Please use this identifier to cite or link to this item: https://dspace.upt.ro/xmlui/handle/123456789/3833
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMiclău, Nicolae-
dc.date.accessioned2021-09-13T10:21:45Z-
dc.date.available2021-09-13T10:21:45Z-
dc.date.issued2004-
dc.identifier.citationMiclău, Nicolae. Competitive learning methods for RBF neural network initializations - application to digital channel equalization. Timişoara: Editura Politehnica, 2004en_US
dc.identifier.urihttp://primo.upt.ro:1701/primo-explore/search?query=any,contains,Competitive%20learning%20methods%20for%20RBF%20neural%20network%20initializations%20-%20application%20to%20digital%20channel%20equalization&tab=default_tab&search_scope=40TUT&vid=40TUT_V1&lang=ro_RO&offset=0 Link Primo-
dc.description.abstractA complex-valued radial basis function neural network RBF is proposed for digital communications channel equalization. Performances are directly related to the clustering centers estimations. For this aim different competitive learning algorithms are developed. The network has complex centers and connection weights, but the nonlinearity of its hidden nodes remains a real-valued function. The RBF network is able to generate complicated nonlinear decision regions or to approximate an arbitrary nonlinear function in complex multidimensional space.en_US
dc.language.isoenen_US
dc.publisherTimişoara : Editura Politehnicaen_US
dc.relation.ispartofseriesBuletinul ştiinţific al Universităţii „Politehnica” din Timişoara, România. Seria electronică şi telecomunicaţii, Tom 49(63), fasc. 1 (2004), p. 256-261-
dc.subjectComplex-valued radial basis function network RBFen_US
dc.subjectCompetitive learningen_US
dc.titleCompetitive learning methods for RBF neural network initializations - application to digital channel equalization [articol] /en_US
dc.typeArticleen_US
Appears in Collections:Articole științifice/Scientific articles

Files in This Item:
File Description SizeFormat 
BUPT_ART_Miclau_f.pdf579.69 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.