Utilizaţi acest identificator pentru a cita sau a face link la acest document: https://dspace.upt.ro/xmlui/handle/123456789/1664
Titlu: L2 degree reduction of interval Bézier curves using Chebyshev-Bernstein basis transformations [articol]
Autori: Ismail, O.
Subiecte: Computer graphics
Signal processing
CAGD
Communication systems
Data publicării: 2008
Editura: Timişoara:Editura Politehnica
Citare: Ismail, O.. L2 degree reduction of interval Bézier curves using Chebyshev-Bernstein basis transformations. Timişoara: Editura Politehnica, 2008
Serie/Nr. raport: Seria electronică şi telecomunicaţii;Tom 53(67), fasc. 2 (2008), p. 260-265
Abstract: This paper presents an algorithmic approach to degree reduction of interval Bézier curves. The four fixed Kharitonov’s polynomials (four fixed Bézier curves) associated with the original interval Bézier curve are obtained. The four fixed Kharitonov’s polynomials (four fixed Bézier curves) associated with the approximate interval Bézier curve are also found. The algorithm is based on the matrix representations of the degree elevation and degree reduction processes. The computations are carried out by minimizing the L₂ distance between the four fixed Bézier curves Pi n of degree n and the four fixed approximate Bézier curves Qi m degree m.
URI: http://primo.upt.ro:1701/primo-explore/search?query=any,contains,L2%20degree%20reduction%20of%20interval%20B%C3%A9zier%20curves%20using%20Chebyshev-Bernstein%20basis%20transformations&tab=default_tab&search_scope=40TUT&vid=40TUT_V1&lang=ro_RO&offset=0 Link Primo
Colecţia:Articole științifice/Scientific articles

Fişierele documentului:
Fişier Descriere MărimeFormat 
BUPT_ART_Ismail_f.pdf1.61 MBAdobe PDFVizualizare/Deschidere


Documentele din DSpace sunt protejate de legea dreptului de autor, cu toate drepturile rezervate, mai puţin cele indicate în mod explicit.