pentru a cita sau a face link la acest document:
https://dspace.upt.ro/xmlui/handle/123456789/1304
Titlu: | Solving the transportation network problems using G.I.S. analysis [articol] |
Autori: | Herbei, Mihai Valentin Nemeş, Iacob |
Subiecte: | Reţele de transport G.I.S. Articol Network Transportation Minimum route |
Data publicării: | 2012 |
Editura: | Timişoara:Editura Politehnica |
Citare: | Herbei, Mihai Valentin. Solving the transportation network problems using G.I.S. analysis. Timişoara: Editura Politehnica, 2012 |
Serie/Nr. raport: | Seria hidrotehnică;Tom 57(71), fasc. 1 (2012) |
Abstract: | Many applications in GIS are characterized by data network representing and analysis. Network analysis is based on linear structures. The fields where these types of analysis are used are different, such as: roads network, electric networks, hydrographic network and so on. The subject of this paper involves the identification of the minimum cost of a route between 2 localities by using the landuse between them. In order to solve these problems we used GIS software which allows such an analysis, specifically ArcGIS v10. For finding the easiest way to get from a source point (locality) to a destination point (locality) by using the characteristics of the land we will consider landuse meaning how difficult is moving on it depending on what is on the surface and the slope. The steeper the slope, the harder the movement will be. |
URI: | http://primo.upt.ro:1701/primo-explore/search?query=any,contains,Solving%20the%20transportation%20network%20problems%20using%20G.I.S.%20analysis&tab=default_tab&search_scope=40TUT&vid=40TUT_V1&lang=ro_RO&offset=0 Link Primo |
Colecţia: | Articole științifice/Scientific articles |
Fişierele documentului:
Fişier | Descriere | Mărime | Format | |
---|---|---|---|---|
BUPT_ART_Herbei_f.pdf | 1.53 MB | Adobe PDF | Vizualizare/Deschidere |
Documentele din DSpace sunt protejate de legea dreptului de autor, cu toate drepturile rezervate, mai puţin cele indicate în mod explicit.