Utilizaţi acest identificator pentru a cita sau a face link la acest document:
https://dspace.upt.ro/xmlui/handle/123456789/1655
Titlu: | Image filtering and segmentation using kernel density estimation [articol] |
Autori: | Gui, Vasile Laitinen, Jyrki Alexa, Florin |
Subiecte: | Edge preserving smoothing Multiscale Mode location Mean shift Segmentation |
Data publicării: | 2008 |
Editura: | Timişoara:Editura Politehnica |
Citare: | Gui, Vasile. Image filtering and segmentation using kernel density estimation. Timişoara: Editura Politehnica, 2008 |
Serie/Nr. raport: | Seria electronică şi telecomunicaţii;Tom 53(67), fasc. 2 (2008), p. 177-182 |
Abstract: | Kernel density estimation and mode finding techniques play an active role in solving contemporary computer vision problems, like edge preserving smoothing, segmentation, registration, motion estimation and tracking. The mean shift algorithm is a popular approach to locate density modes. Recently we proposed the multiscale mode filter, a generalization of the mean shift filter, which is able to avoid spurious modes while minimizing outlier sensitivity. In this paper we evaluate the effectiveness of the multiscale mode filter in edge preserving smoothing and image segmentation. |
URI: | http://primo.upt.ro:1701/primo-explore/search?query=any,contains,Pipeline%20identification%20in%20a%20TDOA%20experiment&tab=default_tab&search_scope=40TUT&vid=40TUT_V1&lang=ro_RO&offset=0 Link Primo |
Colecţia: | Articole științifice/Scientific articles |
Fişierele documentului:
Fişier | Mărime | Format | |
---|---|---|---|
BUPT_ART_Gui_f.pdf | 2.37 MB | Adobe PDF | Vizualizare/Deschidere |
Documentele din DSpace sunt protejate de legea dreptului de autor, cu toate drepturile rezervate, mai puţin cele indicate în mod explicit.