Utilizaţi acest identificator pentru a cita sau a face link la acest document: https://dspace.upt.ro/xmlui/handle/123456789/1655
Titlu: Image filtering and segmentation using kernel density estimation [articol]
Autori: Gui, Vasile
Laitinen, Jyrki
Alexa, Florin
Subiecte: Edge preserving smoothing
Multiscale
Mode location
Mean shift
Segmentation
Data publicării: 2008
Editura: Timişoara:Editura Politehnica
Citare: Gui, Vasile. Image filtering and segmentation using kernel density estimation. Timişoara: Editura Politehnica, 2008
Serie/Nr. raport: Seria electronică şi telecomunicaţii;Tom 53(67), fasc. 2 (2008), p. 177-182
Abstract: Kernel density estimation and mode finding techniques play an active role in solving contemporary computer vision problems, like edge preserving smoothing, segmentation, registration, motion estimation and tracking. The mean shift algorithm is a popular approach to locate density modes. Recently we proposed the multiscale mode filter, a generalization of the mean shift filter, which is able to avoid spurious modes while minimizing outlier sensitivity. In this paper we evaluate the effectiveness of the multiscale mode filter in edge preserving smoothing and image segmentation.
URI: http://primo.upt.ro:1701/primo-explore/search?query=any,contains,Pipeline%20identification%20in%20a%20TDOA%20experiment&tab=default_tab&search_scope=40TUT&vid=40TUT_V1&lang=ro_RO&offset=0 Link Primo
Colecţia:Articole științifice/Scientific articles

Fişierele documentului:
Fişier MărimeFormat 
BUPT_ART_Gui_f.pdf2.37 MBAdobe PDFVizualizare/Deschidere


Documentele din DSpace sunt protejate de legea dreptului de autor, cu toate drepturile rezervate, mai puţin cele indicate în mod explicit.