Utilizaţi acest identificator pentru a cita sau a face link la acest document: https://dspace.upt.ro/xmlui/handle/123456789/1806
Titlu: Adapting a normalized gradient subspace algorithm to real-valued data model [articol]
Autori: Slavnicu, Ștefan
Ciochină, Silviu
Subiecte: Subspace tracking
Frequency estimation
Real-valued data
R-ESPRIT
NOja
Data publicării: 2006
Editura: Timişoara: Editura Politehnica
Citare: Slavnicu, Ștefan. Adapting a normalized gradient subspace algorithm to real-valued data model. Timişoara: Editura Politehnica, 2006
Serie/Nr. raport: Buletinul ştiinţific al Universităţii „Politehnica” din Timişoara, România. Seria electronică şi telecomunicaţii, Tom 51(65), fasc. 2 (2006), p. 23-27
Abstract: A new gradient approach to adaptive subspace-based frequency estimation of multiple real valued sine waves is considered in this paper. The new approach proposed here combines the normalized gradient subspace tracking technique based on Oja learning rule - NOOja (for the signal subspace update) with the ESPRIT-like frequency estimation of real-valued sinusoids (for frequency values retrieval). Consequently, a new adaptive subspace-tracking algorithm for frequency estimation is proposed. The method proposed brings a significant reduction in arithmetical complexity at the same level of accuracy. The algorithm is tested in numerical simulations and compared to complex-valued NOja method.
URI: http://primo.upt.ro:1701/primo-explore/search?query=any,contains,Adapting%20a%20normalized%20gradient%20subspace%20algorithm%20to%20real-valued%20data%20model&tab=default_tab&search_scope=40TUT&vid=40TUT_V1&lang=ro_RO&offset=0 Link Primo
Colecţia:Articole științifice/Scientific articles

Fişierele documentului:
Fişier Descriere MărimeFormat 
BUPT_ART_Slavnicu_f.pdf2.01 MBAdobe PDFVizualizare/Deschidere


Documentele din DSpace sunt protejate de legea dreptului de autor, cu toate drepturile rezervate, mai puţin cele indicate în mod explicit.