Please use this identifier to cite or link to this item:
https://dspace.upt.ro/xmlui/handle/123456789/4183
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Petrişor, Camelia | - |
dc.contributor.author | Ene, Remus Daniel | - |
dc.date.accessioned | 2022-01-06T08:37:03Z | - |
dc.date.available | 2022-01-06T08:37:03Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Petrişor, Camelia. Some new remarks on the Falkner-Skan equation: stabilization, instability and Lax formulation. Timişoara: Editura Politehnica, 20 | en_US |
dc.identifier.uri | http://primo.upt.ro:1701/primo-explore/search?query=any,contains,Some%20new%20remarks%20on%20the%20Falkner-Skan%20equation:%20stabilization,%20instability%20and%20Lax%20formulation&tab=default_tab&search_scope=40TUT&vid=40TUT_V1&lang=ro_RO&offset=0 Link Primo | - |
dc.description.abstract | In this paper we study the Falkner-Skan equation. Some stability problems, Lax formulation and an approximate analytic solution by means of the Optimal Homotopy Asymptotic Method (OHAM) were discussed. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Timişoara: Editura Politehnica | en_US |
dc.relation.ispartofseries | Buletinul ştiinţific al Universităţii „Politehnica” din Timişoara, România. Seria matematică - fizică, Vol. 63(77), issue 1 (2018), p. 9-20 | - |
dc.subject | Ecuaţii diferenţiale | en_US |
dc.subject | Sisteme dinamice | en_US |
dc.subject | Analiză numerică | en_US |
dc.subject | Control optimal | en_US |
dc.subject | Stability | en_US |
dc.subject | Lax formulation | en_US |
dc.subject | Optimal Homotopy Asymptotic Method (OHAM) | en_US |
dc.subject | Nonlinear differential system | en_US |
dc.title | Some new remarks on the Falkner-Skan equation: stabilization, instability and Lax formulation [articol] | en_US |
dc.type | Article | en_US |
Appears in Collections: | Articole științifice/Scientific articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
BUPT_ART_Petrisor_f.pdf | 537.58 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.