Please use this identifier to cite or link to this item: https://dspace.upt.ro/xmlui/handle/123456789/1806
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSlavnicu, Ștefan-
dc.contributor.authorCiochină, Silviu-
dc.date.accessioned2020-05-05T05:09:00Z-
dc.date.accessioned2021-03-01T08:55:28Z-
dc.date.available2020-05-05T05:09:00Z-
dc.date.available2021-03-01T08:55:28Z-
dc.date.issued2006-
dc.identifier.citationSlavnicu, Ștefan. Adapting a normalized gradient subspace algorithm to real-valued data model. Timişoara: Editura Politehnica, 2006en_US
dc.identifier.urihttp://primo.upt.ro:1701/primo-explore/search?query=any,contains,Adapting%20a%20normalized%20gradient%20subspace%20algorithm%20to%20real-valued%20data%20model&tab=default_tab&search_scope=40TUT&vid=40TUT_V1&lang=ro_RO&offset=0 Link Primo-
dc.description.abstractA new gradient approach to adaptive subspace-based frequency estimation of multiple real valued sine waves is considered in this paper. The new approach proposed here combines the normalized gradient subspace tracking technique based on Oja learning rule - NOOja (for the signal subspace update) with the ESPRIT-like frequency estimation of real-valued sinusoids (for frequency values retrieval). Consequently, a new adaptive subspace-tracking algorithm for frequency estimation is proposed. The method proposed brings a significant reduction in arithmetical complexity at the same level of accuracy. The algorithm is tested in numerical simulations and compared to complex-valued NOja method.en_US
dc.language.isoenen_US
dc.publisherTimişoara: Editura Politehnicaen_US
dc.relation.ispartofseriesBuletinul ştiinţific al Universităţii „Politehnica” din Timişoara, România. Seria electronică şi telecomunicaţii, Tom 51(65), fasc. 2 (2006), p. 23-27-
dc.subjectSubspace trackingen_US
dc.subjectFrequency estimationen_US
dc.subjectReal-valued dataen_US
dc.subjectR-ESPRITen_US
dc.subjectNOjaen_US
dc.titleAdapting a normalized gradient subspace algorithm to real-valued data model [articol]en_US
dc.typeArticleen_US
Appears in Collections:Articole științifice/Scientific articles

Files in This Item:
File Description SizeFormat 
BUPT_ART_Slavnicu_f.pdf2.01 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.