Utilizaţi acest identificator pentru a cita sau a face link la acest document: https://dspace.upt.ro/xmlui/handle/123456789/3822
Titlu: Knock detection based on neural networks [articol] /
Autori: Lăzărescu, Dan
Ungureanu, Mihaela G.
Subiecte: Neural networks
Features extraction
Hopfield algorithm
Knock detection
Data publicării: 2004
Editura: Timişoara : Editura Politehnica
Citare: Lăzărescu, Dan. Knock detection based on neural networks. Timişoara: Editura Politehnica, 2004
Serie/Nr. raport: Buletinul ştiinţific al Universităţii „Politehnica” din Timişoara, România. Seria electronică şi telecomunicaţii, Tom 49(63), fasc. 1 (2004), p. 253-255
Abstract: The paper presents a new method for knock detection based on two neural networks. First a discrete Hopfield network extracts features from the structural vibration signal. Then the first and the forth coefficients of the autoregressive model and the maximal and minimal value of the signal are applied to a feedforward neural network in order to detect the knock. Once a cycle has been detected as a knock containing one, for the next cycle the engine can be protected in order to avoid further appearances of knock. For the feedforward neural network it was experimentally determined that four neurons in the hidden layer is the best solution for the knock detection.
URI: http://primo.upt.ro:1701/primo-explore/search?query=any,contains,Knock%20detection%20based%20on%20neural%20networks&tab=default_tab&search_scope=40TUT&vid=40TUT_V1&lang=ro_RO&offset=0 Link Primo
Colecţia:Articole științifice/Scientific articles

Fişierele documentului:
Fişier Descriere MărimeFormat 
BUPT_ART_Lazarescu_f.pdf335.08 kBAdobe PDFVizualizare/Deschidere


Documentele din DSpace sunt protejate de legea dreptului de autor, cu toate drepturile rezervate, mai puţin cele indicate în mod explicit.