Utilizaţi acest identificator pentru a cita sau a face link la acest document: https://dspace.upt.ro/xmlui/handle/123456789/6294
Titlu: Optimal Power Controller Based Voltage And Frequency Control Of Dg Unit In An Island Mode Microgrd Using Hybrid Differential Evolution [articol]
Autori: Ram.B, Mothi
Srinivas.L, Ravi
Subiecte: Microgrid
Distributed Generation (DG)
Island mode
Load changing mode
Power controller
Current controller
Hybrid Differential Evolution (HDE)
Data publicării: 2021
Editura: Timișoara : Editura Politehnica
Citare: Ram.B, Mothi; Srinivas.L, Ravi. Optimal Power Controller Based Voltage And Frequency Control Of Dg Unit In An Island Mode Microgrd Using Hybrid Differential Evolution. Timişoara: Editura Politehnica, 2021.
Serie/Nr. raport: Journal of Electrical Engineering;Vol 21 No 2
Abstract: The article focuses on placing the typical Power-Electronics-Interfaced Distributed Generation (DG) systems on optimal power control mode in island mode microgrid operation which is supplemented by a new online intelligent technique. It also entails enhanced power quality that the DG system supplies which is cut off from the conventional grid. At a time when load shift occurs in the microgrid, the estimation of primary execution parameters viz., controlling voltage and frequency of DG units; steady-state as well as dynamic response; and total harmonic distortion (THD) and power quality of the microgrid is done under island mode as well as the load changing state. In contrast to the composition of a synchronous reference frame (SRF) and regular PI controllers, DG system controller consists of an internal current control loop, besides an external power control loop. In the current paper, the DG system voltage and frequency are controlled by implementing Vf’ control mode by the power controller in the DG system. The optimal tuning of the most traditional proportional-integral (PI) controller of the power controller is done by applying a smart technique i.e. Hybrid Differential Evolution (HDE). The system model and simulation outputs developed by applying MATLAB/Simulink software platform indicate a better performance for the new power controller in resolving power quality issues. Better results are obtaining with HDE method when compared with Differential Evolution (DE).
URI: https://dspace.upt.ro/xmlui/handle/123456789/6294
ISSN: 1582-4594
Colecţia:Articole științifice/Scientific articles

Fişierele documentului:
Fişier Descriere MărimeFormat 
BUPT_ART_Ram_f.pdf1.68 MBAdobe PDFVizualizare/Deschidere


Documentele din DSpace sunt protejate de legea dreptului de autor, cu toate drepturile rezervate, mai puţin cele indicate în mod explicit.