Utilizaţi acest identificator pentru a cita sau a face link la acest document: https://dspace.upt.ro/xmlui/handle/123456789/3833
Titlu: Competitive learning methods for RBF neural network initializations - application to digital channel equalization [articol] /
Autori: Miclău, Nicolae
Subiecte: Complex-valued radial basis function network RBF
Competitive learning
Data publicării: 2004
Editura: Timişoara : Editura Politehnica
Citare: Miclău, Nicolae. Competitive learning methods for RBF neural network initializations - application to digital channel equalization. Timişoara: Editura Politehnica, 2004
Serie/Nr. raport: Buletinul ştiinţific al Universităţii „Politehnica” din Timişoara, România. Seria electronică şi telecomunicaţii, Tom 49(63), fasc. 1 (2004), p. 256-261
Abstract: A complex-valued radial basis function neural network RBF is proposed for digital communications channel equalization. Performances are directly related to the clustering centers estimations. For this aim different competitive learning algorithms are developed. The network has complex centers and connection weights, but the nonlinearity of its hidden nodes remains a real-valued function. The RBF network is able to generate complicated nonlinear decision regions or to approximate an arbitrary nonlinear function in complex multidimensional space.
URI: http://primo.upt.ro:1701/primo-explore/search?query=any,contains,Competitive%20learning%20methods%20for%20RBF%20neural%20network%20initializations%20-%20application%20to%20digital%20channel%20equalization&tab=default_tab&search_scope=40TUT&vid=40TUT_V1&lang=ro_RO&offset=0 Link Primo
Colecţia:Articole științifice/Scientific articles

Fişierele documentului:
Fişier Descriere MărimeFormat 
BUPT_ART_Miclau_f.pdf579.69 kBAdobe PDFVizualizare/Deschidere


Documentele din DSpace sunt protejate de legea dreptului de autor, cu toate drepturile rezervate, mai puţin cele indicate în mod explicit.